PHYS-454

!L 7 - The finite square well




i The finite square well-a

s The finite square well is the next problem that
we are going to consider. The solution of
Schroedinger equation is not that simple.



ﬁ The finite square well-b

The potential in this V(x)s
problem has the form:

V(x)z{o -a<x<a Vo

V,, x<-a, x >a

= Due to the symmetry of A
the potential the E<Vo

eigenfunctions will be

alternatelly even and
odd.

Hint: We are looking for bound
states in the well. Thus, state for -a

which
O<E<Vo



| Solution of Schroedinger equation

= We can show that the solutions of Schroedinger
equation in each of the regions A, B and C are given
by:

A: 1//;+(8—U0)1//A:1//;—y21//A:0
B: vy, tey, =y, +ky, =0
C: 1//;+(8—U0)1//C=1//;—y21//c,=0

2mE 2mV.

g=2" , U = g’

hZ 0 hZ
e=k’, U,-e=y> (U,>e




| Even solutions-a

In this case the solutions of Schroedinger
equations are

v, =Ae”, y,=Bcoskx, y.=dAde"

Where at region A and C we kept the relevant
terms that go to zero at infinity. And we set
the coefficients A and C equal in order to
satisfy the even character of the solution

WA(X):WC(_X)



iln solutions-b

The coefficients A and B are calculated
with the help of the following
conditions:

l//B(a) = II/C(LZ) = BCOS(ka) = Ae 7
W (a)=y (a)= —Bksin(ka)=—yAe"

tan(ka) :%



i Odd solutions-a

In this case the solutions of Schroedinger
equations are

v, =Ae”, y,=Bsinkx, Yy, =-Ae”

Where at region A and C we kept the relevant
terms that go to zero at infinity. And we set
the coefficients C=-A in order to satisfy the
odd character of the solution

l//c(x) = _I//A(_x)



i Odd solutions-b

The coefficients A and B are calculated
with the help of the following
conditions:

v (a)=vy.(a)= Bsin(ka) — A7
Y (a)=y (a)= Bkcos(ka) =y Ae "

Important note: The coefficients A, B and C in the even solutions are
different than the ones in the odd solutions! We kept the same
symbols for simplicity




Graphical solutions of the

i eigenvalues-a

= The two equations which they will give us
the energy spectrum are:

y k
tanlka)l =+ tan(ka |=——
n(ka) =L anfra)=-
= This can occur because k and y depend on
energy. But the analytic solution 1s

impossible. We chose a graphical solution.



Graphical solutions of the

i eigenvalues-b

= We chose a parameter 0 related to k£ and y

by:
kZ\ECOSQ yz\@sinH

Which satisfy the relation £°+7y°=U,

Since k and y are positive the angle 0 1s
limited 1n the region 0<0<7/2



Graphical solutions of the

i eigenvalues-c

= The unknown eigenvalue ¢ 1s expressed as a
function of the angle 6 as follows

£=U000529 or E=V0c0529

= And our eigenvalues egs., take the form

tan(ka) = % = tan 6 tan(ka) = —% = tan(@ — %)



Graphical solutions of the

i eigenvalues-d

= Solving the above eqgs. We get:

| T
cosb=—0+n—, n=0,1,2,3,.., and A=a U
A 27 X

where even (odd) values for n correspond to
solutions for even (odd) eigenfunctions.



Graphical solutions of the

i eigenvalues-e

s The number N of
bound states 15
finite. It 1s
determined from the
following relation:

N=L+1
[n/Z}

T 'I! : T
0 G 05 G 1.0 G 15
o
A finite well with =5




i Discussion-a

= The eigenfunctions of the finite square well
look like the corresponding ones of the
infinite square well, but, there 1s an
important difference: they are not zero at
x=-a and x=a but they have exponential
“tails " inside the forbiden region.




ﬁ Discussion-b

a
(a) (b)



i Discussion-c

= We see for first time that a particle can penetrate
into a region which 1s classically forbiden.

= In wave physics we have seen something similar:
the electromagnetic waves could penetrate into a
conductor where they suffer a damping.

= The fact that the particle can penetrate into this
forbiden region gives the wrong impression that in
quantum mechanics, sometimes, we can violate
the principle of energy conservation.



i Discussion-d

= But there 1s a misconception here: In classical
mechanics both kinetic and potential energy can
be simultaneously measured and their sum gives
always the total energy of the particle.

= In quantum mechanics this 1s not anymore true:
the total energy cannot be separated, at any
position, as a sum of a kinetic and a potential term
since we cannot measure simultaneously the
position and momentum. Thus to say that, at a
point x, £ < V(x) 1s meaningless.



i Discussion-e

s This “paradox’ could be also seen 1n a different
way: In the classically forbiden region the
wavefunction has an exponential term exp(-yx).
This corresponds to a penetration practically at a
length /=1/y (known as penetration length) out of
the well.

s If we try to make a measurement and be sure that
the particle 1s out of the well then Ax</. But 1n this
case the kinetic energy will be:



i Discussion-f

2
Ap hZ h2 2 hZ
(2m) :2m12: 237//1 :2m(U0_8):VO_E

= We see that a measurement which finds the
particle in the forbidden region disturbs the
energy at least by the amount needed to kick
it out of the well!



Discussion-g

= We can see that at the classical
limit (very large mass, or very
small Planck’s constant) the
penetration length tends to
zero, as 1t 1s expected.

= At the strong quantum limit =y
(very small mass or large
Planck’s constant) 1t becomes
very large!
m The lighter particles shows
strong quantum behaviour!




i Discussion-h

= We can also observe that the deeper the well
the smaller the penetration length and vice
versa. (As 1t 1s expected when the well tends
to the infinite depth)

= Also the penetration length depends on the
energy. The higher the energy the higher the
penetration.




