# PHYS-454 7 - The finite square well

### The finite square well-a

 The finite square well is the next problem that we are going to consider. The solution of Schroedinger equation is not that simple.



### Solution of Schroedinger equation

 We can show that the solutions of Schroedinger equation in each of the regions A, B and C are given by:

$$A: \qquad \psi_{A}^{"} + \left(\varepsilon - U_{0}\right)\psi_{A} = \psi_{A}^{"} - \gamma^{2}\psi_{A} = 0$$
  
$$B: \qquad \psi_{B}^{"} + \varepsilon\psi_{B} = \psi_{B}^{"} + k^{2}\psi_{B} = 0$$
  
$$C: \qquad \psi_{C}^{"} + \left(\varepsilon - U_{0}\right)\psi_{C} = \psi_{C}^{"} - \gamma^{2}\psi_{C} = 0$$

$$\varepsilon = \frac{2mE}{\hbar^2}, \qquad U_0 = \frac{2mV_0}{\hbar^2}$$
$$\varepsilon = k^2, \qquad U_0 - \varepsilon = \gamma^2 \quad (U_0 > \varepsilon)$$

### Even solutions-a

In this case the solutions of Schroedinger equations are

$$\psi_A = Ae^{\gamma x}, \ \psi_B = B\cos kx, \ \psi_C = Ae^{-\gamma x}$$

Where at region A and C we kept the relevant terms that go to zero at infinity. And we set the coefficients A and C equal in order to satisfy the even character of the solution

$$\psi_A(x) = \psi_C(-x)$$

### Even solutions-b

The coefficients A and B are calculated with the help of the following conditions:

$$\psi_{B}(a) = \psi_{C}(a) \Longrightarrow B\cos(ka) = Ae^{-\gamma a}$$
$$\psi'_{B}(a) = \psi'_{C}(a) \Longrightarrow -Bk\sin(ka) = -\gamma Ae^{-\gamma a}$$

$$\tan(ka) = \frac{\gamma}{k}$$

### Odd solutions-a

In this case the solutions of Schroedinger equations are

$$\Psi_A = Ae^{\gamma x}, \ \Psi_B = B\sin kx, \ \Psi_C = -Ae^{-\gamma x}$$

Where at region A and C we kept the relevant terms that go to zero at infinity. And we set the coefficients C=-A in order to satisfy the odd character of the solution

$$\boldsymbol{\psi}_{C}(\boldsymbol{x}) = -\boldsymbol{\psi}_{A}(-\boldsymbol{x})$$

### **Odd** solutions-b

#### The coefficients A and B are calculated with the help of the following conditions:

$$\psi_{B}(a) = \psi_{C}(a) \Rightarrow B\sin(ka) = -Ae^{-\gamma a}$$
$$\psi'_{B}(a) = \psi'_{C}(a) \Rightarrow Bk\cos(ka) = \gamma Ae^{-\gamma a}$$
$$\tan(ka) = -\frac{k}{\gamma}$$

Important note: The coefficients A, B and C in the even solutions are different than the ones in the odd solutions! We kept the same symbols for simplicity

Graphical solutions of the eigenvalues-a

The two equations which they will give us the energy spectrum are:

$$\tan(ka) = \frac{\gamma}{k} \qquad \tan(ka) = -\frac{k}{\gamma}$$

 This can occur because k and γ depend on energy. But the analytic solution is impossible. We chose a graphical solution. Graphical solutions of the eigenvalues-b

• We chose a parameter  $\theta$  related to k and  $\gamma$ by:  $k = \sqrt{U_0} \cos \theta$   $\gamma = \sqrt{U_0} \sin \theta$ Which satisfy the relation  $k^2 + \gamma^2 = U_0$ 

Since *k* and  $\gamma$  are positive the angle  $\theta$  is limited in the region  $0 \le \theta \le \pi/2$ 

Graphical solutions of the eigenvalues-c

The unknown eigenvalue ε is expressed as a function of the angle θ as follows

$$\varepsilon = U_0 \cos^2 \theta$$
 or  $E = V_0 \cos^2 \theta$ 

• And our eigenvalues eqs., take the form  $\tan(ka) = \frac{\gamma}{k} = \tan\theta \quad \tan(ka) = -\frac{k}{\gamma} = \tan\left(\theta - \frac{\pi}{2}\right)$  Graphical solutions of the eigenvalues-d

Solving the above eqs. We get:

$$\cos\theta = \frac{1}{\lambda}\theta + n\frac{\pi}{2\lambda}$$
,  $n = 0, 1, 2, 3, ..., \text{ and } \lambda = a\sqrt{U_0}$ 

where even (odd) values for *n* correspond to solutions for even (odd) eigenfunctions.

# Graphical solutions of the eigenvalues-e

 The number N of bound states is finite. It is determined from the following relation:

$$N = \left[\frac{\lambda}{\pi/2}\right] + 1$$



## Discussion-a

The eigenfunctions of the finite square well look like the corresponding ones of the infinite square well, **but**, there is an important difference: *they are not zero at x=-a and x=a but they have exponential "tails" inside the forbiden region.* 



## **Discussion-c**

- We see for first time that a particle can penetrate into a region which is classically forbiden.
- In wave physics we have seen something similar: the electromagnetic waves could penetrate into a conductor where they suffer a damping.
- The fact that the particle can penetrate into this forbiden region gives the wrong impression that in quantum mechanics, sometimes, we can violate the principle of energy conservation.

## Discussion-d

- But there is a misconception here: In classical mechanics both kinetic and potential energy can be simultaneously measured and their sum gives always the total energy of the particle.
- In quantum mechanics this is not anymore true: the total energy cannot be separated, at any position, as a sum of a kinetic and a potential term since we cannot measure simultaneously the position and momentum. Thus to say that, at a point x, E < V(x) is *meaningless*.

## Discussion-e

- This "paradox" could be also seen in a different way: In the classically forbiden region the wavefunction has an exponential term exp(-yx). This corresponds to a penetration practically at a length *l*=1/y (known as penetration length) out of the well.
- If we try to make a measurement and be sure that the particle is out of the well then  $\Delta x < l$ . But in this case the kinetic energy will be:

Discussion-f

$$\frac{(\Delta p)^2}{2m} = \frac{\hbar^2}{2ml^2} = \frac{\hbar^2 \gamma^2}{2m} = \frac{\hbar^2}{2m} (U_0 - \varepsilon) = V_0 - \varepsilon$$

• We see that a measurement which finds the particle in the forbidden region disturbs the energy at least by the amount needed to kick it out of the well!

# Discussion-g

- We can see that at the classical limit (very large mass, or very small Planck's constant) the penetration length tends to zero, as it is expected.
- At the strong quantum limit (very small mass or large Planck's constant) it becomes very large!
- The lighter particles shows strong quantum behaviour!

$$l = \gamma^{-1} = \sqrt{\frac{\hbar^2}{2m(V_0 - E)}}$$

### Discussion-h

- We can also observe that the deeper the well the smaller the penetration length and vice versa. (As it is expected when the well tends to the infinite depth)
- Also the penetration length depends on the energy. The higher the energy the higher the penetration.