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7 - The finite square well



The finite square well-a

 The finite square well is the next problem that
we are going to consider. The solution of
Schroedinger equation is not that simple.



Τhe finite square well-b
The potential in this

problem has the form:

 Due to the symmetry of
the potential the
eigenfunctions will be
alternatelly even and
odd.
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states in the well. Thus, state for
which

0<E<V0



Solution of Schroedinger equation

 We can show that the solutions of Schroedinger
equation in each of the regions A, B and C are given
by:
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Even solutions-a

In this case the solutions of Schroedinger
equations are

Where at region A and C we kept the relevant
terms that go to zero at infinity. And we set
the coefficients A and C equal in order to
satisfy the even character of the solution

  ! A = Ae" x ,   ! B = Bcos kx,     ! C = Ae#" x

 
! A x( ) =! C "x( )



Even solutions-b

The coefficients A and B are calculated
with the help of the following
conditions:
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Odd solutions-a
In this case the solutions of Schroedinger

equations are

Where at region A and C we kept the relevant
terms that go to zero at infinity. And we set
the coefficients C=-A in order to satisfy the
odd character of the solution

  ! A = Ae" x ,   ! B = Bsin kx,     ! C = #Ae#" x

 
! C x( ) = "! A "x( )



Odd solutions-b
The coefficients A and B are calculated

with the help of the following
conditions:
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Important note: The coefficients A, B and C in the even solutions are
different than the ones in the odd solutions! We kept the same
symbols for simplicity



Graphical solutions of the
eigenvalues-a

 The two equations which they will give us
the energy spectrum are:

 This can occur because k and γ depend on
energy. But the analytic solution is
impossible. We chose a graphical solution.
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Graphical solutions of the
eigenvalues-b

 We chose a parameter θ related to k and  γ
by:

Which satisfy the relation

Since k and γ are positive the angle θ is
limited in the region

  k = U0 cos!            " = U0 sin!
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Graphical solutions of the
eigenvalues-c

 The unknown eigenvalue ε is expressed as a
function of the angle θ as follows

 And our eigenvalues eqs., take the form

  ! =U0 cos2"     or   E =V0 cos2"

  
tan ka( ) = !

k
= tan"

  
tan ka( ) = !

k
"
= tan # !

$
2

%
&'

(
)*



Graphical solutions of the
eigenvalues-d

 Solving the above eqs. We get:

where even (odd) values for n correspond to
solutions for even (odd) eigenfunctions.
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Graphical solutions of the
eigenvalues-e

 The number N of
bound states is
finite. It is
determined from the
following relation:
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Discussion-a
 The eigenfunctions of the finite square well

look like the corresponding ones of the
infinite square well, but, there is an
important difference: they are not zero at
x=-a and x=a but they have exponential
“tails” inside the forbiden region.
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Discussion-b
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Discussion-c
 We see for first time that a particle can penetrate

into a region which is classically forbiden.
 In wave physics we have seen something similar:

the electromagnetic waves could penetrate into a
conductor where they suffer a damping.

 The fact that the particle can penetrate into this
forbiden region gives the wrong impression that in
quantum mechanics, sometimes, we can violate
the principle of energy conservation.



Discussion-d
 But there is a misconception here: In classical

mechanics both kinetic and potential energy can
be simultaneously measured and their sum gives
always the total energy of the particle.

 In quantum mechanics this is not anymore true:
the total energy cannot be separated, at any
position, as a sum of a kinetic and a potential term
since we cannot measure simultaneously the
position and momentum. Thus to say that, at a
point x, E < V(x) is meaningless.



Discussion-e
 This “paradox” could be also seen in a different

way: In the classically forbiden region the
wavefunction has an exponential term exp(-γx).
This corresponds to a penetration practically at a
length l=1/γ (known as penetration length) out of
the well.

 If we try to make a measurement and be sure that
the particle is out of the well then Δx<l. But in this
case the kinetic energy will be:



Discussion-f

 We see that a measurement which finds the
particle in the forbidden region disturbs the
energy at least by the amount needed to kick
it out of the well!
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Discussion-g
 We can see  that at the classical

limit (very large mass, or very
small Planck’s constant) the
penetration length tends to
zero, as it is expected.

 At the strong quantum limit
(very small mass or large
Planck’s constant) it becomes
very large!

 The lighter particles shows
strong quantum behaviour!
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Discussion-h
 We can also observe that the deeper the well

the smaller the penetration length and vice
versa. (As it is expected when the well tends
to the infinite depth)

 Also the penetration length depends on the
energy. The higher the energy the higher the
penetration.


