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7 - The finite square well



The finite square well-a

 The finite square well is the next problem that
we are going to consider. The solution of
Schroedinger equation is not that simple.



Τhe finite square well-b
The potential in this

problem has the form:

 Due to the symmetry of
the potential the
eigenfunctions will be
alternatelly even and
odd.
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Solution of Schroedinger equation

 We can show that the solutions of Schroedinger
equation in each of the regions A, B and C are given
by:
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Even solutions-a

In this case the solutions of Schroedinger
equations are

Where at region A and C we kept the relevant
terms that go to zero at infinity. And we set
the coefficients A and C equal in order to
satisfy the even character of the solution

  ! A = Ae" x ,   ! B = Bcos kx,     ! C = Ae#" x

 
! A x( ) =! C "x( )



Even solutions-b

The coefficients A and B are calculated
with the help of the following
conditions:
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Odd solutions-a
In this case the solutions of Schroedinger

equations are

Where at region A and C we kept the relevant
terms that go to zero at infinity. And we set
the coefficients C=-A in order to satisfy the
odd character of the solution

  ! A = Ae" x ,   ! B = Bsin kx,     ! C = #Ae#" x

 
! C x( ) = "! A "x( )



Odd solutions-b
The coefficients A and B are calculated

with the help of the following
conditions:
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Important note: The coefficients A, B and C in the even solutions are
different than the ones in the odd solutions! We kept the same
symbols for simplicity



Graphical solutions of the
eigenvalues-a

 The two equations which they will give us
the energy spectrum are:

 This can occur because k and γ depend on
energy. But the analytic solution is
impossible. We chose a graphical solution.
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Graphical solutions of the
eigenvalues-b

 We chose a parameter θ related to k and  γ
by:

Which satisfy the relation

Since k and γ are positive the angle θ is
limited in the region

  k = U0 cos!            " = U0 sin!
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Graphical solutions of the
eigenvalues-c

 The unknown eigenvalue ε is expressed as a
function of the angle θ as follows

 And our eigenvalues eqs., take the form

  ! =U0 cos2"     or   E =V0 cos2"
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Graphical solutions of the
eigenvalues-d

 Solving the above eqs. We get:

where even (odd) values for n correspond to
solutions for even (odd) eigenfunctions.

  
cos! =

1
"
! + n #

2"
,     n = 0,  1,  2,  3,  ...,     and  " = a U0



Graphical solutions of the
eigenvalues-e

 The number N of
bound states is
finite. It is
determined from the
following relation:
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Discussion-a
 The eigenfunctions of the finite square well

look like the corresponding ones of the
infinite square well, but, there is an
important difference: they are not zero at
x=-a and x=a but they have exponential
“tails” inside the forbiden region.
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Discussion-b
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Discussion-c
 We see for first time that a particle can penetrate

into a region which is classically forbiden.
 In wave physics we have seen something similar:

the electromagnetic waves could penetrate into a
conductor where they suffer a damping.

 The fact that the particle can penetrate into this
forbiden region gives the wrong impression that in
quantum mechanics, sometimes, we can violate
the principle of energy conservation.



Discussion-d
 But there is a misconception here: In classical

mechanics both kinetic and potential energy can
be simultaneously measured and their sum gives
always the total energy of the particle.

 In quantum mechanics this is not anymore true:
the total energy cannot be separated, at any
position, as a sum of a kinetic and a potential term
since we cannot measure simultaneously the
position and momentum. Thus to say that, at a
point x, E < V(x) is meaningless.



Discussion-e
 This “paradox” could be also seen in a different

way: In the classically forbiden region the
wavefunction has an exponential term exp(-γx).
This corresponds to a penetration practically at a
length l=1/γ (known as penetration length) out of
the well.

 If we try to make a measurement and be sure that
the particle is out of the well then Δx<l. But in this
case the kinetic energy will be:



Discussion-f

 We see that a measurement which finds the
particle in the forbidden region disturbs the
energy at least by the amount needed to kick
it out of the well!
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Discussion-g
 We can see  that at the classical

limit (very large mass, or very
small Planck’s constant) the
penetration length tends to
zero, as it is expected.

 At the strong quantum limit
(very small mass or large
Planck’s constant) it becomes
very large!

 The lighter particles shows
strong quantum behaviour!
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Discussion-h
 We can also observe that the deeper the well

the smaller the penetration length and vice
versa. (As it is expected when the well tends
to the infinite depth)

 Also the penetration length depends on the
energy. The higher the energy the higher the
penetration.


