
PHYS-453�
3-THE UNCERTAINTY PRINCIPLE 

…and other basic theorems of 
quantum mechanics!
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Average value of a physical 
quantity 

   The average value for an object’s position is 
given by !

!
!
This expression shows us that the average value of 

any physical quantity A represented by an!
 operator      is given by!

  
A = ψ * A

∧

ψ
⎛

⎝⎜
⎞

⎠⎟−∞

+∞

∫ dx

Â

  
x = xP(x)

−∞

+∞

∫ dx = xψ *ψ
−∞

+∞

∫ dx = ψ *xψ
−∞

+∞

∫ dx = ψ * xψ( )
−∞

+∞

∫ dx
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The momentum operator!
We can show that the operator which 

correspond to the physical quantity of the 
momentum is given by	

	
	
Or generalizing in three dimensions of space: !

  
p
∧

= −i!
∂

∂x

p̂x = −i!
∂
∂x

,           p̂y = −i!
∂
∂y

,          p̂z = −i!
∂
∂z

p̂ = −i!∇
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Uncertainty of a physical 
quantity!

For any physical quantity A represented by an!
 operator      the uncertainty is given by!
!
!
!
with!
!

  
ΔA( )2

= A2 − A
2

A = ψ* Âψ( )dx∫ ,        A2 = ψ* Â2ψ( )dx∫
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Physical quantities depending 
on position and momentum  

Any physical quantity can be written in 
terms of position and momentum 
A(x,p). The average value of the 
quantity is given by!

 
A(x, p) = Ψ*Â x, !

i
∂
∂x

⎛

⎝
⎜

⎞

⎠
⎟∫ Ψdx
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Heisenberg’s Uncertainty 
Principle-a!

n  As we shall prove latter the uncertainty in the 
position and in the momentum satisfy the 
following relation known as Heisenberg’s 
Uncertainty Principle:!

n  This means that the more we know about a 
particle’s position (small uncertainty) the less 
we know (large uncertainty) about 
momentum and vice versa.!

!

Δx ⋅ Δp ≥ ! / 2
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Heisenberg’s Uncertainty 
Principle-b!

n  The uncertainty principle is not an 
independent physical principle but a 
necessary consequence of the wave-particle 
duality and its statistical explanation. !

!
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Heisenberg’s Uncertainty:            
A mathematical explanation-a!

n  Remember from mathematics that:!

n  Also as we have shown in the class (for a real 
ψ:!

n  The above relation says that the more 
“abrupt” (with large slopes) is a function the 
larger is the momentum uncertainty.!

!

Δx = x2 − x
2
,    Δp = p2 − p

2

Δp( )
2
= !2 ψ ' (x)∫

2
dx
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Heisenberg’s Uncertainty:            
A mathematical explanation-b!

n  But a function with large slopes is “narrow” 
so it has a small position uncertainty. This 
qualitative discussion shows that the 
uncertainty in position “competes” with the 
uncertainty in momentum. !

n  Remember from (question 4, Handout 2) that:!

ψ x( ) = λ
π

4 e−λx
2 /2 ,     Δx = 1

2λ
,     Δp = ! λ

2
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Heisenberg’s Uncertainty:            
A mathematical explanation-b!

n  Remember from 
(question 4, Handout 2) 
that:!

n  In the plot you see the ψ 
for λ=4 (solid) and λ=0.3 
(dashed).!

ψ x( ) = λ
π

4 e−λx
2 /2 ,   Δx = 1

2λ
,   Δp = ! λ

2
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Heisenberg’s Uncertainty:            
A physical explanation-a!

n  If a particle has a fully determined 
momentum (∆p=0) then it is a wave with a 
definite wavelength λ=h/p. But a wave with a 
precise wavelength is a “plane wave” which 
has an infinite extend in space and thus ∆x=0. !

n  From classical waves theory (Fourier 
analysis) we know that if we wish to create a 
“localized” wave (a “wavepacket”) we must 
interfere a large number of sinusoidal waves 
with different wavelengths λ. !
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Heisenberg’s Uncertainty:            
A physical explanation-c!

n  From the relation p=ħk we get: Moreover we 
know that the more sinusoidal waves we 
interfere the more localized is the wave-
packet. This happens because the waves 
interfere constructively in the “localization 
region” and destructively outside from this 
region.!

n  So Fourier analysis gives us the following 
result:  ! Δx ⋅ Δk ≈1
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Heisenberg’s Uncertainty:            
A physical explanation-d!

n  From the relation p=ħk we get:!

Δp = ! ⋅ Δk⇒Δk = Δp / !
Δx ⋅ Δk ≈1⇒Δx ⋅ Δp / ! ≈1⇒
Δx ⋅ Δp ≈ !
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A “gedanken” (thought) experiment!

n  When a particle passes through 
the slit it has a position along y-
direction known to a precision 
∆y≈B. The particles since they 
have wave properties they will 
suffer diffraction after passing 
through the slit. The beam will 
“open” by ∆θ≈λ/Β. Thus:! ∆θ!

p!

∆py!

Δpy = p tanΔθ ≈ pΔθ ≈ pλ / B

= p(h / p) / B = h / B ⇒
Δy≈B

Δy ⋅ Δpy ≈ h
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Theorem 1:!
n  Two quantum mechanical quantities A and B 

can be measured simultaneously with perfect 
precision only if their operators commute. 
That means only if [A, B]=AB-BA=0. On the 
contrary if [A, B]≠0, then the operators do not 
commute so the two quantities cannot be 
measured simultaneously with accuracy. 
Such quantities are called complementary 
quantities (like position and momentum).  !
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The generalized uncertainty principle:            
Theorem 2:!

n  The product of the uncertainties of two 
complementary physical quantities can never be 
smaller than the half of the asolute average value of 
their commutator.!

n  For A=x and B=px we know [A, B]=[x, px]=iħ, so !

n  Similarly:!

ΔA ⋅ ΔB ≥ 1
2

A,B⎡⎣ ⎤⎦

Δx ⋅ Δpx ≥
1
2

x,  px⎡⎣ ⎤⎦ = 1
2
i! =

1
2
i! = !

2

Δy ⋅ Δpy ≥
!
2

,     Δz ⋅ Δpz ≥
!
2

http://fac.ksu.edu.sa/vlempesis 16 



The time-energy uncertainty principle          !
n  Time is not a dynamical quantity but rather a 

parameter both in classical and quantum mechanics. 
So there is no a time operator in quantum mechanics.!

n  The following statement holds: The slower the 
variation of a system is (τ), the more precise the 
knowledge of its energy is, and vice versa.!

!
n  We know in classical physics a similar relation for the 

frequency width and the time width of a pulse 
∆ω�∆τ≈1.!

ΔE ⋅τ ≥ !
2
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The time-energy uncertainty principle          !
n  To prove this uncertainty relation we need a rigorous 

definition of the characteristic evolution time τ of a 
quantity A. This is given as:!

n  This is actually the time we must wait in order the 
average value to has change by an amount equal to 
the standard deviation (or uncertainty) of A. To 
calculate the above quantity we need to know the 
quantity d<A>/dt . !

ΔA
τ
=
d A
dt

⇒ τ =
ΔA

d A / dt
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The time-energy uncertainty principle          !
n  This is given from the famous Ehrenfest Theorem 

which says that:!

n  The rate of change of the average value of a physical 
quantity is the average value of its commutator with 
the Hamiltonian. !

n  The Hamiltonian is the operator of the total energy!

i!
d Â

dt
= Â,  Ĥ⎡
⎣

⎤
⎦

http://fac.ksu.edu.sa/vlempesis 19 

Ĥ = p̂2 / 2m+V̂


