PHYS-453
 2-BASIC MATHEMATICAL CONCEPTS
 ...and their role in $Q M$

Average value-a

Consider a statistical quantity A for which all the possible values make up a discrete sequence $a_{1}, a_{2}, \ldots a_{n}, \ldots$ and in a set of N measurements they turn up N_{1}, $N_{2}, \ldots N_{n}, \ldots$ times. Then, the average value is given by

$$
\begin{equation*}
\langle A\rangle=\frac{N_{1} a_{1}+N_{2} a_{2}+\ldots N_{n} a_{n}+\ldots}{N}=\sum_{n} a_{n} f_{n} \tag{2.1}
\end{equation*}
$$

Average value-b

In the limit where $N \rightarrow \infty$ the frequencies f_{n} tend to the probabilities of P_{n} appearance of the values a_{n}, thus

$$
\begin{equation*}
\langle A\rangle=\sum_{n} a_{n} P_{n} \tag{2.2}
\end{equation*}
$$

Thus the average value of a statistical quantity is the sum of its possible values multiplied by the corresponding probability

Average value-c

For a generic function $G(A)$ of the statistical quantity A the average value is given by

$$
\begin{equation*}
\langle G(A)\rangle=\sum_{n} G\left(a_{n}\right) P_{n} \tag{2.3}
\end{equation*}
$$

All the previous discussion is valid when the "spectrum" of the possible values is discrete. What is going on when is is continuous? That is, when the quantity A can get all possible values within a range?

Average value-d

In this case we introduce the density probability $P(a)$. The product $P(a) d a$ gives the probability of finding the values of quantity A in the range between a and a $+d a$. The average value of A is given by

$$
\begin{equation*}
\langle A\rangle=\sum_{a} a P(a) \equiv \int_{-\infty}^{+\infty} a P(a) d a \tag{2.4}
\end{equation*}
$$

Similarly for a function $G(A)$ of A

$$
\begin{equation*}
\langle G(A)\rangle=\int_{-\infty}^{+\infty} G(a) P(a) d a \tag{2.5}
\end{equation*}
$$

Standard Deviation or Uncertainty

- The standard deviation or uncertainty of a statistical quantity A is given by

$$
\begin{equation*}
(\Delta A)^{2}=\left\langle A^{2}\right\rangle-\langle A\rangle^{2} \tag{2.6}
\end{equation*}
$$

where we have the following

$$
\begin{equation*}
\left\langle A^{2}\right\rangle=\sum_{n} a_{n}^{2} P_{n} \quad \text { (2.7) } \quad\left\langle A^{2}\right\rangle=\int a^{2} P(a) d a \tag{2.8}
\end{equation*}
$$

Discrete distribution
Continuous distribution

The Linear Operators-a

- With the term operator, we actually mean the mapping of a set of mathematical objects on another set (which is normally the original one). For example when we differentiate a function we map it on another function (the derivative). In this case we talk about an operator D for which,

$$
\hat{D}=\frac{d}{d x}: \rightarrow \hat{D} f(x)=\frac{d}{d x} f(x)
$$

The Linear Operators-b

- The operators which we use in quantum mechanics are linear.

$$
\begin{equation*}
\hat{A}\left(c_{1} \psi_{1}+c_{2} \psi_{2}\right)=c_{1}\left(\hat{A} \psi_{1}\right)+c_{2}\left(\hat{A} \psi_{2}\right) \tag{2.9}
\end{equation*}
$$

- The operator algebra has the following properties:

$$
\begin{gather*}
(\hat{A}+\hat{B}) \psi=\hat{A} \psi+\hat{B} \psi, \quad(\hat{A} \cdot \hat{B}) \psi=\hat{A}(\hat{B} \psi) \\
\hat{A} \cdot \hat{B} \neq \hat{B} \cdot \hat{A} \tag{2.10}
\end{gather*}
$$

The Linear Operators-c

- In the case where $\hat{A} \cdot \hat{B}=\hat{B} \cdot \hat{A}$ we say that the two operators commute.
- The quantity $[\hat{A}, \hat{B}]=\hat{A} \cdot \hat{B}-\hat{B} \cdot \hat{A}$ is called the commutator.
- Two operators are said to be equal when their action on a generic function gives the same result:

$$
\begin{equation*}
\hat{A}=\hat{B} \Leftrightarrow \hat{A} \psi=\hat{B} \psi \tag{2.11}
\end{equation*}
$$

Properties of commutators

$$
\begin{align*}
& {[\hat{A}, \hat{B}]=-[\hat{B}, \hat{A}]} \\
& {[\hat{A}, \hat{B}+\hat{C}]=[\hat{A}, \hat{B}]+[\hat{A}, \hat{C}]} \\
& {[\hat{A} \cdot \hat{B}, \hat{C}]=\hat{A} \cdot[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \cdot \hat{B}} \\
& {[\hat{A}, \hat{B} \cdot \hat{C}]=\hat{B} \cdot[\hat{A}, \hat{C}]+[\hat{A}, \hat{B}] \cdot \hat{C}} \\
& {[\hat{A}, \hat{B}]=c[\hat{A}, \hat{B}]=[c \hat{A}, \hat{B}]} \\
& {[\hat{A}, \hat{A}]=\left[\hat{A}, \hat{A}^{n}\right]=[\hat{A}, f(\hat{A})]=[\hat{A}, c]=0} \tag{2.12}
\end{align*}
$$

Eigenvalues and Eigenfunctions of Operators -a

- For the operators used in quantum mechanics there are functions such that when the operator is applied on them it simply multiplies them with a real number a.

$$
\hat{A} \psi=a \psi
$$

- The functions ψ are called eigenfunctions of the operator and the real numbers a are called eigenvalues of the operator.

Eigenvalues and Eigenfunctions of Operators -b

- If the eigenvalues can take any real value we say that the operator's spectrum is continuous. On the contrary if they take only certain real values then the operator's spectrum is discrete.
- If for a given eigenvalue we have more than one eigenfunction then the spectrum is called degenerate.

Dirac formalism: a new way for representing wave functions-a

- According to Dirac, any quantum state ψ is represented by two vectors: The first is a column vector, is denoted as $|\psi\rangle$, and is called ket vector. The second is a row vector and is denoted by $\langle\psi|$ and is called $\mathbf{b r a}$ vector. These names come from the English word bracket because in this formalism the dot product of two states ψ and ϕ is given by

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \psi^{*}(x) \phi(x) d x=(\psi, \phi)=\langle\psi \mid \phi\rangle \tag{2.13}
\end{equation*}
$$

Dirac formalism: a new way for representing wave functions-b

- With this formalism the average value of a physical quantity on a state ψ is denoted by:

$$
\begin{equation*}
\langle A\rangle=\int_{-\infty}^{\infty} \psi^{*}(x)(A \psi(x)) d x=\langle\psi| A|\psi\rangle \tag{2.14}
\end{equation*}
$$

- The two vectors are related by the following relations

$$
\begin{gather*}
(|\psi\rangle)^{\dagger}=\langle\psi|, \quad(\langle\psi|)^{\dagger}=|\psi\rangle \tag{2.15}\\
\left(c_{1}\left|\psi_{1}\right\rangle+c_{2}\left|\psi_{2}\right\rangle\right)^{\dagger}=c_{1}^{*}\left\langle\psi_{1}\right|+c_{2}^{*}\left\langle\psi_{2}\right| \tag{2.16}
\end{gather*}
$$

The dot product

- The dot product of two square integrable functions ψ and ϕ is denoted and defined by:

$$
\begin{equation*}
\langle\psi \mid \phi\rangle=\int_{-\infty}^{+\infty} \psi^{*}(x) \phi(x) d x \tag{2.17}
\end{equation*}
$$

- The dot product has the following properties:

$$
\begin{align*}
& \langle\psi \mid \psi\rangle \geq 0, \quad\langle\psi \mid \phi\rangle=\langle\phi \mid \psi\rangle^{*} \\
& \langle\psi| c|\phi\rangle=\langle\psi \mid c \phi\rangle=c\langle\psi \mid \phi\rangle, \quad c \in \mathrm{C} \tag{2.17}\\
& \left\langle\psi \mid \phi_{1}+\phi_{2}\right\rangle=\left\langle\psi \mid \phi_{1}\right\rangle+\left\langle\psi \mid \phi_{2}\right\rangle
\end{align*}
$$

Conjugate states in Dirac formalism

- In Dirac formalism when we have to consider conjugate states we must take into account the following:

$$
\begin{align*}
& |\phi\rangle=c|\psi\rangle \Leftrightarrow\langle\phi|=c^{*}\langle\psi| \tag{2.18}\\
& |\phi\rangle=\hat{A}|\psi\rangle \Leftrightarrow\langle\phi|=\langle\psi| \hat{A}^{\dagger}
\end{align*}
$$

- Where \hat{A}^{\dagger} is the conjugate operator of \hat{A}

Self-adjoint or Hermitian Operator

- When $\hat{A}^{\dagger}=\hat{A}$ the operator is called selfadjoint or Hermitian. For such an operator we have:

$$
\begin{equation*}
|\phi\rangle=\hat{A}|\psi\rangle \Leftrightarrow\langle\phi|=\langle\psi| \hat{A}^{\dagger}=\langle\phi|=\langle\psi| \hat{A} \tag{2.19}
\end{equation*}
$$

- A Hermitian operator has: a) real eigenvalues b) real average value c) orthogonal eigenstates d) for all the previous it is proper for representing physical quantities.

Hermitian Operator a Definition

- We say that a linear operator \hat{A}, which acts on a functional space, is hermitian if for any couple of functions $\psi(x), \phi(x)$ the following relation holds:

$$
\begin{equation*}
\int \psi^{*}(A \phi) d x=\int(A \psi)^{*} \phi d x \tag{2.20}
\end{equation*}
$$

- In other words the action can be transferred without change of the result between the functions of the integral.

Properties of Hermitian Operators

- If \hat{A}, \hat{B} are Hermitian operators then the following operators are Hermitian as well:

$$
\hat{A}+\hat{B}, \hat{A}^{n}, \lambda \hat{A}
$$

- The operator $\hat{A} \cdot \hat{B}$ is Hermitian only if the two operators commute, i.e. $\hat{A} \cdot \hat{B}=\hat{B} \cdot \hat{A}$.
- The eigenfunctions of a Hermitian operator form a complete orthonormal basis in the space of the physical states. This means that any wave function can be expressed as a linear combination of the operator's eigenfunctions.

Projection and Parity Operators

- An operator \hat{P} is called a projection operator when it is Hermitian and is equal to its square:

$$
\hat{P}^{2}=\hat{P} \quad(2.21)
$$

- The parity operator reflects the position vector r in the expression of a function:

$$
\begin{equation*}
\hat{P} \psi(\mathbf{r})=\psi(-\mathbf{r}) \tag{2.22}
\end{equation*}
$$

