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Introduction-a	
•  The study of the hydrogen atom is important in 

quantum mechanics because it is the only atom 
where the Scrhoedinger equation can be exactly 
solved in the limit where all the interactions, 
except the electrostatic, between the proton and 
the electron can be ignored.!
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Introduction-b!

•  The Scrhoedinger equation takes the form:!
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Introduction-c!

•  Since the interaction Hamiltonian depends only on r, the proper 
coordinate system for the study of this problem is the system of 
spherical coordinates, where:!

•  Since the mass of the proton is much larger than the electron’s, the 
proton has been considered as a heavy motionless particle.!

4 

  
∇2 =

1
r
∂2

∂r 2 +
1
r 2

1
sinθ

∂

∂θ
sinθ

∂

∂θ
+

1
sin2θ

∂2

∂φ 2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪



Solution of Shrödinger equation-a !

•  In solving the Schroedinger equation for the 
hydrogen atom we must take into account two 
important conservation principles:!

•  The conservation of energy!
•  The conservation of angular momentum since the 

Coulomb force between proton and electron is a 
central force. !

•  The Schroedinger equation is solved with the method 
of separating variables!

!
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Solution of Shrödinger equation-b!

•  The wavefunctions for the hydrogen 
electron are given by:!

•  As you may see they consist of a radial 
and an angular part!
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The angular part-a	

•  The angular part of the wavefunction is given by 
the so-called spherical harmonics:!
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The angular part-b	

•  The associated Legendre functions 
polynomials are generated from the 
Legendre polynomials from the following 
relations:!
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The angular part-c�
some associated Legendre polynomials	
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The angular part-d	

•  The spherical harmonics are normalized and 
orthogonal to each other:!

•  The spherical harmonics are eigenfunctions of the 
square angular momentum operator and of the 
angular momentum operator along the z-direction!
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The angular part-e�
the first few spherical harmonics	
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The angular part-e	

•  The integer number l is known as azimuthal 
quantum number and gets the values!

•  The integer number m is known as magnetic 
quantum number and gets the values !
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The radial part-a	
•  The radial part of the solution is given by:	
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The radial part-b	

•  The associated Laguerre polynomials are 
generated from the Laguerre polynomials 
from the following relations:	
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The radial part-c�
Some associated Laguerre polynomials!
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The radial part-c�
Discussion!

•  It can be shown that the radial part of the 
electrons wavefunction defines a function!

which satisfies the so-called radial equation     !
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The radial part-c�
Discussion!

•  The functions u satisfy the following boundary 
conditions:!

•  Thus the radial equation describes an one-
dimensional motion where at 0 we have a “wall” 
and at infinity the wavefunction becomes zero.!

•  The radial equation contains the term!
which is the so called centrifugal term.!
  !
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The total wavefunctions!

•  The total wavefunctions for the hydrogen 
atom are given by:!
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 42.5 The Wave Functions for Hydrogen 1309

Because we imagine the nucleus to be fixed in space at r 5 0, we can assign this 
probability density to the question of locating the electron. According to Equation 
41.3, the probability of finding the electron in a volume element dV is uc u2 dV. It is 
convenient to define the radial probability density function P(r) as the probability per 
unit radial length of finding the electron in a spherical shell of radius r and thick-
ness dr. Therefore, P(r) dr is the probability of finding the electron in this shell. 
The volume dV of such an infinitesimally thin shell equals its surface area 4pr 2 
multiplied by the shell thickness dr (Fig. 42.10), so we can write this probability as

P(r) dr 5 uc u2 dV 5 uc u2 4pr 2 dr

Therefore, the radial probability density function for an s state is

 P(r) 5 4pr 2uc u2 (42.24)

Substituting Equation 42.23 into Equation 42.24 gives the radial probability density 
function for the hydrogen atom in its ground state:

 P1s 1r 2 5 a4r 2

a0
3  be22r/a0  (42.25)

 A plot of the function P1s(r) versus r is presented in Figure 42.11a. The peak of 
the curve corresponds to the most probable value of r for this particular state. We 
show in Example 42.3 that this peak occurs at the Bohr radius, the radial position 
of the electron when the hydrogen atom is in its ground state in the Bohr theory, 
another remarkable agreement between the Bohr theory and the quantum theory.
 According to quantum mechanics, the atom has no sharply defined boundary 
as suggested by the Bohr theory. The probability distribution in Figure 42.11a sug-
gests that the charge of the electron can be modeled as being extended throughout 
a region of space, commonly referred to as an electron cloud. Figure 42.11b shows the 
probability density of the electron in a hydrogen atom in the 1s state as a function 
of position in the xy plane. The darkness of the blue color corresponds to the value 
of the probability density. The darkest portion of the distribution appears at r 5 a0, 
corresponding to the most probable value of r for the electron.

�W   Radial probability density for 
the 1s state of hydrogen

dr

r

Figure 42.10  A spherical shell 
of radius r and infinitesimal thick-
ness dr has a volume equal to  
4pr 2 dr.

P 1s(r)

a0 ! 0.052 9 nm
r

x

y

r ! a0

The probability has 
its maximum value 
when r equals the 
Bohr radius a0.

In this representation, the 
darkest color, representing 
the maximum probability, 
occurs at the Bohr radius.

a b

Figure 42.11 (a) The probability 
of finding the electron as a func-
tion of distance from the nucleus 
for the hydrogen atom in the 1s 
(ground) state. (b) The cross sec-
tion in the xy plane of the spherical 
electronic charge distribution for 
the hydrogen atom in its 1s state.

continued

Example 42.3   The Ground State of Hydrogen

(A)  Calculate the most probable value of r for an electron in the ground state of the hydrogen atom.

(a) The probability of finding the electron as a function of distance from the nucleus !
for the hydrogen atom in the 1s (ground) state. (b) The cross section in the xy plane of the !
spherical electronic charge distribution for the hydrogen atom in its 1s state. !
!
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The radial probability density function versus r/a0 for the 1s and 2s states of�
the hydrogen atom. !
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The energy spectrum of the 
hydrogen atom-a!

•  The energies of the electron states are given by the 
following formula:!

•  Where E1 is the ground state energy given by!

•  The number n is called the principal quantum number.  !

22 

   
En = −

m
2!2

e2

4πε0

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1
n2 =

E1

n2 ,      n = 1,  2,  3,  ...

   
En = −

m
2!2

e2

4πε0

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= −13.6  eV



Interesting properties of the 
probability function !

•  For n = 1, the probability has one maximum exactly at 
r=a0, the orbital radius of the first energy level in the 
Bohr model. !

•  For (n = 2, l = 0, m = 0), the probability shows two 
maxima located at r �≠ n2a0. !

•  Only for states such that n = l+1, the probability shows 
one maximum located at r = n2a0, the orbital radius of the 
nth energy level in the Bohr model. !
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The energy spectrum of the 
hydrogen atom-b!

•  One of the most impressive characteristic of the 
hydrogen atom energy spectrum is its degeneracy.!

•  By degeneracy we mean that there can be more than one 
states with the same energy. This is obvious since the 
energy does not depend on the numbers l and m.!

•  The principal quantum number n imposes the following 
restriction on the values of the azimuthal quantum 
number: !

•  We can prove that the number of different states that 
have the same energy is given by !

24   dn = n2

  l = 0,  1, 2, ..., n -1



The physical interpretation of 
quantum number l!

•  The Bohr model of hydrogen, however, postulates that 
the magnitude of the angular momen- tum of the 
electron is restricted to multiples of "; that is, l=nħ. This 
model must be modified because it predicts (incorrectly) 
that the ground state of hydrogen has one unit of 
angular momentum. !

•  According to quantum mechanics, an atom in a state 
whose principal quantum number is n can take on the 
following discrete values of the magnitude of the orbital 
angular momentum !

25 



The physical interpretation of 
quantum number m!

•  Spectral lines from some atoms are observed to split into 
groups of three closely spaced lines when the atoms are 
placed in a magnetic field. !

•  Suppose the hydrogen atom is located in a magnetic 
field. According to quantum mechanics, there are discrete 
directions allowed for the magnetic moment with 
respect to the magnetic field. Because the magnetic 
moment " of the atom can be related to the angular 
momentum vector, the discrete directions of m translate 
to the direction of L being quantized. This quantization 
means that Lz (the projection of L along the z axis) can 
have only discrete values. !
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 42.6 Physical Interpretation of the Quantum Numbers 1313

 The vector L
S

 does not point in one specific direction. If L
S

 were known exactly, 
all three components Lx , Ly , and Lz would be specified, which is inconsistent  
with an angular momentum version of the uncertainty principle. How can the  
magnitude and z component of a vector be specified, but the vector not be  
completely specified? To answer, imagine that Lx and Ly are completely unspecified 
so that L

S
 lies anywhere on the surface of a cone that makes an angle u with the z 

axis as shown in Figure 42.13b. From the figure, we see that u is also quantized and 
that its values are specified through the relationship

 cos u 5
Lz

L
5

m,", 1, 1 1 2  (42.29)

 If the atom is placed in a magnetic field, the energy UB 5 2mS ? B
S

 is additional 
energy for the atom–field system beyond that described in Equation 42.21. Because 
the directions of mS are quantized, there are discrete total energies for the system 
corresponding to different values of m ,. Figure 42.14a shows a transition between 
two atomic levels in the absence of a magnetic field. In Figure 42.14b, a magnetic 
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The physical interpretation of 
quantum number m!

•  The quantization of possible orientations of L with 
respect to an external magnetic field is often referred to 
as space quantization.!

•    Notice that L can never be aligned parallel or anti-
parallel to magnetic field B because the maximum value 
of Lz is lħ which is less than the magnitude of angular 
momentum {l(l+1)}1/2ħ.   !

•  The vector L does not point in one specific direction. If L 
were known exactly, all three components Lx, Ly, and Lz 
would be specified, which is inconsistent with an 
angular momentum version of the uncertainty principle. !
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The physical interpretation of 
quantum number m!

•   If the atom is placed in a magnetic field, the energy  UB=-μ.Β 
is additional energy for the atom-field system. Because the 
directions of μ are quantized, there are discrete total energies 
for the system corresponding to different values of m. This is 
the famous Zeeman Effect.!

•  The Zeeman effect can be used to measure extraterrestrial 
magnetic fields. For example, the splitting of spectral lines in 
light from hydrogen atoms in the surface of the Sun can be 
used to calculate the magnitude of the magnetic field at that 
location.!

•   The Zeeman effect is one of many phenomena that cannot be 
explained with the Bohr model but are successfully explained 
by the quantum model of the atom. !
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 42.6 Physical Interpretation of the Quantum Numbers 1313

 The vector L
S

 does not point in one specific direction. If L
S

 were known exactly, 
all three components Lx , Ly , and Lz would be specified, which is inconsistent  
with an angular momentum version of the uncertainty principle. How can the  
magnitude and z component of a vector be specified, but the vector not be  
completely specified? To answer, imagine that Lx and Ly are completely unspecified 
so that L
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 lies anywhere on the surface of a cone that makes an angle u with the z 

axis as shown in Figure 42.13b. From the figure, we see that u is also quantized and 
that its values are specified through the relationship
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energy for the atom–field system beyond that described in Equation 42.21. Because 
the directions of mS are quantized, there are discrete total energies for the system 
corresponding to different values of m ,. Figure 42.14a shows a transition between 
two atomic levels in the absence of a magnetic field. In Figure 42.14b, a magnetic 
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