PHYS-454
The hydrogen atom



Introduction-a
* The study of the hydrogen atom is important in
quantum mechanics because it is the only atom
where the Scrhoedinger equation can be exactly
solved in the limit where all the interactions,
except the electrostatic, between the proton and
the electron can be ignored.



Introduction-b

 The Scrhoedinger equation takes the form:
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Introduction-c

Since the interaction Hamiltonian depends only on 7, the proper
coordinate system for the study of this problem is the system of
spherical coordinates, where:
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Since the mass of the proton is much larger than the electron’s, the
proton has been considered as a heavy motionless particle.




Solution of Shrodinger equation-a

In solving the Schroedinger equation for the
hydrogen atom we must take into account two
important conservation principles:

The conservation of energy

The conservation of angular momentum since the
Coulomb force between proton and electron is a
central force.

The Schroedinger equation is solved with the method
of separating variables



Solution of Shrodinger equation-b

‘.

» The wavefunctions for the hydrogen
electron are given by:
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radial part angular part

 As you may see they consist of a radial
and an angular part




The angular part-a

* The angular part of the wavefunction is given by
the so-called spherical harmonics:
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P (cos 0) the associated Legendre function



The angular part-b

* The associated Legendre functions
polynomials are generated from the
Legendre polynomials from the following
relations:




The angular part-c
some associated Legendre polynomials
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The angular part-d

* The spherical harmonics are normalized and
orthogonal to each other:
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* The spherical harmonics are eigenfunctions of the
square angular momentum operator and of the
angular momentum operator along the z-direction
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The angular part-e
the first few spherical harmonics
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The angular part-e

 The integer number [ is known as azimuthal
quantum number and gets the values

[=0,1,2,.., 0

 The integer number m is known as magnetic
quantum number and gets the values



The radial part-a

* The radial part of the solution 1s given by:
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The radial part-b

 The associated Laguerre polynomials are
generated from the Laguerre polynomials
from the following relations:
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The radial part-c

Some associated Laguerre polynomials
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The radial part-c

Discussion

* It can be shown that the radial part of the
electrons wavefunction defines a function

u=rR (r)

which satisfies the so-called radial equation
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effective potential

u= FEu



The radial part-c

Discussion

 The functions u satisfy the following boundary

conditions:
u(0)=0, wu()=0, while O<r<wx

 Thus the radial equation describes an one-
dimensional motion where at 0 we have a “wall”
and at infinity the wavefunction becomes zero.

» The radial equation contains the term #%(1+1)/(2m*)
which is the so called centrifugal term.



The first radial functions of the hydrogen atom
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The total wavefunctions

* The total wavefunctions for the hydrogen
atom are given by:
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The probability has In this representation, the

its maximum value darkest color, representing
when requals the the maximum probability,
: Bohr radius a,. occurs at the Bohr radius.
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(a) The probability of finding the electron as a function of distance from the nucleus
for the hydrogen atom in the 1s (ground) state. (b) The cross section in the xy plane of the

spherical electronic charge distribution for the hydrogen atom in its 1s state. -
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The radial probability density function versus r/a, for the 1s and 2s states of
the hydrogen atom.
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The energy spectrum of the
hydrogen atom-a

 The energies of the electron states are given by the
following formula:
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* The number 7 is called the principal quantum number.
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Interesting properties of the
probability function

 For n =1, the probability has one maximum exactly at
r=a,, the orbital radius of the first energy level in the
Bohr model.

« For (n=2,1=0, m=0), the probability shows two
maxima located at r = n?a,,.
* Only for states such that n = [+1, the probability shows

one maximum located at r = n%a,, the orbital radius of the
n'h energy level in the Bohr model.
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The energy spectrum of the
hydrogen atom-b

One of the most impressive characteristic of the
hydrogen atom energy spectrum is its degeneracy.

By degeneracy we mean that there can be more than one
states with the same energy. This is obvious since the
energy does not depend on the numbers [ and m.

The principal quantum number n imposes the following
restriction on the values of the azimuthal quantum

number:
[=0,1,2,..,n-1

We can prove that the number of different states that
have the same energy is given by



The physical interpretation of
quantum number /

« The Bohr model of hydrogen, however, postulates that
the magnitude of the angular momen- tum of the
electron is restricted to multiples of "; that is, [=n#i. This
model must be modified because it predicts (incorrectly)
that the ground state of hydrogen has one unit of
angular momentum.

+ According to quantum mechanics, an atom in a state
whose principal quantum number is 1 can take on the
following discrete values of the magnitude of the orbital
angular momentum



The physical interpretation of
quantum number m

* Spectral lines from some atoms are observed to split into
groups of three closely spaced lines when the atoms are
placed in a magnetic field.

* Suppose the hydrogen atom is located in a magnetic
field. According to quantum mechanics, there are discrete
directions allowed for the magnetic moment with
respect to the magnetic field. Because the magnetic
moment u of the atom can be related to the angular
momentum vector, the discrete directions of m translate
to the direction of L being quantized. This quantization
means that Lz (the projection of L along the z axis) can
have only discrete values.
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The allowed projections on
the zaxis af the orbital
angular momentum L are
integer multiples of #.

B

Because the x and y components of
the orbital angular momentum
vector are not quantized, the vector
L lies on the surface of a cone.
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A vector model for [=2
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The physical interpretation of
quantum number m

 The quantization of possible orientations of L with
respect to an external magnetic field is often referred to

as space quantization.

« Notice that L can never be aligned parallel or anti-
parallel to magnetic field B because the maximum value
of L, is Ifr which is less than the magnitude of angular
momentum {I(I+1)}1/2.

 The vector L does not point in one specific direction. If L
were known exactly, all three components Lx, Ly, and Lz
would be specified, which is inconsistent with an
angular momentum version of the uncertainty principle.



The physical interpretation of
quantum number m

If the atom is placed in a magnetic field, the energy Uz=-u.B
is additional energy for the atom-field system. Because the
directions of p are quantized, there are discrete total energies
for the system corresponding to different values of m. This is
the famous Zeeman Effect.

The Zeeman effect can be used to measure extraterrestrial
magnetic fields. For example, the splitting of spectral lines in
light from hydrogen atoms in the surface of the Sun can be
used to calculate the magnitude of the magnetic field at that
location.

The Zeeman effect is one of many phenomena that cannot be
explained with the Bohr model but are successfully explained

by the quantum model of the atom.
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When B = 0, the excited Atoms in three excited states

state has a single energy decay to the ground state with
and only a single spectral three different energies, and
line at f, is observed. three spectral lines are observed.
No magnetic Magnetic field
field present
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The Zeeman effect. (a) Energy levels for the ground and first excited states of a hydrogen
atom. (b) When the atom is immersed in a magnetic field B, the state with /=1 splits into
three states, giving rise to emission lines at f,, f, +Af, and f, —Af where Afis the frequency
shift of the emission caused by the magnetic field.
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