PHYS-454 The position and momentum representations

The continuous spectrum-a

- So far we have seen problems where the involved operators have a discrete spectrum of eigenfunctions and eigenvalues.
- What happens if the spectrum of an operator A is continuous?
- The most important property in this case are that the corresponding wavefunctions are not square integrable!

The continuous spectrum-b

- And the questions arises naturally:
- Can such eigenfunctions be accepatable from the moment that they correspond to infinite probability?
- To answer and clarify this topic we make the following straightforward correspondence:

$$
\begin{gathered}
\psi=\sum c_{n} \psi_{n} \rightarrow \psi \equiv \int c(a) \psi_{a}(x) d x \\
A \psi_{a}(x)=a \psi_{a}(x)
\end{gathered}
$$

The continuous spectrum-c

- Similarly:

$$
c(a)=\left(\psi_{a}, \psi\right) \quad P(a)=|c(a)|^{2}
$$

- Now there is the question: What is the property which corresponds to the normalization relation for the discrete spectrum $\left(\psi_{n}, \psi_{m}\right)=\delta_{n m}$?
- The answer is the so called Dirac Delta Function.

$$
\left(\psi_{a}, \psi_{a}\right)=\delta\left(a^{\prime}-a\right)
$$

Properties of the Dirac function

$$
\begin{aligned}
\int_{-\infty}^{+\infty} \delta(x-a) d x=1 & \int_{-\infty}^{+\infty} \delta(x-a) \phi(x) d x=\phi(a) \\
x \delta(x)=0 & \delta(\lambda x)=\frac{1}{|\lambda|} \delta(x) \\
\delta(-x)=\delta(x) & \int_{-\infty}^{+\infty} e^{i k x} d x=2 \pi \delta(k)
\end{aligned}
$$

The continuous spectrum-d

With the introduction of delta function we can establish the following properties and complete this discussion:

$$
\int_{-\infty}^{+\infty}|c(a)|^{2} d a=1
$$

Different representations in QM

- So far we have talked about wavefunctions which depend on the position: $\psi(x)$.
- How this happened? Why we chose position and not another variable?
- In quantum mechanics we can choose any base we wish, provided that it is made up from the eigenvectors of a relevant physical quantity.

The position representation and the ket formalism-a

- In ket formalism all the above relations are given as follows:

$$
\begin{gathered}
x\left|x^{\prime}\right\rangle=x^{\prime}\left|x^{\prime}\right\rangle \quad\left\langle x^{\prime} \mid x^{\prime}\right\rangle=\delta\left(x^{\prime \prime}-x^{\prime}\right) \\
|a\rangle=\int d x^{\prime}\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid a\right\rangle
\end{gathered}
$$

- The expansion coefficient $\left\langle x^{\prime} \mid a\right\rangle$ is interpreted in such a way that $\left|\left\langle x^{\prime} \mid a\right\rangle\right|^{2} d x^{\prime}$ is the probability for the particle to be found in a narrow interval $d x^{\prime}$ around x^{\prime}.

The position representation and the ket formalism-b

- In our formalism the inner product $\left\langle x^{\prime} \mid a\right\rangle$ is what is usually referred to as the wave function $\psi_{a}\left(x^{\prime}\right)$ for the state $|a\rangle$

$$
\left\langle x^{\prime} \mid a\right\rangle=\psi_{a}\left(x^{\prime}\right)
$$

- Consider now the inner product between two states $\langle\beta \mid a\rangle$, using the completeness of $\left|x^{\prime}\right\rangle$, we have:

$$
\int\left|x^{\prime}\right\rangle\left\langle x^{\prime}\right| d x=\mathbf{1}
$$

$$
\langle\beta \mid a\rangle=\int d x^{\prime}\left\langle\beta \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid a\right\rangle=\int d x^{\prime} \psi_{\beta}^{*}\left(x^{\prime}\right) \psi_{a}\left(x^{\prime}\right)
$$

The momentum representation and the ket formalism-c

- So $\langle\beta \mid a\rangle$ characterizes the overlap between the two wavefunctions. Note that we do not define $\langle\beta \mid a\rangle$ as the overlap integral: this follows from the completeness postulate for $\left|x^{\prime}\right\rangle$. The more general interpretation of $\langle\beta \mid a\rangle$, independent of representations, is that it represents the probability amplitude for state $|a\rangle$ to be found in state $|\beta\rangle$.

Example: Interpret the expansion $|a\rangle=\Sigma\left|a^{\prime}\right\rangle\left\langle a^{\prime} \mid a\right\rangle$ using the language of wave functions.

THE MOMENTUM REPRESENTATION:

- As we saw for the position (in ket formalism) the eigenvalue equation is:

$$
\hat{x}|x\rangle=x|x\rangle
$$

- In the continuous basis formed by the position eigenvectors $|x\rangle, \quad x \in(-\infty, \infty)$ the arbitrary ket $|\psi\rangle$ will be represented by its coordinates $c_{x}=c(x)$ given by $c(x)=\langle x \mid \psi\rangle$ which is the probability amplitude of position which is the familiar wavefunction:

$$
\psi(x)=\langle x \mid \psi\rangle \quad \int|x\rangle\langle x| d x=\mathbf{1}
$$

$\ldots \psi(x)$ is the representation of the arbitrary ket $|\psi\rangle$ in the basis of the position eigenvectors..

The momentum representation and the ket formalism-a.

- In ket formalism all the above relations are given as follows:

$$
\begin{array}{cc}
p\left|p^{\prime}\right\rangle=p^{\prime}\left|p^{\prime}\right\rangle\left\langle p^{\prime \prime} \mid p^{\prime}\right\rangle=\delta\left(p^{\prime \prime}-p^{\prime}\right) \\
|a\rangle=\int d p^{\prime}\left|p^{\prime}\right\rangle\left\langle p^{\prime} \mid a\right\rangle & \int\left|p^{\prime}\right\rangle\left\langle p^{\prime}\right| d p=\mathbf{1}
\end{array}
$$

- The expansion coefficient $\left\langle p^{\prime} \mid a\right\rangle$ is interpreted in such a way that $\left.\left\langle p^{\prime} \mid a\right\rangle\right\rangle^{2} d p$ is the probability for the particle to be found in a narrow interval $d p^{\prime}$ around p^{\prime}.

The momentum representation and the ket formalism-b.

- In our formalism the inner product $\left\langle p^{\prime} \mid a\right\rangle$ is what is usually referred to as the wave function $\tilde{\psi}_{a}\left(p^{\prime}\right)$ for the state $|a\rangle$

$$
\left\langle p^{\prime} \mid a\right\rangle=\tilde{\psi}_{a}\left(p^{\prime}\right)
$$

- If $\mid a>$ is normalized then

$$
\int d p^{\prime}\left\langle a \mid p^{\prime}\right\rangle\left\langle p^{\prime} \mid a\right\rangle=\int d p^{\prime}\left|\tilde{\psi}_{a}\left(p^{\prime}\right)\right|^{2}=1
$$

Connection between the two representations-a.

- The quantity $<x^{\prime}\left|p^{\prime}\right\rangle$ is called the transformation function from x-representation to the p representation. From the position representation of the momentum operator we get:

$$
p^{\prime}\left\langle x^{\prime} \mid p^{\prime}\right\rangle=-i \hbar \frac{\partial}{\partial x^{\prime}}\left\langle x^{\prime} \mid p^{\prime}\right\rangle \Rightarrow\left\langle x^{\prime} \mid p^{\prime}\right\rangle=N \exp \left(\frac{i p^{\prime} x^{\prime}}{\hbar}\right)
$$

Even though the transformation function is a function of two variables x^{\prime} and p^{\prime}, we can temporarily regard it as a function of x^{\prime} with p^{\prime} fixed.

Connection between the two representations-b.

- It can be viewed as the probaility amplitude for the momentum eigenstate specified by p^{\prime} to be found at position x^{\prime}; in other words, it is just the wavefunction for the momentum eigenstate $\left|p^{\prime}\right\rangle$.
- It is obvious that it is a plane wave.
- It can be shown that the normalization constant is given by:

$$
N=1 / \sqrt{2 \pi \hbar}
$$

Connection between the two representations-c

- Now we can demonstrate the connection between the two representations:

$$
\left\langle x^{\prime} \mid a\right\rangle=\int d p^{\prime}\left\langle x^{\prime} \mid p^{\prime}\right\rangle\left\langle p^{\prime} \mid a\right\rangle \quad\left\langle p^{\prime} \mid a\right\rangle=\int d x^{\prime}\left\langle p^{\prime} \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid a\right\rangle
$$

$$
\psi_{a}\left(x^{\prime}\right)=\frac{1}{\sqrt{2 \pi \hbar}} \int d p^{\prime} \exp \left(\frac{i p^{\prime} x^{\prime}}{\hbar}\right) \tilde{\psi}_{a}\left(p^{\prime}\right) \quad \tilde{\psi}_{a}\left(p^{\prime}\right)=\frac{1}{\sqrt{2 \pi \hbar}} \int d x^{\prime} \exp \left(-\frac{i p^{\prime} x^{\prime}}{\hbar}\right) \psi_{a}\left(x^{\prime}\right)
$$

- The pair of equations is just what one expects from Fourier's inversion theorem. The two representations are related with a Fourier transform!

THE MOMENTUM REPRESENTATION:

- We can solve in some cases the Schrödinger equation in the momentum representation. The following relations show us clearly how can we do it:

$$
\hat{H}_{p o s}=\frac{1}{2 m}\left(-i \hbar \frac{d}{d x}\right)^{2}+V(x) \leftrightarrow \hat{H}_{m o m}=\frac{p^{2}}{2 m}+V\left(i \hbar \frac{d}{d p}\right)^{2}
$$

...in general the momentum representation formalism makes the solution of the Schroedinger equation complicated ...

