PHYS-454

The Quantum Harmonic Oscillator

The simple harmonic motion

- The SHM is produced when the particle moves on a straight line around an equilibrium point and the resultant force on it is given by:

$$
F=-D x
$$

- Here with x we denote the displacement from the equilibrium position. D is called restoring constant (unit: N / m).
- The force given above is a conservative force. The minus sign indicates that the force always tends to restore the particle to its equilibrium position. To this restoring force we associate the following potential:

$$
U=\frac{1}{2} D x^{2}
$$

- The two formulae above satisfy the well-known relation:

$$
F=-\frac{d U}{d x}
$$

Why SHM is important-a?

- Consider a single dimensional potential $\mathrm{V}(\mathrm{x})$ with a minimum, or stable equilibrium point, say at $x=0$. Following a Taylor expansion around $x=0$ we get:

$$
V(x)=V(0)+V^{\prime}(0) x+\frac{1}{2} V^{\prime \prime}(0) x^{2}+\ldots
$$

- Since $x=0$ is a minimum we have:

$$
V^{\prime}(0)=0 \quad V^{\prime \prime}(0)=D>0
$$

- Then $\quad V(x)-V(0)=\frac{1}{2} D x^{2}$
- Any potential around a stable equilibrium point can be approximated by a simple harmonic oscillator

Why SHM is important-b?

The quantum mechanical SHO-a

- The quantum mechanical Hamiltonian of a simple harmonic oscillator gets the form:

$$
\begin{aligned}
& H=\frac{p^{2}}{2 m}+\frac{1}{2} k x^{2} \equiv \frac{p^{2}}{2 m}+\frac{1}{2} m \omega^{2} x^{2} \\
& x \rightarrow x, \quad p \rightarrow-i \hbar \frac{d}{d x} \\
& H \rightarrow-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+\frac{1}{2} m \omega^{2} x^{2}
\end{aligned}
$$

The quantum mechanical SHO-b

- We can show that the Schrödinger eq. takes the form:

$$
\psi^{\prime \prime}+\frac{2 m}{\hbar^{2}}\left(E-\frac{1}{2} m \omega^{2} x^{2}\right) \psi=0
$$

- By introducing the dimensionless parameters:
- We get

$$
\xi \equiv \sqrt{\frac{m \omega}{\hbar}} x, \quad K \equiv \frac{2 E}{\hbar \omega}
$$

$$
\frac{d^{2} \psi}{d \xi^{2}}=\left(\xi^{2}-K\right) \psi
$$

The quantum mechanical SHO -c

- Solving the above differential eq. we can get the eigenfunctions and eigenvalues of the s.h.o. Hamiltonian:
$\psi_{n}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \frac{1}{\sqrt{2^{n} n!}} H_{n}(\xi) e^{-\xi^{2} / 2} \quad E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$
- Where the functions $H_{n}(\xi)$ are the so called Hermite polynomials. Some of them are given below

Hermite polynomials -properties

$$
\begin{aligned}
& H_{0}=1 \\
& H_{1}=2 \xi \\
& H_{2}=4 \xi^{2}-2 \\
& H_{3}=8 \xi^{3}-12 \xi \\
& H_{4}=16 \xi^{4}-48 \xi^{2}+12 \\
& H_{5}=32 \xi^{5}-160 \xi^{3}+120 \xi
\end{aligned}
$$

$$
\begin{aligned}
& H_{n}(\xi)=(-1)^{n} e^{\xi^{2}}\left(\frac{d}{d \xi}\right)^{n} e^{-\xi^{2}} \\
& H_{n+1}(\xi)=2 \xi H_{n}(\xi)-2 n H_{n-1}(\xi) \\
& \frac{d H_{n}}{d \xi}=2 n H_{n-1}(\xi) \\
& H_{n}(x)=\sum_{s=0}^{[n / 2]}(-1)^{s}(2 x)^{n-2 s} \frac{n!}{(n-2 s)!s!}
\end{aligned}
$$

$$
\int_{-\infty}^{\infty} H_{m}(x) H_{n}(x) e^{-x^{2} / 2} d x=0
$$

©2004 Thomson - Brooks/Cole

© 2004 Thomson - Brooks/Cole

Discussion-a The shape of the wave functions

- The wave functions are alternatively even and odd due to the symmetry of the potential.
- The number of nodes of the wavefunction ψ_{n} is equal to n.
- The eigenfuctions do not terminate in the classically allowed region.

Discussion -b
 Behavior for large \boldsymbol{n}

- As n becomes higher the quantum wave function must reproduce the classical behavior.
- Classically the particle "spends" more of its time at regions where the velocity is small. That is, near the extreme points of the oscillation.

Discussion -c

Penetration in the forbidden region

State	Probability
$n=0$	15.7%
$n=1$	11.2%
$n=2$	9.5%
$n=3$	8.5%
$n=4$	7.9%

State	Probability
$n=5$	7.4%
$n=6$	7.0%
$n=7$	6.7%
$n=8$	6.4%
$n=9$	6.2%

Discussion -c
 Penetration in the forbidden region

- As we expect the probability of penetration in the forbidden region becomes smaller and smaller as n gets larger. The particle behaves more classically as we go to higher levels.
- The probabilities do not depend on the mass, Planck's constant or ω.

Discussion-d
 Radiation emitted by a quantum SHO

- The fact that the energy eigenvalues are equidistant is a characteristic of the parabolic potential.
- In a classical SHO the period (and frequency) does not depend on amplitude. So if the particle is charged it will irradiate with this given frequency.
- In a quantum SHO this imposes that the only transitions that can occur are those for which $\Delta n=1$.

