
PHYS-454
 Τhe Quantum Harmonic Oscillator



The simple harmonic motion

 The SHM is produced when the particle moves on a straight line
around an equilibrium point and the resultant force on it is
given by:

 Here with x we denote the displacement from the equilibrium
position. D is called restoring constant (unit: N/m).

 The force given above is a conservative force. The minus sign
indicates that the force always tends to restore the particle to its
equilibrium position. To this restoring force we associate the
following potential:

 The two formulae above satisfy the well-known relation:
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Why SHM is important-a?
 Consider a single dimensional potential V(x) with a minimum, or

stable equilibrium point, say at  x=0. Following a Taylor expansion
around x=0 we get:

 Since x=0 is a minimum we have:

 Then

 Any potential around a stable equilibrium point can be approximated
by a simple harmonic oscillator
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Why SHM is important-b?



The quantum mechanical SHO-a

 The quantum mechanical Hamiltonian
of a simple harmonic oscillator gets
the form:
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The quantum mechanical SHO -b

 We can show that the Schrödinger eq. takes the form:

 By introducing the dimensionless parameters:

 We get
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The quantum mechanical SHO -c
 Solving the above differential eq. we can get the

eigenfunctions and eigenvalues of the s.h.o.
Hamiltonian:

 Where the functions           are the so called Hermite
polynomials. Some of them are given below
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Hermite polynomials -properties

  

H0 = 1
H1 = 2!

H2 = 4!2 " 2

H3 = 8!3 "12!

H4 = 16!4 " 48!2 +12

H5 = 32!5 "160!3 +120!
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Discussion-a
The shape of the wave functions

 The wave functions are alternatively even
and odd due to the symmetry of the potential.

 The number of nodes of the wavefunction
is equal to n.

 The eigenfuctions do not terminate in the
classically allowed region.
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 Discussion -b
Behavior for large n

 As n becomes higher the quantum wave function
must reproduce the classical behavior.

 Classically the particle “spends” more of its time
at regions where the velocity is small. That is, near
the extreme points of the oscillation.
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Discussion -c
Penetration in the forbidden region
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Discussion -c
Penetration in the forbidden region

 As we expect the probability of
penetration in the forbidden region
becomes smaller and smaller as n gets
larger. The particle behaves more
classically as we go to higher levels.

 The probabilities do not depend on the
mass, Planck’s constant or ω.



Discussion-d
Radiation emitted by a quantum SHO

 The fact that the energy eigenvalues are
equidistant is a characteristic of the parabolic
potential.

 In a classical SHO the period (and frequency)
does not depend on amplitude. So if the
particle is charged it will irradiate with this
given frequency.

 In a quantum SHO this imposes that the only
transitions that can occur are those for which
Δn=1.


