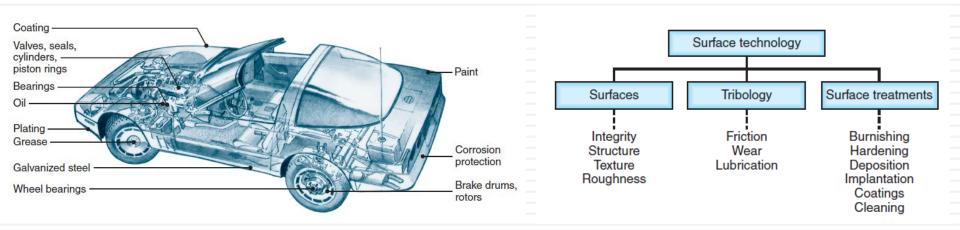
Lecture – 07: Surface Finish and Integrity

Manufacturing Engineering Technology in SI Units, 7th Edition Chapter 21 and 33:

Copyright © 2010 Pearson Education South Asia Pte Ltd

Lecture Outline

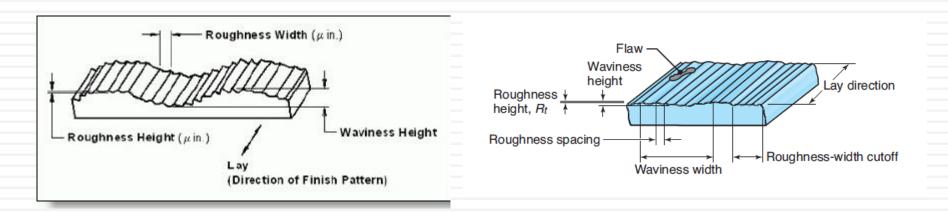

1. Introduction

- 2. Surface texture and roughness
- 3. Surface integrity
- 4. Machinability

Introduction

3

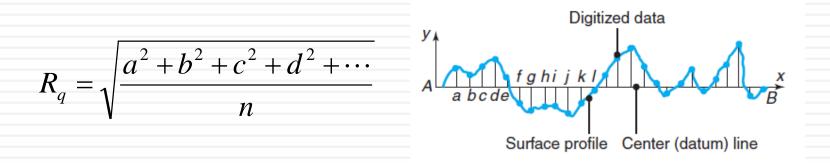
- First visual or tactile contact with the objects is through their *surfaces*
- We can feel surface roughness, waviness, reflectivity, scratches, cracks and discoloration



Introduction

- A specific texture and several defects can exist on a surface depending on how the surface was generated
- Defects and surface textures have major influence on the surface integrity of workpieces, tools, and dies

- Regardless of method of production, all surfaces have their own characteristics referred to as *surface texture*
- The most commonly used measurable quantities for surface texture for machined surfaces are:
- 1. **Roughness** (closely spaced, irregular deviations on a small scale expressed in termed of height, width and distance along the surface)
- 2. Waviness (the recurrent deviation of a flat surface, repeating crests and valleys along the surface. Measured as distance between adjacent crests of the waves)

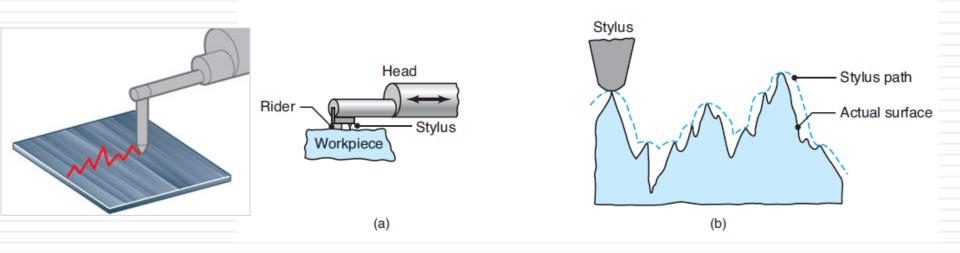


- **Surface roughness** is characterized
- 1. Arithmetic mean value is

$$R_a = \frac{a+b+c+d+\cdots}{n}$$

a, b, c = absolute values n = number of readings

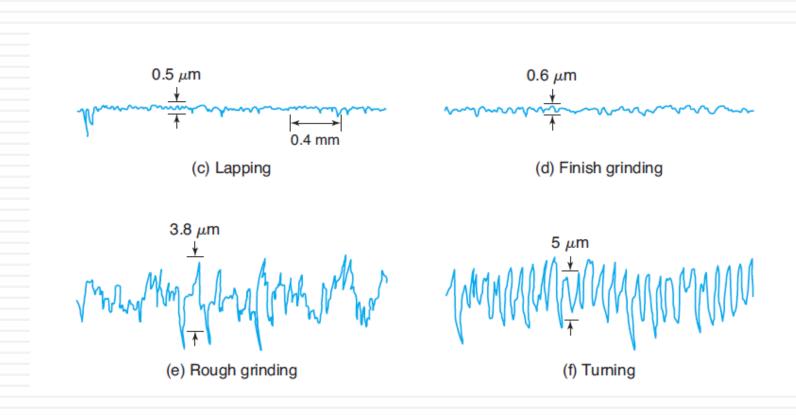
2. Root-mean-square roughness is

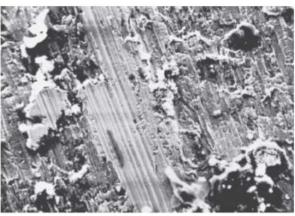


http://www.olympus-ims.com/en/knowledge/metrology/roughness/2d_parameter/

Copyright © 2010 Pearson Education South Asia Pte Ltd

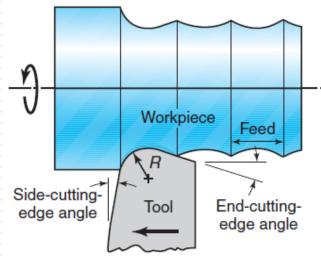
Measuring Surface Roughness


- Surface profilometers are used to measure and record surface roughness
- It has a *diamond stylus* that travels along a straight line over the surface


https://www.youtube.com/watch?v=w-kvPXE05AQ

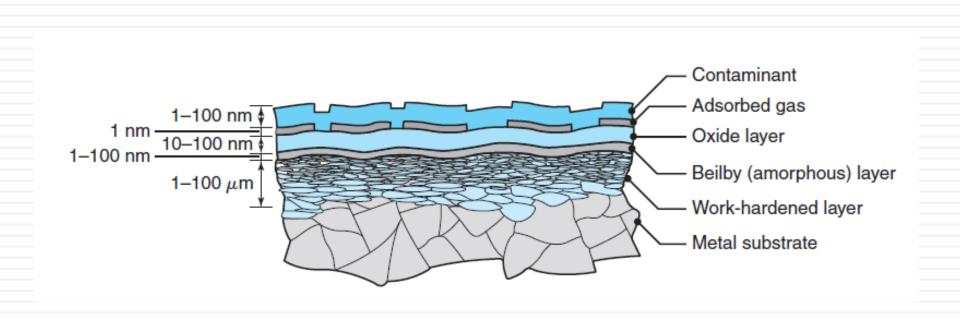

Copyright © 2010 Pearson Education South Asia Pte Ltd

Measuring Surface Roughness


- 9
- Surface finish influences the dimensional accuracy of machined parts, properties and performance in service
- Surface finish describes the geometric features of a surface while surface integrity pertains to material properties
- The *built-up edge* has the greatest influence on surface finish

(b)

- 10
- A dull tool has a large radius along its edges
- In a turning operation, the tool leaves a spiral profile (feed marks) on the machined surface as it moves across the workpiece
- The required surface finish is generated in the final passes of the tool.



Surface Integrity

- Surface integrity describes the topological (geometric) features of surfaces such as physical, chemical, mechanical and metallurgical properties and characteristics
- It will influence the fatigue strength, resistance to corrosion and service life

12

A cross section of the surface structure of a metal:

Surface Integrity

- □ *Surface defects* are caused by:
- 1. Defects in the original material
- 2. Machining process by which the surface is produced
- 3. Improper control of the machining process parameters

Surface Integrity

Major surface defects after machining are:

- 1. External or internal cracks
- 2. Craters and pits
- 3. Heat-affected zone and Recast layers
- 4. Laps, folds, and seams (e.g. overlapping of material)
- 5. Metallurgical transformations (change of micro-structure)
- 6. Residual stresses
- 7. Surface plastic deformation

- □ Factors influencing *surface integrity* are:
- 1. Temperatures generated
- 2. Surface residual stresses
- Plastic deformation and strain hardening of the machined surfaces, tearing and cracking
- One of the solutions to overcome the surface defects is to use rough machining only in the beginning to remove a large amount of material and then apply finish machining that lower values of feed rate, depth of cut and moderate cutting speeds at the end of the machining process.

Machinability

Machinability is defined in terms of four factors:

- 1. Surface finish and surface integrity
- 2. Tool life
- 3. Force and power required
- 4. The level of difficulty in chip control

 Good machinability indicates good surface finish and surface integrity, a long tool life, and low force and power requirements

Machinability: Machinability of Ferrous Metals

Steels

- If a carbon steel is too ductile, chip formation can produce built-up edge, leading to poor surface finish
- If too hard, it can cause abrasive wear of the tool because of the presence of carbides in the steel
- In leaded steels, a high percentage of lead solidifies at the tips of manganese sulfide inclusions
- Calcium-deoxidized steels contain oxide flakes of calcium silicates (CaSO) that reduce the strength of the secondary shear zone and decrease tool-chip interface friction and wear

Machinability: Machinability of Ferrous Metals

Effects of Various Elements in Steels

- Presence of *aluminum* and *silicon* is harmful, as it combine with oxygen to form aluminum oxide and silicates, which are hard and abrasive
- Thus tool wear increases and machinability reduce

Stainless Steels

18

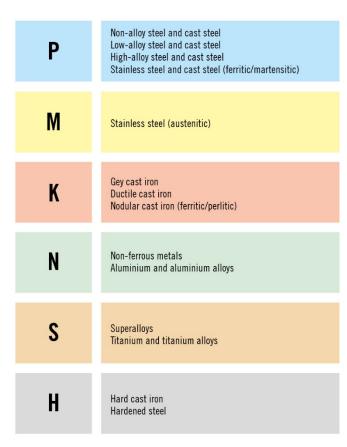
- Austenitic (300 series) steels are difficult to machine
- Ferritic stainless steels (also 300 series) have good machinability
- Martensitic (400 series) steels are abrasive

Machinability:

19

Machinability of Nonferrous Metals

- Aluminum is very easy to machine
- Beryllium requires machining in a controlled environment
- Cobalt-based alloys require sharp, abrasion-resistant tool materials and low feeds and speeds
- Copper can be difficult to machine because of builtup edge formation
- Magnesium is very easy to machine, with good surface finish and prolonged tool life
- Titanium and its alloys have very poor thermal conductivity
- **Tungsten** is brittle, strong, and very abrasive


Copyright © 2010 Pearson Education South Asia Pte Ltd

Machinability:

Machinability of Miscellaneous Materials

- Machining thermoplastics requires sharp tools with positive rake angles, large relief angles, small depths of cut and feed and high speeds
- Polymer-matrix composites are difficult to machine
- Metal-matrix and ceramic-matrix composites can be difficult to machine, depending on the properties of the matrix material and the reinforcing fibers
- The type of chips and the surfaces produced also vary significantly, depending on the type of wood and its condition

ISO CLASSIFICATION WORKPIECE MATERIALS

