

CHAPTER ONE

Fits and Tolerances

Why tolerances and fits are required?

Due to the **inevitable inaccuracy of manufacturing methods**, a part cannot be made precisely to a given dimension, the difference between maximum and minimum limits of size of a part is the tolerance.

Tolerance is the total amount that a specific dimension is permitted to vary.

There is no such thing as an "exact size". Tolerance is key to interchangeable parts.

When two parts are to be assembled, the relation resulting from the difference between their sizes before assembly is Called a <u>fit</u>.

Examples of Interchangeable Manufacture

Bottle caps Rims Tires

Advantages For Interchangeable Manufacture

Replacement: One such part can freely replace another, without any custom fitting (such as filling).

Easy to Assembly: This interchangeability allows easy assembly of new devices

Repairing: Easier repair of existing devices.

Minimizing time and cost: Minimizing both the time and skill required of the person doing the assembly or repair.

Rapid Manufacturing: Machine tool enables the components to be manufactured more rapidly

How to decide tolerance?

Functional requirements of mating parts Cost of production Available manufacturing process

Choose as coarse tolerance as possible without compromising functional requirements.

Proper balance between cost and quality of parts.

1.1 Dimensional Tolerances Some of the dimensional tolerances terms are defined as following:

1. Dimension

2. Size (It is a number expressed in a particular unit in the measurement of length)

3. Actual size (of a part) (the measured size of the finished part after machining)

4. Basic size (the theoretical size used as a starting point for the application of tolerances)

5. Design size (The ideal size for each component (shaft and hole) based upon a selected fit)

6. Limits of size (the maximum and minimum sizes shown by the tolerance dimension)

7. Maximum limit of size (Is the maximum size permitted for the part)

8. Minimum limit of size (it is the minimum size permitted for the part limit of size)

9. Maximum material limit (is the condition of a part when it contains the most amount of material. The MMC of an external feature (such as a shaft) is the upper limit. The MMC of an internal feature(such as a hole) is the lower limit)

10. Minimum material limit (is the condition of a part when it contains the least amount of material possible. The LMC of an external feature is the lower limit of the part. The LMC of an internal feature is the upper limit of the part.)

11. Tolerance (Tolerance is the difference between maximum limit of size and minimum limit of size)

12. Zero line (it represents the basic size)

13. Upper deviation (It is the algebraic difference between minimum limit of size and its corresponding basic size)

14. Lower deviation (It is the algebraic difference between minimum limit of size and its corresponding basic size)

15. Tolerance zone (a region representing the difference between the upper and the lower limits)

16. Unilateral tolerance (In this method of presenting the limits, variation is allowed only on one side of the zero line)

17. Bilateral tolerance (Here the limits variation is allowed on either sides of the zero line)

18. Shaft (it refers to any external feature of a part, including any non cylindrical features as well)

19. Hole (the term used for any internal feature of a part including any non cylindrical as well)

Unilateral tolerance

Unilateral Tolerance

Unilateral Tolerance allows variation in only one direction. From basic size.

Bilateral Tolerance

Bilateral Tolerance allow variation in either direction from basic size.

Bilateral tolerance

Calculate the maximum and minimum possible dimension for A

20. Basic shaft (the shaft chosen as a basis for the shaft basis system of fit)

Basic shaft

21. Basic hole (the hole chosen as a basis for the hole basis system of fit)

22. Fit (Fit is the relationship that exists between two mating parts, a hole and shaft with respect to their dimensional difference)

23. Basic size of a fit (common value of the basic size of the two parts of a fit)

30. Maximum interference

31. Shaft-basis system of fits

32. Hole-basis system of fits

Figure 1.3: Basic hole and shaft system

31 - Basic Shaft System of fits

In this system the size of the shaft remains the same and the hole size is varied to get the required fit. Maximum shaft size is taken as the basic size, an allowance is assigned, and tolerances are applied on both sides of and away from this allowance.

32 - Basic Hole System of fits

In this system the size of the hole remains the same and shaft size is varied to get the required fit. Minimum hole is taken as the basic size, an allowance is assigned, and tolerances are applied on both sides of and away from this allowance.

Some definitions

Basic Size: is the size from which limits or deviations are assigned. Basic sizes, usually diameters, should be selected from a table of preferred sizes.

Deviation: is the difference between the basic size and the hole or shaft size.

Upper Deviation: is the difference between the basic size and the permitted maximum size of the part.

Lower Deviation: is the difference between the basic size and the minimum permitted size of the part.

Some Definitions

Fundamental Deviation: is the deviation closest to the basic size. This is identical to the upper deviation for shafts and the lower deviation for holes in a clearance fit.

Tolerance: is the difference between the permitted minimum and maximum sizes of a part.

Some Definitions

The hole-basis system of preferred fits is a system in which the basic diameter is the minimum size of the hole. For the generally preferred hole-basis system, the fundamental deviation is specified by the upper-case letter.

The shaft-basis system of preferred fits is a system in which the basic diameter is the maximum size of the shaft. The fundamental deviation is given by the lowercase letter.

Some Definitions

An interference fit results in an interference between two mating parts under all tolerance conditions.

A clearance fit results in a clearance between the two mating parts under all tolerance conditions.

A transition fit results in either a clearance or an interference condition between two assembled parts.

HOLE AND SHAFT BASIS SYSTEM

1.2 Symbols for Tolerances and Deviation and Symbols for Fits:

1. Tolerance values (The tolerance value is a function of the basic size and is indicated by a number called the

grade.)

2. Tolerance zone position

The position of the tolerance zone with respect to the zero line, is indicated by a letter symbol, a capital letter for holes and a small letter The tolerance size thus defined by its basic value followed by a symbol composed of a letter and a number. It is established by a combination of the fundamental deviation indicated by a letter and the IT grade number. In the dimension 50H8, the H8 specifies the tolerance zone.

Example for shaft: 45 g7

International Tolerance Grade (IT)

1.2 Symbols for Tolerances and Deviation and Symbols for Fits:

3.A fit (A fit is indicated by the basic size common to both components, followed by symbol corresponding to each component, the hole being quoted first)

Example: 45 H8 g7 Possibly 45 H8 – g7 Or 45 H8/g7

https://books.google.com.sa/books?id=2ck0AwAAQBAJ&pg=SA6-PA13&lpg=SA6-PA13&dq=fundamental+deviation+selection+fits+IT&source=bl&ots=ZO-M0zNqbP&sig=ofRGWezbxKzJe9uW9zwxVZRZPdk&hl=en&sa=X&redir_esc=y#v=onepage&q=fundamental%20deviation%20selection%20fits%20IT&f=false

1.3: Grades of tolerances:

Eighteen grades of tolerances are provided IT01, IT0 and IT1 to IT16 The Table 1.1 gives the possible degrees of precision or grade of tolerance, achieved with different machine tools.

		Fo	or N	ſea	sur	ig T	001	s					Fo	r Materi	ial			
IT Grades	01	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
									F	for .	Fits			For La	rge Mai	nufactur	ing Tole	rances

Table 1.1: degree of precision or grade of tolerance

Tolerance grade	Intended for	Applicable to components or machines								
IT01 IT0 IT1	Carros	Slip blocks, Reference gauges								
IT2 IT3 IT4	Gauges	High quality gauges								
I T 5		Ball bearing								
I T 6		Grinding, Honing								
I T 7		Broaching								
I T 8	Fits	Center lathe turning								
I T 9		Worn automatic lathe								
I T 10		Milling								
I T 11		Drilling, Rough turning								
I T 12		Light press work								
I T 13		Press work								
I T 14	Not for fits	Die casting								
I T 15		Stamping								
I T 16		Sand casting								

International Tolerance Grade Selection

<u>Representation of Tolerance</u>
2) Number or Grade
IT01, IT0, IT1,....IT16

Tolerance Grade defines range of dimensions (dimensional variation)

There are manufacturing constraints on tolerance grade chosen

Tolerance grade	Manufacturing process and applications	Machine required
IT01, IT0 IT1 to IT5	Super finishing process, such as lapping, diamond boring etc. Use: Gauges	Super finishing machines
IT6	Grinding	Grinding machines
IT7	Precision turning, broaching, honing	Boring machine, honing machine
IT8	Turning, boring and reaming	Lathes, capstan and automats
IT9	Boring	Boring machines
IT10	Milling, slotting, planing, rolling and extrusion	Milling machine, slotting machine, planing machine and extruders
IT11	Drilling, rough turning	Drilling machine, lathes
IT12, IT13, IT14	Metal forming processes	Presses
IT15	Die casting, stamping	Die casting machine, hammer machine
IT16	Sand casting	

FUNDAMENTAL TOLERANCES OF GRADES 01, 0 AND 1 TO 16

Diameter		Val	Values of tolerance in microns													(1 micron = 0.001 mm)						
steps in																						
mm		01	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14*	15*	16*			
To and inc	3	0.3	0.5	0.8	1.2	2	3	4	6	10	14	25	40	60	100	140	250	400	600			
Over To and inc	3 6	0.4	0.6	1	1.5	2.5	4	5	8	12	18	['] 30	48	75	120	180	300	480	750			
Over To and inc	6 10	0.4	0.6	1	1.5	2.5	4	6	9	15	22	36	58	90	150	220	360	580	900			
Over To and inc	10 18	0.5	0.8	1.2	2	3	5	8	11	18	27	43	70	110	180	270	430	700	1100			
Over To and inc	18 30	0.6	1	1.5	2.5	4	6	9	13	21	33	52	84	130	210	330	520	840	1300			
Over To and inc	30 50	0.6	1	1.5	2.5	4	7	11	16	25	39	60	110	160	, 250	390	620	1000	1600			
Over To and inc	50 80	0.8	1.2	2	3	5	8	13	19	30	46	74	120	190	300	460	740	1200	1900			
Over	80																		-			

Example

Metric Preferred Hole Based System of fit

Metric Preferred shaft Based System of fit

Figure 1.5: Position of the various tolerance zones for a given diameter in the ISO system

Table for fundamental deviations for shafts

Fundar devia	nental tion					Up	per <mark>de</mark>	viation	es						Lower	deviati	on ei		
Let	ter	a	b^a	c	cd	d	e	ef	f	fg	g	h	jsb	_	_ <u>j</u>		k		
Gra	ide						01 to	o 16						5-6	7	8	4-7	<i>≤3</i> >7	
Nomin	al sizes																		
Over	То													_					
mm _	mm 3	-270	-140	-60	-34	-20	14	-10	-6	-4	-2	0		-2	-4	-6	0	0	
3	6	-270	-140	-70	-46	~ 30	-20	-14	-10	-6	-4	0		-2	-4	-	+1	0	
6	10	-280	-150	-80	-56	-40	-25	-18	-13	-8	-5	0		-2	-5	-	+1	0	
10	14	-290	-150	-95	-	-50	-32	-	-16	-	-6	0		-3	-6	-	+1	0	
14	18					_	-										-		
24	30	-300	-160	-110	-	-65	-40	-	-20	~	-7	0		-4	-8	-	+2	0	
30	40	-310	-170	-120				-											
40	50	- 320	-180	-130	-	-80	-50	-	-25	-	-9	0		-6	-10	-	+2	0	
50	65	-340	-190	-140		100	60		20	_	- 10	0		-7	-12		+2	0	
65	80	-360	-200	-150	-	- 100	-60	-	-30	-	-10	0		-/	-12	_	72	-	
80	100	-380	-220	-170		- 120	-72	_	-36	_	-12	0	T/2	-9	-15	-	+3	0	
100	120	-410	-240	-180		120	12			_		Ŭ	Ŧ						
120	140	-460	-260	-200															
140	160	-520	-280	-210	-	-145	-85	-	-43	-	-14	0		-11	-18	-	+3	0	
160	180	-580	-310	-230															
180	200	-660	-340	-240															
200	225	-740	- 380	-260	-	-170	-100	-	-50	-	-15	0		-13	-21	-	+4	0	
225	250	-820	-420	-280			_											_	
250	280	-920	-480	-300	-	-190	-110	-	-56	-	-17	0		-16	-26	_	+4	0	
280	315	- 1050	-540	-330								-				<u> </u>			
315	355	-1200	-600	-360	-	-210	-125	-	62	-	-18	0		-18	-28	-	+4	0	
355	400	-1350	-680	-400		<u> </u>									-		-		
400	450	-1500	- 760	~440	-	-230	-135	-	-68	-	-20	0		-20	-32	-	+5	0	
450	000 ade	- 1650	-840	-480						6 //	16		L						
500	630			_		-260	- 145	-	76	-	-22	0			-			0	
630	800		-	-		-290	- 160	-	-80	-	-24	0						0	
800	1000				_	- 320	-170		-86		-26	0						0	
1000	1250	-	-	_		-350	-195	-	-98	-	-28	0	2					0	
1250	1600	-	-	-	-	- 390	-220	-	-110	-	-30	0	Li t				<u> </u>	0	
2000	2500	-	-	-	-	-480	-260	-	-130	-	-34	0	1	l				0	
2500	3150	~	-	-	-	-520	-290	-	-145	-	-38	0	1	1				0	

Pr and

Table for fundamental deviations for shafts

Funda devia	mental ation					U	pper de	viation	ni .						
Le	tler	m	n	P	,	\$	1	и	ν	x	у	z	za	zb	zc
Gn	ade						01 K	o 16							
Nomin	nal size														
Over	То														
mm -	mm 3	+2	+4	+6	+10	+14	_	+18		+20	_	+26	+ 32	+40	+60
3	6	+4.	+8	+12	+15	+19	-	+23	-	+28	-	+35	+42	+50	+80
6	10	+6	+10	+15	+19	+23	-	+28	-	+34		+42	+52	+67	+97
10	14	47	+12	. 19	. 22	1.29		+ 11	-	+40	-	+50	+64	+90	+130
14	18	*'	712	+10	+23	+20	_	+33	+ 39	+45		+60	+77	+108	+150
18	24	+8	+15	+22	+28	+ 15	-	+41	+47	+54	+63	+73	+98	+136	+188
24	30	10	+15	+22	+20	+35	+41	+48	+55	+64	+75	+88	+118	+160	+218
30	40	+9	+17	+ 26	+34	+43	+48	+60	+68	+80	+94	+112	+148	+200	+274
40	50			+20	1.54	145	+54	+70	+81	+97	+114	+136	+180	+242	+325
50	65	+11	+20	+32	+ 41	+53	+66	+87	+102	+122	+144	+172	+226	+300	+405
65	80		120	1.02	+43	+ 59	+75	+102	+120	+146	+174	+210	+274	+360	+480
80	100	+13	-23	+ 37	+51	+71	+91	+124	+146	+178	+214	+258	+335	+445	+585
100	120				+54	+79	+104	+144	+172	+210	+254	+310	+400	+525	+690
120	140				+63	+92	+122	+170	+202	+248	+ 300	+365	+470	+620	+800
140	160	+15	+27	+43	+65	+100	+134	+190	+228	+280	+ 340	+415	+535	+700	+900
160	180				+68	+108	+146	+210	+252	+310	+ 380	+465	+600	+780	+1000
180	200				+77	+122	+166	+236	+284	+350	+425	+520	+670	+880	+1150
200	225	+17	+31	+50	+80	+130	+180	+258	+310	+385	+470	+575	+740	+960	+1250
225	250				+84	+140	+196	+284	+340	+425	+ 520	+640	+820	+1050	+1350
250	280	+20	+34	+56	+94	+158	+218	+315	+385	+475	+ 580	+710	+920	+1200	+1550
280	315				+98	+170	+240	+350	+425	+525	+650	+790	+1000	+1300	+1700
315	355	+21	+37	+62	+108	+190	+268	+ 390	+475	+590	+730	+900	+1150	+1500	+1900
355	400				+144	+208	+294	+435	+530	+660	+820	+1000	+1300	+1650	+2100
400	450	+23	+40	+68	+126	+232	+330	+490	+595	+740	+920	+1100	+1450	+1850	+2400
450	500				+132	+252	+360	+540	+660	+820	+1000	+1250	+1600	+2100	+2600
Gra	ade				6 to 16										
500	560	+26	+44	+78	+150	+280	+400	+600							
560	630				+155	+310	+450	+660							
630	710	+30	+50	+88	+175	+ 340	+500	+740							
710	800		0 +50 +8		+185	+380	+560	+840							
800	900	+34	+56	+100	+210	+430	+620	+940							
900	1000				+220	+470	+680	+1050							
1000	1120	+40	+66	+120	+250	+520	+780	+1150							
1120	1250				+260	+580	+840	+1300							

and Tolerances

Table for fundamental deviations for holes

Funda	mensal							Lowe	r devia	ttion E	1						Upper	devia	tion ES				
Le	uer	A"	B	c	CD	D	E	EF	F	FG	G	H	J*		J		к		М		N		
Gn	ade								01 to 1	16				6	7	8	<8	>8	<8	>8	≪8	$> 8^d$	
Nomin	al sizes																						-
Over	То	+	+	+	+	+	+	+	+	+	+	_		+	+	+							it by
mm	mm																						cing
	3	270	140	60	34	20	14	10	6	4	2	0		2	4	6	0	0	-2	-2	-4	-4	repia
3	6	270	140	70	46	30	20	14	10	6	4	0		5	6	10	-1+4	-	-4+4	-4	-8+4	0	ĥ
6	10	280	150	80	56	40	25	18	13	8	5	0		5	8	12	-1+4	-	-6+4	-6	-10+ ∆	0	value
10	14	290	150	95	~	50	32	-	16	-	6	0		6	10	15	-1+4	-	-7+4	-7	-12+4	0	ppo
14	18			_				_	-							_	-			_			u e
18	24	300	160	110	-	65	40	-	20	-	7	0		8	12	20	-2+4	-	-8+4	-8	-15+4	0	Ē
24	30									_								_	-				omet
30	40	310	170	120	-	80	50	-	25	-	9	0		10	14	24	-2+4	-	-9+4	-9	-17+4	e	micro
40	50	320	180	130		<u> </u>		_						<u> </u>				_					5
50	60	340	190	140	-	100	60	-	30	-	10	0		13	18	28	-2+4	-	-11+4	-11	-20+4	0	valu
65	80	360	200	150					-	-		-		ĺ		_		_					t .
80	100	380	220	170	-	120	72	-	36	-	12	0	17/2	16	22	34	-3+4	-	-13+4	-13	-23+4	0	4
100	120	410	240	180									+1		_								pape
120	140	460	260	200																			Tour
140	160	520	280	210	-	145	85	-	43	-	14	0		18	26	41	-3+4	-	-15+4	-15	-27+∆	0	d be
160	180	580	310	230		_		_								_		<u> </u>	<u> </u>				thoul
180	200	660	340	240)					5 Z/I
200	225	740	380	260	~	170	100	-	50	-	15	0		22	30	47	-4+4	-	−17+∆	-17	-31+∆	0	t + 1
225	250	820	420	280																			tions 315 (
250	280	920	480	300	-	190	110	-	56	-	17	0	l	25	36	55	-4+4	-	-20+A	-20	-34+4	0	devia 0 to
280	315	1050	540	330									Į.										128
315	355	1200	600	360	-	210	125	-	62	-	18	0	ļ	29	39	60	-4+4	-	-21+4	-21	-37+∆	0	mm. Metro
335	400	1350	680	400									ļ										of Ead and
400	450	1500	760	440	-	230	135	-	68	-	20	0	í	33	43	66	-5+4	-	-23+4	-23	-40+ ∆	0	s up Eately
450	500	1650	840	480									1					L					. the M6.
Gr	ade											6 to	16										to 11 for
500	630	-	-	-	-	260	145	-	76	-	22	0					0		-2	6	-4	14	test 7 test
630	800	-	-	-	-	290	160	-	80	-	24	0					0		-3	0		90	grade cven
800	1000	-	-	-	-	320	170	-	86	-	26	0					0		-3	4		56	2 = 4 57
1000	1250	-	-	-	-	350	195	-	98	-	28	0	2				0		-4	0	-0	×6	
1250	1600	-	-	-	-	390	220	-	110	-	30	0	+				0		-4	8	-7	78	
1600	2000	-	-	-	-	430	240	-	120	-	32	0					0		-5	8	-9	2	

Table for fundamental deviations for holes

Fundamental

devia	tion																			
Let	ter	P to ZC	Р	R	s	Т	U	V	x	Y	Z	ZA	ZB	ZC						
Gra	ıde	≤7						>	7								Values	for Δ^{\bullet}		
Nomina	al sizes														Grade	\$2				
Over	То		-	-	-	-	-	-	-	-	-	-	-	-	3	4	5	6	7	8
mm	mm																			
	3		6	10	14	-	18	-	20	-	26	32	40	60	0	0	0	0	0	0
3	6		12	15	19	-	23	-	28	-	35	42	50	80	1	1.5	1	3	4	6
6	10		15	19	23	-	28	-	34		42	52	67	97	1	1.5	2	3	6	7
10	14		18	23	28	-	33	-	40	-	50	64	90	130	1	2	3	3	7	9
14	18							39	45	-	60	77	108	150						
18	24	Ā	22	28	35	-	41	47	54	63	73	98	136	188	1.5	2	3	4	8	12
24	30	1 py				41	48	55	64	75	88	118	160	218						
30	40	ase	26	34	43	48	60	68	80	94	112	148	200	274	1.5	3	4	5	9	14
40	50	ncre				54	70	81	97	114	136	180	242	325						
50	65	1	12	41	53	66	87	102	122	144	172	226	300	405	2	3	5	6		16
65	80	poor	54	43	59	75	102	120	146	174	210	274	360	480	1	-				
80	100	cs a	17	51	71	91	124	146	178	214	258	335	445	585	2	4	5	7	13	19
100	120	grad	51	54	79	104	144	172	210	254	310	400	525	690	1		1	ľ	1.5	
120	140	for		63	92	122	170	202	248	300	365	470	620	800						
140	160	as r	43	65	100	134	190	228	280	340	415	535	700	900	3	4	6	7	15	23
160	180	ation		68	108	146	210	252	310	380	465	600	780	1000	1					
180	200	devi	_	77	122	166	266	284	350	425	520	670	880	1150						
200	225	ě	50	80	130	180	258	310	385	470	575	740	960	1250	3	4	6	9	17	26
225	250	Sa		84	140	196	284	340	425	520	640	820	1050	1350	1					
250	280	1		94	158	218	315	385	475	580	710	920	1200	1550		1	1		~	20
280	315	1	30	98	170	240	350	425	525	650	790	1000	1300	1700	1.		1'	1	20	10
315	355	1		108	190	268	390	475	590	730	900	1150	1500	1800					21	
355	400	1	62	114	208	294	435	530	660	820	1000	1300	1650	2100	11	°	1	1	21	32
400	450	1		126	232	330	490	595	740	920	1100	1450	1850	2400			<u> </u>			
450	500	1	68	132	252	360	540	660	820	1000	1250	1600	2100	2600	1	1	1	13	25	34
Gra	ade		-		6 10 16										<u> </u>					
500	560	1		150	280	400	600				-	ALC: NOT						_		
560	630	1	78	155	310	450	660	1												
630	710	1		175	340	500	740													
710	800	1	88	185	380	560	840	840												
800	900	1		210	430	620	940	940 In determining K, M, N up to Grade 8 and P to ZC up to Grade 7, add the Δ value appropriate to the grade as indicated, e.e. for P7 from 18 to 30, Δ = 8 therefore												
	1000		100	220	470	680	1050	1 1	sppropr ES = -	14.	the gra	ue as in	dicated	. c.g. 10	w r/ ft	om 18	10 30, 2	- o di	erefore	
1000	1120	1	-	250	520	780	1150	1150												
1120	1250	1	120	250	500	840	1300													
1120	1230			200	1 380	040	1.300													

Upper deviation ES

1.4 Fundamental tolerance unit:

1.4.1Values of standard tolerances:

 $T = 10^{0.2} (G - 1) (0.45 \ 3\sqrt{D} + 0.001D)$ G = Tolerance grade IT6 – IT 16

1.4.2 Fundamental deviations:

1.4.2.1 Shaft deviation:

For each letter symbol defining the position of the tolerance zone, the magnitude and sign of one of the two deviations which is known as the fundamental deviations (upper deviation) "es" or lower deviation "ei"

The other deviation is derived from the first one using the magnitude of the standard tolerance "IT", by means of the following algebraic relationship:

The fundamental deviation given by the formulae in above tables of deviations is, in principle, that corresponding to that limit closest to the zero line, in other words, the upper deviation "es" for shafts (a) to (h), and the lower deviation "ei" for shafts (j) to (Zc).

ei = es - ITes = ei + IT

1.4.2.2 Hole deviation:

For each letter symbol, defining the position of the tolerance zone, the magnitude and sign of the fundamental deviation (lower deviation "EI" for holes (A) to (H) and upper deviation "ES" for holes (J) to (Zc),

The other deviation is derived from the first one, using the magnitude of the tolerance "IT" by means of the following relationships.

$\mathbf{ES} = \mathbf{EI} + \mathbf{IT}$

OR

 $\mathbf{EI} = \mathbf{ES} - \mathbf{IT}$

Example

Determine which type of fit is presented by H7/p6? For basic size of 30 mm determine the dimensions of the hole and the shaft for the given fit. (Fit: 30 H7/p6)

Capital H means basic hole system and upper deviation = zero

H7 : Tol Grade 7 mean 21µ variation

p6 : Tol Grade 6 means 13μ variation (p means upper deviation is 22 μ)

Fit: 40 H8/e6

Figure 1.7: Two comparable fits, with basic hole and basic shaft, in which a hole of a given grade is associated with a shaft with next finer grade (H7/P6 and P7/h6), have exactly the same clearance or interference.