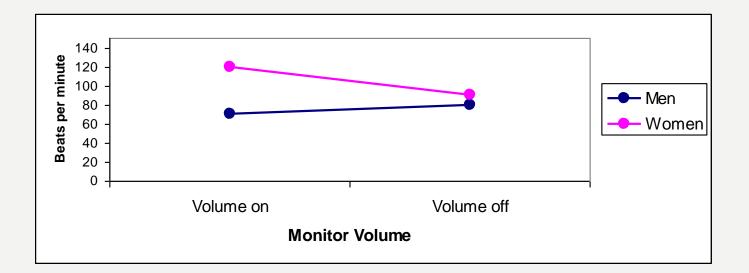

EXAMPLE 1:

When the volume is on, heart rates are higher for women than for men, but when the volume is off, women have lower heart rates than men.


So it is not true that women's heart rates are the same as men's heart rates, as you might have concluded if you only looked at the main effect.

EXAMPLE 2:

Maybe when the volume is on, women's heart rates are higher than men, but when the volume is off, women and men have similar heart rates.

So it is not true that women's heart rates are always higher, as you might have concluded if you only looked at the main effect

In those cases, your write up should emphasize the patterns seen in the interaction, and not the main effects.

SAMPLE WRITE UPS FOR EXAMPLES 1 AND 2

Although the main effect of [IV] on [DV] was significant, F(df, df) = x.xx, p < .xxx, there was a significant interaction between [IV1] and [IV2], F(dfIV1xIV2, dferror) = x.xx, p < .xxx.

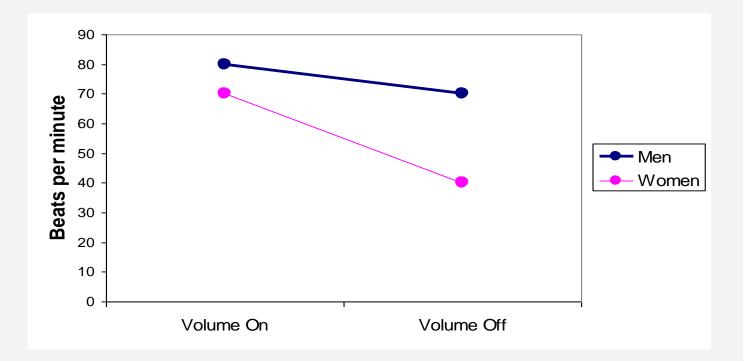
The describe the patterns, incorporating CELL MEANS & SDs into the sentence:

EXAMPLE 1:

When the volume of the monitor was on, women's average heart rate (M=x.xx, SD=x.xx) was higher than men's average heart rate (M=x.xx, SD=x.xx).

However, when the volume was off, women's heart rates (M=x.xx, SD=x.xx) were lower than men's heart rates (M=x.xx, SD=x.xx), on average.

EXAMPLE 2:


When the volume of the monitor was on, women's average heart rate (M=x.xx, SD=x.xx) was higher than men's average heart rate (M=x.xx, SD=x.xx).

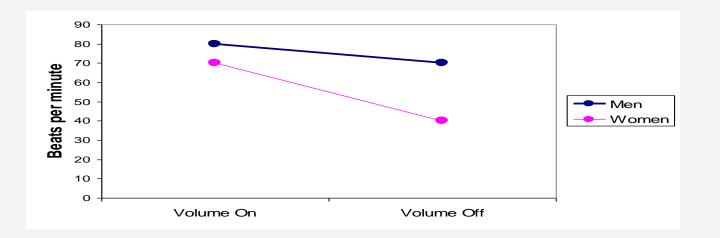
However, when the volume was off, women's heart rates (M=x.xx, SD=x.xx) did not differ from men's heart rates (M=x.xx, SD=x.xx), on average.

EXAMPLE 3:

What happens if you examine the cell means and you observe that the pattern for one IV is <u>the same</u> across the other IV -

e.g., when the volume is on, men's heart rate is higher than women's; likewise, when the volume is off, men's heart rate is higher than women's

If the interaction was significant but is saying the same thing as the main effect does, then it indicates that the pattern is more pronounced at one level of an IV than at the other level.


That is, the main effects tell the story (men have higher heart rates than women in the ER, and this is true whether the monitor's volume is on or off).

What is driving the significant interaction can be seen if you drew this as a graph – the lines are moving in the same direction but one slope is steeper than the other. HOW much higher men's heart rates are relative to woman's differs depending on whether the volume is on or off

Sample Write Up for Example 3

The [fill in name of IV1] and [fill in name of IV2] interaction was significant, F(df, df) = x.xx, p < .xxx, though it was consistent with the patterns seen in the main effects.

When the volume was off, average heart rates were higher for men (M=x.xx, SD=x.xx) than for women (M=x.xx, SD=x.xx). Likewise, when the volume was on, heart rates were higher for men (M=x.xx, SD=x.xx) than for women (M=x.xx, SD=x.xx), on average, though the relative difference was more pronounced with the volume off.

EFFECT SIZE IN TWO-WAY ANOVAS

There are 3 different effect sizes that can be calculated:

- Effect size for IV1
- Effect size for IV2
- Effect size for IV1xIV2 interaction

All three are measured by eta squared: $\eta^2 = SS_{factor}/SS_{total}$

Note: SPSS will calculate this for you

Small	020
Medium	.2140
Large	> .40

EXAMPLE

A researcher is interested in whether the amount of time a person spent on watching TV each day was influenced by two factors, their gender and home ownership.

(This will be a 2 X 2 design with two levels of gender (male and female), and two levels of home ownership status (owns own home and doesn't own home).

As a result, he is going to test the hypotheses that:

- Sex of respondent has a significant main effect on hours per day spent watching TV
- Home ownership has a significant main effect on hours per day spent watching TV
- <u>Sex of respondent & home ownership have a</u> significant interaction effect on <u>hours per day spent</u> watching TV

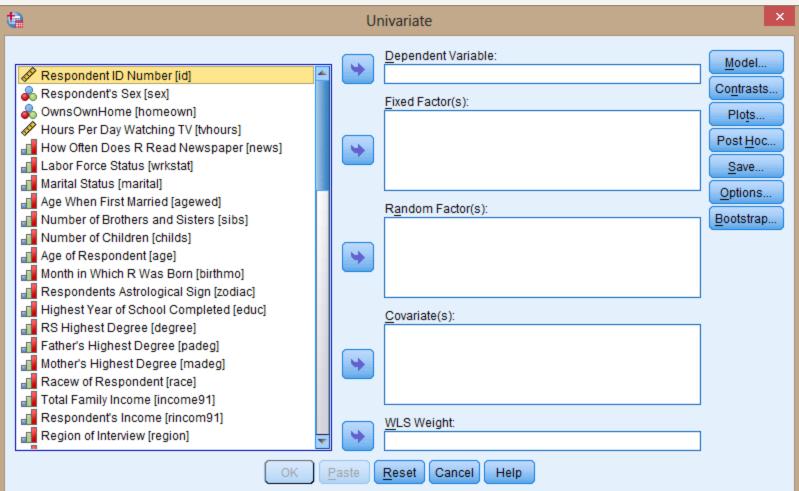
• First, open <u>ANOVA 2.sav</u> data file

🔚 *ANOVA_2.sav [DataSet1] - IBM SPSS Statistics Data Edit

<u>File Edit View Data Transform Analyze Direct Marketing Graphs Utilities Add-ons Window H</u>elp

	Name	Туре	Width	Decimals	Label	Values	Missing	Columns	Align	Measure	Role
1	id	Numeric	4	0	Respondent ID Nu	None	None	8	薹 Center	🛷 Scale	S Input
2	sex	Numeric	1	0	Respondent's Sex	{1, Male}	None	8	를 Center	🗞 Nominal	S Input
3	homeown	Numeric	8	2	OwnsOwnHome	{1.00, Owns Own	None	8	■ Center	🔗 Scale	🔪 Input
4	tvhours	Numeric	2	0	Hours Per Day Wa	{-1, NAP}	-1, 98, 99	8	Right	📲 Ordinal	🔪 Input
5	news	Numeric	1	0	How Often Does R	{0, NAP}	0, 8, 9	8	■ Right	📲 Ordinal	🔪 Input
6	wrkstat	Numeric	1	0	Labor Force Status	{0, NAP}	0, 9	8	를 Right	📲 Ordinal	🔪 Input
7	marital		1	0	Marital Status	{1, married}	9	8	I Right	📲 Ordinal	🔪 Input
8	agewed		2		Age When First M	{0, nap}	0, 98, 99	8	■ Right	📲 Ordinal	🔪 Input
9	sibs	Numeric	2		Number of Brother	{98, dk}	98, 99	8	I Right	I Ordinal	🔪 Input
10	childs	Numeric	1		Number of Children	{8, Eight or More}	9	8	I Right	📲 Ordinal	🔪 Input
11	age		2	0	Age of Respondent	{98, DK}	0, 98, 99	8	I Right	- Ordinal	🔪 Input
12	birthmo		2	0	Month in Which R	{0, NAP}	0, 98, 99	8	疆 Right	drdinal	🔪 Input
13	zodiac		2	0	Respondents Astro	{0, NAP}	0, 98, 99	8	I Right	drdinal	🔪 Input
14	educ	Numeric	2		Highest Year of Sc	{97, NAP}	97, 98, 99	8	■ Right	📲 Ordinal	🔪 Input
15	degree	Numeric	1	0	RS Highest Degree	{0, Less than HS}	7, 8, 9	8	I Right	📲 Ordinal	S Input
16	padeg		1		Father's Highest D	{0, LT High School	7, 8, 9	8	■ Right	J Ordinal	🔪 Input
17	madeg	Numeric	1	0	Mother's Highest D	{0, LT High School	7, 8, 9	8	■ Right	📲 Ordinal	S Input
18	race	Numeric	1	0	Racew of Respond	{1, white}	None	8	■ Right	📶 Ordinal	S Input
19	income91		2	0	Total Family Income	{0, NAP}	0, 98, 99	8	🚟 Right	📲 Ordinal	S Input
20	rincom91	Numeric	2	0	Respondent's Inco	{0, NAP}	0, 98, 99	8	■ Right	📲 Ordinal	S Input
21	region	Numeric	1	0	Region of Interview	{0, Not Assigned}	0	8	■ Right	📲 Ordinal	🔪 Input
22	xnorcsiz	Numeric	2	0	Expanded N.O.R.C	{0, Not Assigned}	0	8	Right	📲 Ordinal	🔪 Input
23	size	Numeric	4	0	Size of Place in 10	{-1, Not Assigned}	-1	8	■ Right	📲 Ordinal	S Input
24	partyid	Numeric	1	0	Political Party Affli	{0, Strong Democr	8, 9	8	■ Right	📲 Ordinal	S Input
25	vote92	Numeric	1	0	Voting in 1992 Ele	{0, NAP}	0, 8, 9	8	■ Right	📲 Ordinal	S Input
26	polviews	Numeric	1	0	Think of Self as Lib	{0, NAP}	0, 8, 9	8	■ Right	📲 Ordinal	S Input
27	cappun	Numeric	1	0	Favor or Oppose D	{0, NAP}	0, 8, 9	8	🗃 Right	📶 Ordinal	🔪 Input
28	gunlaw		1		Favor or Oppose G		0, 8, 9	8	■ Right	J Ordinal	🔪 Input
29	grass	Numeric	1	0	Should Marijuana	{0, NAP}	0, 8, 9	8	Right	📲 Ordinal	S Input
30	relig	Numeric	1	0	Religious Preference	{1, Protestant}	8, 9	8	🗃 Right	📶 Ordinal	S Input
31	life	Numeric	1		Is Life Exciting or	{0, NAP}	0, 8, 9	8	■ Right	🚽 Ordinal	🔪 Input
32	chldidel	Numeric	1	0	Ideal Number of Ch	{-1, NAP}	-1, 9	8	■ Right	📲 Ordinal	S Input
33	pillok	Numeric	1	0	Birth Control to Te	{0, NAP}	0, 8, 9	8	Right	📲 Ordinal	🔪 Input
34	sexeduc	Numeric	1	0	Sex Education in	{0, NAP}	0, 8, 9	8	■ Right	🚽 Ordinal	S Input
35	spanking	Numeric	1	0	Favor Spanking to	{0, NAP}	0, 8, 9	8	■ Right	📲 Ordinal	S Input
36	letdie1	Numeric	1	0	Allow Incurable Pat	{0, NAP}	0, 8, 9	8	≡ Right	📲 Ordinal	S Input
37	bigband	Numeric	1	0	Bigband Music	{0, NAP}	0, 8, 9	8	🚟 Right	📲 Ordinal	S Input
38	blugrass	Numeric	1	0	Bluegrass Music	{0, NAP}	0, 8, 9	8	I Right	📲 Ordinal	S Input
39	country	Numeric	1	0	Country Western	(0 NAP)	089	8	≔ Right	_ Ordinal	N Input

🔁 H 🖨 🗔 🗠 🛪 📓 🛓 🗐 🖿 H 🚟 🗷 🚍 🖧 🗒 👫 🔕 🦠 🦇

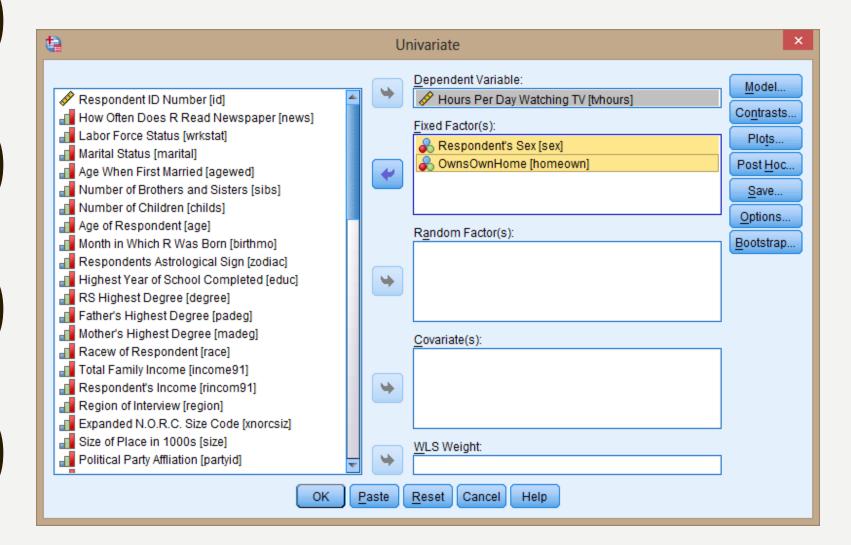

		•					J 📖 🧉														Visib	la: 60 of 60 Vari
																		1			,	le: 68 of 68 Varia
	id	sex	homeown	tvhours	news	wrkstat	marital	agewed	sibs	childs	age	birthmo	zodiac	educ	degree	padeg	madeg	race	income91	rincom91	region	xnorcsiz
1	1	Male		4		Working ful	divorced	20	3	1	43	May	Taurus		High school		LT High Sc		\$40000-49	\$35000-39 N		
2	2	Male	Doesn't O	5			never married	nap	2	0	44	August	Virgo	16		LT High Sc			\$40000-49	\$40000-49 N		. City, GT 2
3	3	Female		2		Working ful	divorced	25	2	0	43	February	Aquarius	16		High School	•		\$40000-49	\$40000-49 N		. City, GT 2
4	4	Female	Doesn't O	4			never married	nap	4	0	45	NA	NA		•	High School	DK	white	Refused		Middle Atla	<i></i>
5	5	Female	Doesn't O	1	Everyday		never married	nap	1	0	78	October	Libra	17		High School		white	\$75000+		Middle Atla	<i>1</i> 0
6	6	Male		4	NAP	Retired	married	25	2	2	83	March	Pisces		· ·	LT High Sc			\$20000-22		Middle Atla	. City, GT 2
7	7	Female		3		Working ful	married	22	2	2	55	October	Libra	12	•	LT High Sc				\$25000-29 N		. City, GT 2
8	8	Male		3	NAP	Retired		24	3	2	75	November	Sagittarius	12	•	LT High Sc	0	white	\$12500-14		Middle Atla	. City, GT 2
9	9	Male	Doesn't O	1	Few Times	Working ful	divorced	22	1	2	31	July	Cancer	18	Graduate	High School	High School	white		\$60000-74 N		. City, GT 2
10	10	Female	Doesn't O				never married	nap	1	0	54	March	Pisces	18		LT High Sc	-		\$10000-12	\$1000-2999 N		. City, GT 2
11	11	Female	Doesn't O	2			never married	nap	1	0	29	April	Taurus	18		LT High Sc	•		\$30000-34	\$30000-34 N		. City, GT 2
12	12	Female		4			never married	nap	0	0	23	October	Scorpio		High school		Junior Coll		\$40000-49	\$3000-3999 N		
13	13	Female	Doesn't O	3		Working ful	married	31	0	1	61	NA	NA	12	High school	High School	•	white	\$22500-24	\$8000-9999 N		. City, GT 2
14	14	Female		6	NAP	Retired	separated	24	3	4	63	March	Aries	4	Less than	NAP	LT High Sc	other	\$5000-5999	NAP N	Middle Atla	. City, GT 2
15	15	Female	Doesn't O	4	Few Times	Unempl, lai	never married	nap	4	3	33	March	Pisces	10	Less than	DK	DK	other	\$10000-12	\$10000-12 N	Viddle Atla	. City, GT 2
16	16	Female	Doesn't O	2	Few Times	Working ful	never married	nap	0	1	36	November	Scorpio	14	High school	NAP	High School	black	\$12500-14	\$12500-14 N	viiddle Atla	. City, GT 2
17	17	Female	Doesn't O	5	Less Than	Keeping ho	never married	nap	dk	4	39	March	Pisces	8	Less than	NA	LT High Sc	black	\$5000-5999	NAP N	Middle Atla	. City, GT 2
18	18	Male	Doesn't O	2	Few Times	Working ful	married	22	9	0	55	January	Capricorn	15	High school	High School	LT High Sc	other	Refused	Refused M	Middle Atla	. City, GT 2
19	19	Female	Owns Own	2	Everyday	Working ful	married	32	1	1	55	September	Libra	16	Bachelor	High School	LT High Sc	white	\$75000+	\$22500-24 N	Middle Atla	Uninc, Lrg
20	20	Male	Owns Own	4	Everyday	Working ful	married	24	2	2	34	April	Taurus	16	Bachelor	LT High Sc	High School	white	\$75000+	\$75000+ N	Middle Atla	Uninc, Lrg
21	21	Female	Owns Own	1	Everyday	Temp not	married	24	5	2	36	June	Gemini	14	Junior colle	Bachelor	Bachelor	white	\$60000-74	\$25000-29 N	Middle Atla	Uninc, Lrg
22	22	Female	Owns Own	2	Everyday	Working p	married	23	0	3	44	August	Leo	18	Bachelor	High School	High School	white	\$75000+	\$40000-49 N	Viddle Atla	Uninc, Lrg
23	23	Male	Owns Own	3	Everyday	Retired	widowed	25	2	2	80	May	Taurus	18	Graduate	NAP	LT High Sc	white	\$40000-49	NAP N	Middle Atla	Uninc, Lrg
24	24	Male	Doesn't O	3	Less Than	Working ful	never married	nap	5	1	32	July	Leo	16	Bachelor	Bachelor	Bachelor	other	\$25000-29	\$15000-17	Pacific	City, GT 2
25	25	Male	Doesn't O	2	Once a W	Working p	married	32	7	4	37	September	Virgo	5	Less than	LT High Sc	LT High Sc	other	\$20000-22	\$4000-4999	Pacific	City, GT 2
26	27	Female	Doesn't O	3	Once a W	Working ful	married	40	5	0	49	September	Virgo	16	Bachelor	Bachelor	Bachelor	other	\$30000-34	\$25000-29	Pacific	: City, GT 2
27	28	Female		2	NAP	Working ful	divorced	16	6	2	45	November	Sagittarius	16	Bachelor	High School	NAP	other	\$60000-74	\$60000-74	Pacific	City, GT 2
28	29	Female		2	NAP	Working ful	never married	nap	2	0	36	April	Taurus	18	Bachelor	High School	Graduate	white	\$30000-34	\$10000-12	Pacific	City, GT 2
29	30	Female	Doesn't O	1	Less Than	Working p	never married	nap	5	0	23	March	Aries	16	High school	NAP	Bachelor	black	\$10000-12	\$5000-5999	Pacific	City, GT 2
30	31	Male		3	NAP	Working ful	never married	nap	1	0	29	May	Taurus	16	Graduate	Bachelor	Bachelor	white	\$50000-59	\$50000-59	Pacific	City, GT 2
31	32	Female	Doesn't O	2	Few Times	Working ful	never married	nap	3	1	30	February	Aquarius	14	Junior colle	High School	LT High Sc	black	\$30000-34	\$30000-34	Pacific	City, GT 2
32	33	Female		2	NAP	Working ful	never married	nap	8	1	40	July	Cancer	16	Bachelor	LT High Sc	High School	black	\$30000-34	\$30000-34	Pacific	City, GT 2
33	34	Female	Doesn't O	1	Less Than	Working ful	never married	nap	8	2	26	August	Virgo	11	Less than	High School	High School	white	\$30000-34	\$15000-17	Pacific	Suburb, Lr
34	35	Male	Owns Own	3	Everyday	Retired	married	21	3	4	66	February	Pisces	12	High school	LT High Sc	LT High Sc	white	\$75000+	NAP	Pacific	Suburb, Lr
35	36	Female	Owns Own	2	Few Times	Unempl, lai	married	22	11	1	53	October	Scorpio	14	High school	High School	High School	other	\$40000-49	\$12500-14	Pacific	Suburb, Lr
36	37	Female	Owns Own	3	Few Times	Working p	married	19	2	0	20	December	Sagittarius	12	High school	LT High Sc	LT High Sc	other	\$8000-9999	\$1000-2999	Pacific	Suburb, Lr
37	38	Female		4	NAP	Working ful	divorced	24	4	2	63	July	Cancer	12	High school	LT High Sc	LT High Sc	white	\$10000-12	\$10000-12	Pacific	Suburb, Lr
	1					-	diniano									-						

Data View Variable View

GO TO:

Analyze → General Linear Model → Univariate

🔓 ANOVA_2.9	sav [DataSet1] -	IBM SPSS Statisti	cs Data Editor								
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>D</u> ata	Transform	<u>Analyze</u> Direct <u>Marketing</u>	<u>G</u> raphs	<u>U</u> tilities	Add- <u>o</u> ns	<u>W</u> indow	<u>H</u> elp			
			Re <u>p</u> orts D <u>e</u> scriptive Statistics	*			- 43	A		ABG	
4 : degree	1		Ta <u>b</u> les	•							
	id	sex	Co <u>m</u> pare Means	•	wrksta	at	mari	tal	agewed	sibs	childs
1	1	1	<u>G</u> eneral Linear Model		Univari	ate		3	20	3	1
2	2	1	Generalized Linear Mode	ls 🕨	Multiva			5	0	2	0
3	3	2	Mixed Models	*	Repea		ITAC	3	25	2	0
4	4	2	<u>C</u> orrelate	•				5	0	4	0
5	5	2	Regression	•	varian	ce Compo	nents	5	0	1	0
6	6	1	L <u>o</u> glinear	•)	5		1	25	2	2
7	7	2	Neural Networks	•)	1		1	22	2	2
8	8	1	Classify	*)	5		1	24	3	2
9	9	1	Dimension Reduction	•	2	1		3	22	1	2
10	10	2	Scale	*	2	2		5	0	1	0
11	11	2	Nonparametric Tests	•	5	1		5	0	1	0
12	12	2	Forecasting		2	1		5	0	0	0
13	13	2	Survival		5	1		1	31	0	1
14	14	2	Multiple Response		2	5		4	24	3	4
15	15	2		r	2	4		5	0	4	3
16	16	2	Missing Value Analysis		2	1		5	0	0	1
17	17	2	Multiple Imputation	P	4	7		5	0	98	4
18	18	1	Comp <u>l</u> ex Samples		2	1		1	22	9	0
19	19	2	🖶 S <u>i</u> mulation		1	1		1	32	1	1
20	20	1	Quality Control	•	1	1		1	24	2	2
21	21	2	ROC Cur <u>v</u> e		1	3		1	24	5	2
22	22	2	1.00 2		-1	2		1	23	0	3



Move the variables:

Respondent's Sex & OwnsOwnHome into the Fixed Factor window

Move the variable:

Hours per Day Watching TV variable into the Dependent Variables window

Click on <u>Model</u> → select <u>Full Factorial</u> → and <u>Continue</u>

Ignore the Contrasts Button for now

🔚 Univariate: Model	×						
Specify Model Image: Specify Model							
Factors & Covariates: Image: Provide the sex Imag							
Sum of squares: Type III 💌 📝 Include intercept in model							
Continue Cancel Help							

Click on the **Plots** button to select the plots we want.

🔚 Univariate: Profile Plots	\times
Factors: sex homeown	Horizontal Axis: Separate Lines: Separate Plots:
Plo <u>t</u> s: <u>A</u> dd	Change Remove
sex homeown sex*homeown	
Continue	Cancel Help

• First we get plots for the main effects:

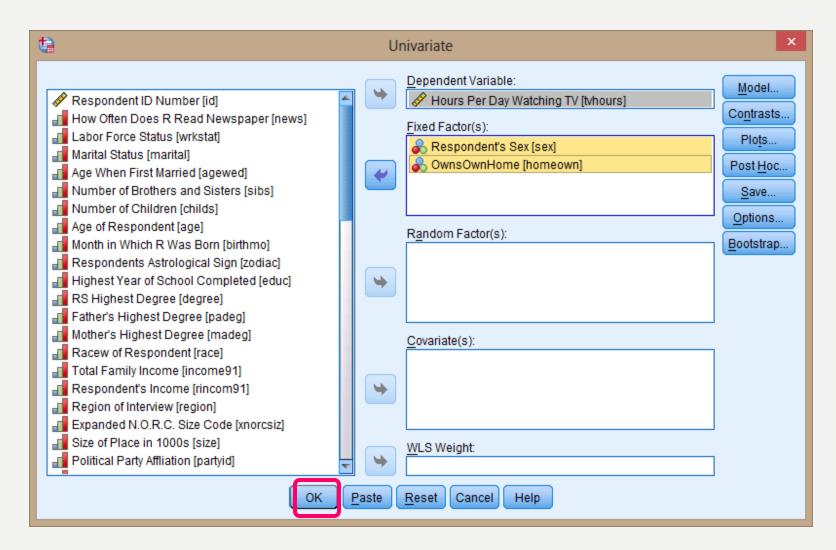
- Move the <u>Sex factor</u> into the <u>Horizontal Axis</u> window
 click the <u>Add</u> button
- Move the <u>Homeown factor</u> into the <u>Horizontal Axis</u> window → click the <u>Add</u> button.
- Next we will get plots for the interaction effect:
 - Move the <u>Sex factor</u> into the <u>Horizontal Axis</u> window & the <u>Homeown factor</u> into the <u>Separate Lines</u> window
 click the <u>Add</u> button
 - Move the <u>Homeown factor</u> into the <u>Horizontal Axis</u> window and the <u>Sex factor</u> into the <u>Separate Lines</u> window
 click the <u>Add</u> button

🔚 Univariate: Profile Plots		×
<u>Factors:</u> sex homeown	Horizontal Sex Separate I Separate I	_ines:
Plots:	Add Change Rem	love
sex		
homeown sex*homeown		
homeown*sex		
	Continue Cancel Help	

Click Continue

Since the post-hoc tests are only performed when there are more than two levels, we will skip the post-hoc tests button this time because our variables only have two levels.

Otherwise you do the post hoc tests just as you did for one-way ANOVA by moving the factors you want to test into the Post Hoc Tests box and selecting Sheffe and Tamhane tests.


CLICK ON: <u>Options</u> → move all of the Factors (overall, Sex, Homeown, and Sex*Homeown) into the Display Means for box.

Univariate: Options ×	Estimated Marginal Means Factor(s) and Factor Interactions: (OVERALL) sex homeown sex*homeown Sex*homeown Compare main effects Confidence interval adjustment: Bonferroni
Display Descriptive statistics Descriptive st	Display Descriptive statistics Estimates of effect size Descriptive statistics Estimates of effect size Descriptive statistics Descriptive statistics Estimates of effect size Descriptive statistics Estimates of effect size Descriptive statistics Descriptive statistics Estimates of effect size Parameter estimates Lack of fit Contrast coefficient matrix General estimable function Significance level: 05 Confidence intervals are 95.0 % Continue Cancel

Compare Main Effects → Bonferroni → Descriptive → Estimates of Effect Size → Homogeneity Tests.

Set the level of significance for example 0.05 for confidence interval to 95%

CLICK CONTINUE YOU HAVE:

Then OK, you will have the output results as follows:

Univariate Analysis of Variance

		Value Label	Ν
Respondent's Sex	1	Male	451
	2	Female	554
OwnsOwnHome	1.00	Owns Own Home	658
	2.00	Doesn't Own Home	347

Between-Subjects Factors

Descriptive Statistics

Dependent variable.	Hours Per Day watching	1 1 2		
Respondent's Sex	OwnsOwnHome	Mean	Std. Deviation	Ν
Male	Owns Own Home	2.77	2.197	305
	Doesn't Own Home	2.93	2.249	146
	Total	2.82	2.213	451
Female	Owns Own Home	2.63	1.790	353
	Doesn't Own Home	3.69	3.173	201
	Total	3.02	2.436	554
Total	Owns Own Home	2.70	1.989	658
	Doesn't Own Home	3.37	2.842	347
	Total	2.93	2.339	1005

Dependent Variable: Hours Per Day Watching TV

As you can see in the table of means, there is a trend for females to watch more TV than males and for non- homeowners to watch more TV than homeowners, but there is a particularly pronounced trend for female nonhomeowners to watch more TV than everybody else.

Levene's Test of Equality of Error Variances^a

Dependent Variable: Hours Per Day Watching TV

F	df1	df2	Sig.		
9.951	3	1001	.000		

Tests the null hypothesis that the error variance of

the dependent variable is equal across groups.

a. Design: Intercept + sex + homeown + sex *

homeown

Tests of Between-Subjects Effects

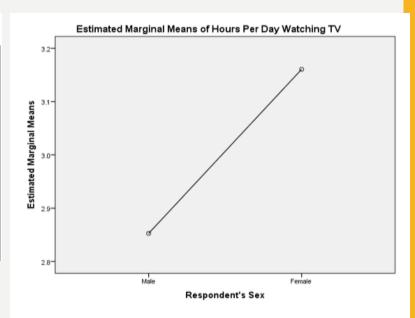
Source	Type III Sum of Squares	df	Mean Square	F	Sig.	Partial Eta Squared
Corrected Model	153.307ª	3	51.102	9.576	.000	.028
Intercept	8063.923	1	8063.923	1511.094	.000	.602
sex	21.146	1	21.146	3.963	.047	.004
homeown	81.594	1	81.594	15.290	.000	.015
sex * homeown	44.587	1	44.587	8.355	.004	.008
Error	5341.817	1001	5.336			
Total	14125.000	1005				
Corrected Total	5495.124	1004				

Dependent Variable: Hours Per Day Watching TV

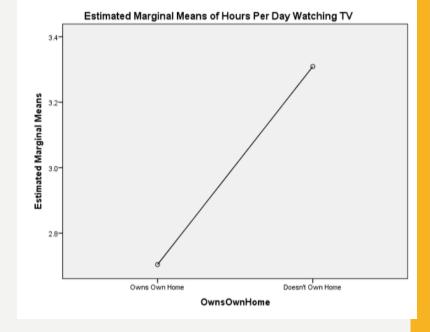
a. R Squared = .028 (Adjusted R Squared = .025)

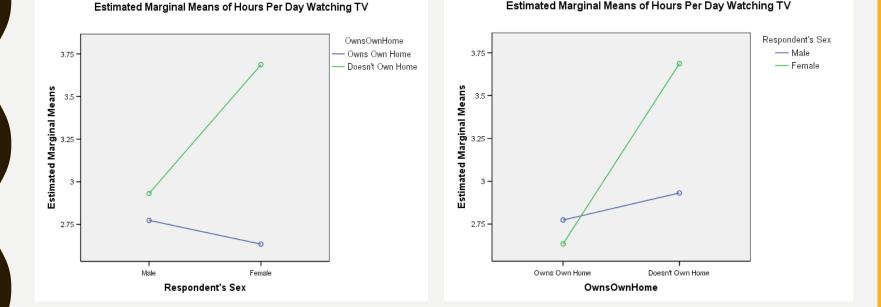
 Sex of respondent has a <u>significant main effect</u> on hours per day spent watching TV.

2. Home ownership has a significant main effect on hours per day spent watching TV.


3. Sex of respondent home ownership have a <u>significant interaction effect</u> on hours per day spent watching TV.

Now write a paragraph in which you report the results of the significance tests! Remember that the interpretation of the main effects in a straightforward way is complicated by the significant interaction.


We also need to be a bit skeptical since the partial eta squares are very low and as you will see on the next slide there is a very large SD in one of the conditions


Dependent Variable: Hours Per Day Watching TV					
Respondent's Sex	OwnsOwnHome	Mean	Std. Deviation	N	
Male	Owns Own Home	2.77	2.197	305	
	Doesn't Own Home	2.93	2.249	146	
	Total	2.82	2.213	451	
Female	Owns Own Home	2.63	1.790	353	
	Doesn't Own Home	3.69	3.173	201	
	Total	3.02	2.436	554	
Total	Owns Own Home	2.70	1.989	658	
	Doesn't Own Home	3.37	2.842	347	
	Total	2.93	2.339	1005	

Descriptive Statistics

As you can see in the table of means, there is a trend for females to watch more TV than males and for non-homeowners to watch more TV than homeowners, but there is a particularly pronounced trend for female non-homeowners to watch more TV than everybody else.

Although the interaction effect is not extremely strong, there is a trend for the relationship between <u>homeownership</u> and <u>hours spent</u> watching TV to be <u>different</u> for <u>men</u> than <u>women</u>;

Women who don't own homes are much more likely to spend more time watching TV than owners, compared to men, for whom homeownership makes less of a difference.

To know overall whether that IV influenced the DV, ignoring the other IV (Mane effect → marginal means)

	<u>Male</u>	<u>Female</u>	
Owns Own Home	2.77	2.63	(2.7)
Doesn't Own Home	2.93	3.96	(3.31)
	(2.85)	(3.16)	

Main effect for ownership:

Does ownership matter? Does it effect time spent watching TV? 3.31 vs. 2.7

Main effect for Gender:

Does gender matter?

Does it effect time spent watching TV?

2.85 vs. 3.16

REPORT:

□ Time a person spent on watching TV was analyzed in a twoway [between, within, mixed] ANOVA, with gender (male, female) as a [between subjects; within subjects] variable and home ownership (owns own home, doesn't own home) as a [between subjects; within subjects] variable.

□ Main effect for Gender:

The main effect of gender on time a person spent on watching TV was significant, F = 3.963, p = 0.047.

Time a person spent on watching TV was higher for [gender, female] (M = 3.16) than for [gender, male] (M = 2.85).

In addition, time a person spent on watching TV was higher for [homeown, doesn't Own Home] (M = 3.31) than for [homeown, owns own Home] (M = 2.7). The gender x homeown interaction was significant, F=8.355, p = 0.004

Since the interaction is significant, we need to report the cell means and describe their patterns as follows:

When the person Owns Own Home, women's average time spent on watching TV (M=2.63, SD=1.790) was lower than men's average time spent on watching TV (M=2.77, SD=2.197).

However, when the person Doesn't Own Home, women's average time spent on watching TV (M=3.69, SD=3.173) were higher than men's heart rates (M=2.93, SD=2.249), on average.

CONCLUSIONS

• T-tests assess if two group means differ significantly.

• ANOVAs compare more than two groups. They use variances instead of means.

- Described two-way analysis of variance
 - Examined effects of multiple factors and interaction

REPEATED MEASURES

ONE WAY REPEATED MEASURES ANOVA

 A statistical technique for <u>testing for</u> <u>differences between the means of</u> <u>several groups:</u>

- Groups are related in some way.
- The same measurement is made several times on each subject or case.
- Comparing the same subjects under several different treatments.

Similar to the paired samples T-Test, but no restriction on the number of groups.

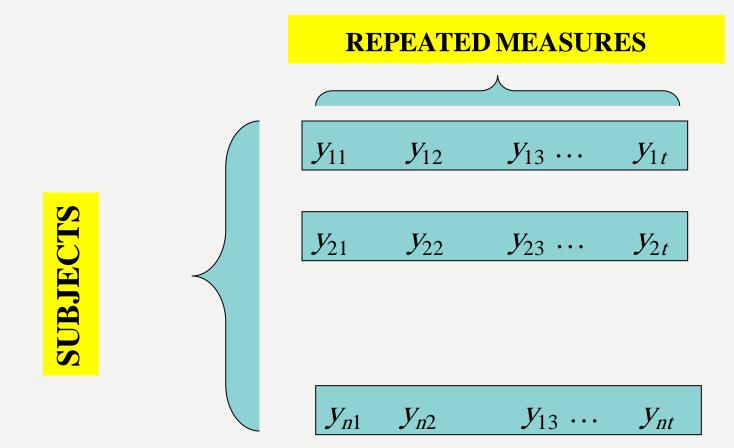
BETWEEN AND WITHIN FACTORS

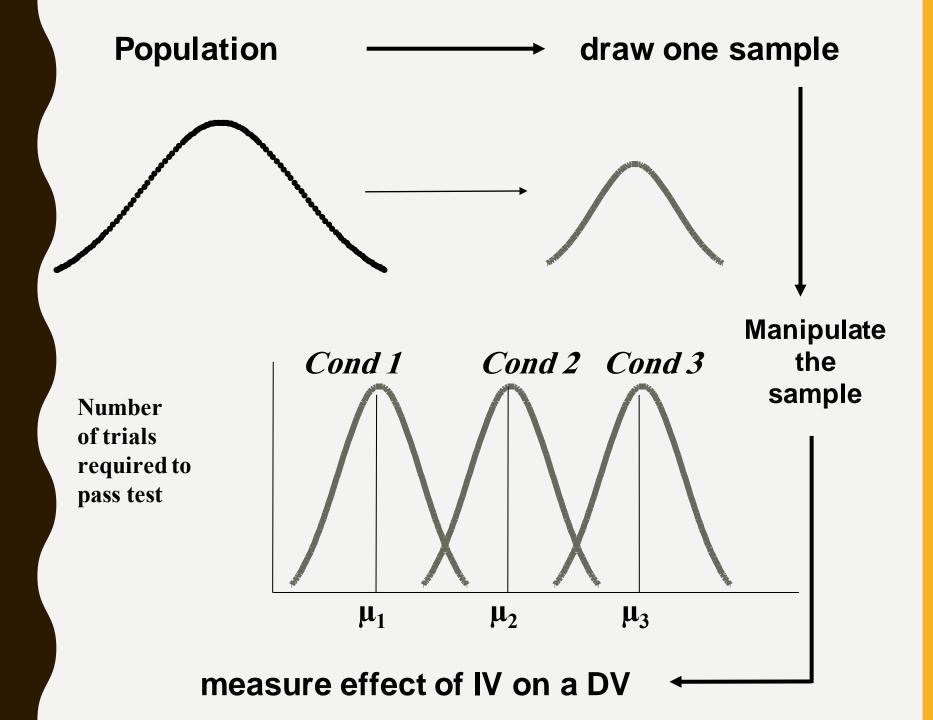
Between factors:

A grouping or classification variables such as sex, age, grade levels, treatment conditions etc.

Within factors:

Is the one with multiple measures from a group of people such as time.


Between Subjects ANOVA Data points in each group are unrelated

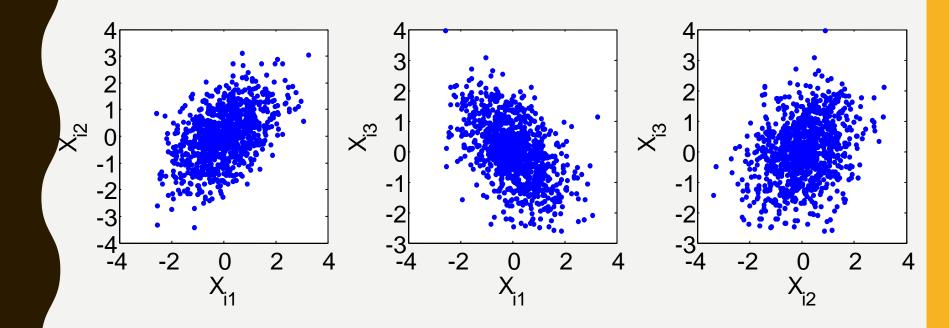

Repeated Measures ANOVA Data points in each group are related

Group A	Group B	Group C
5	4	3
6	2	7
9	4	3
2	5	4
9	3	2

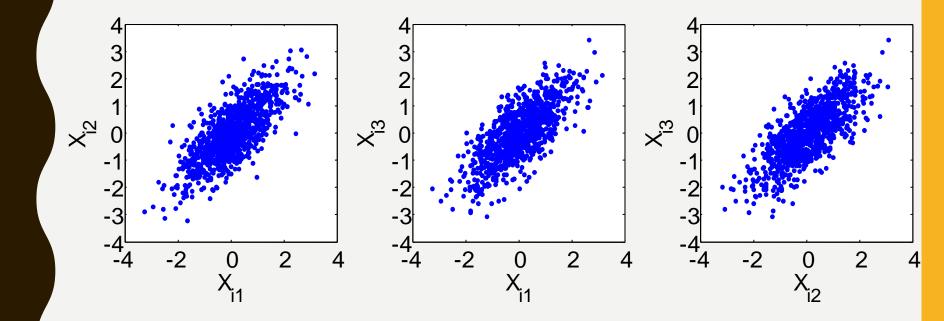
Time A	Time B	Time C
1	2	4
5	5	9
7	8	6
3	5	8
2	2	4

• THE ANOVA MODEL FOR A SIMPLE REPEATED MEASURES DESIGN:

ASSUMPTIONS...


Data in each group should be...

- Interval scale
- Normally distributed
 - Histograms, box plots
 - Homogeneity of variance
 - Variance within each condition should be roughly equal
 - RM require complete data for all subjects, i.e. no missing observations for any subjects.


SPHERICITY

- <u>Sphericity</u> is the property that the degree of interaction (covariance) between any two different levels of the independent variable is the same.
- <u>Sphericity</u> is critical for RM ANOVA because the error term is the average of the pairwise interactions.
- Violations generally lead to inflated F statistics (and hence inflated Type I error).

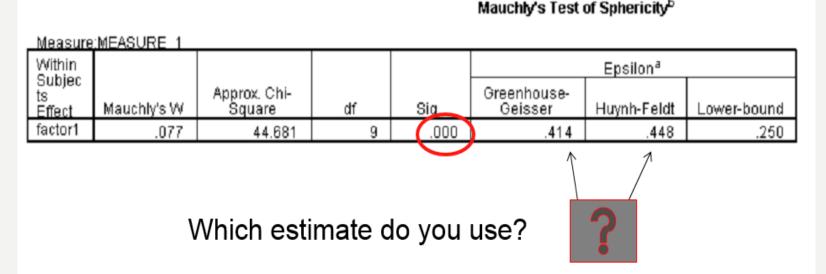
SPHERICITY DOES NOT HOLD

SPHERICITY DOES HOLD

SO THE SPHERICITY MEAN THAT:

- Variance of the differences between conditions is the same.
 - Variance $_{tl-t2} \approx$ Variance $_{tl-t3} \approx$ Variance $_{t2-t3}$

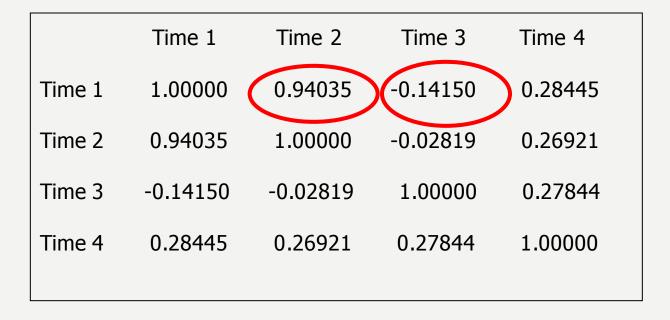
- Correlation between pairs of groups is the same.
 - Corr $_{t1-t2} \approx Corr_{t1-t3} \approx Corr_{t2-t3}$


This assumption can be tested using Mauchly's Sphericity Test.

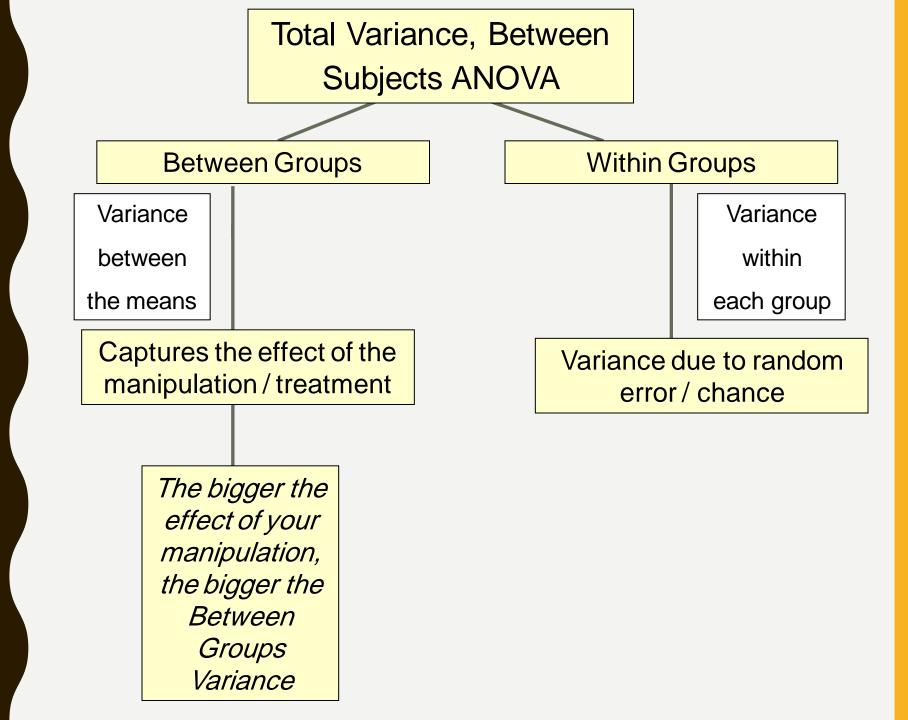
TESTING SPHERICITY

Mauchly's Test

• If p > .05, assume equality of variances.


 If p < .05, then the data fails to meet the assumption of sphericity.
 Need to use one of the correction factors
 E.g. Greenhouse-Geisser
 A more conservative test, using different dfs

Remember!: If the Epsilon estimates <.75, use Greenhouse-Geisser (GG);


If the Epsilon estimates > .75, use Huynh-Feldt (HF).

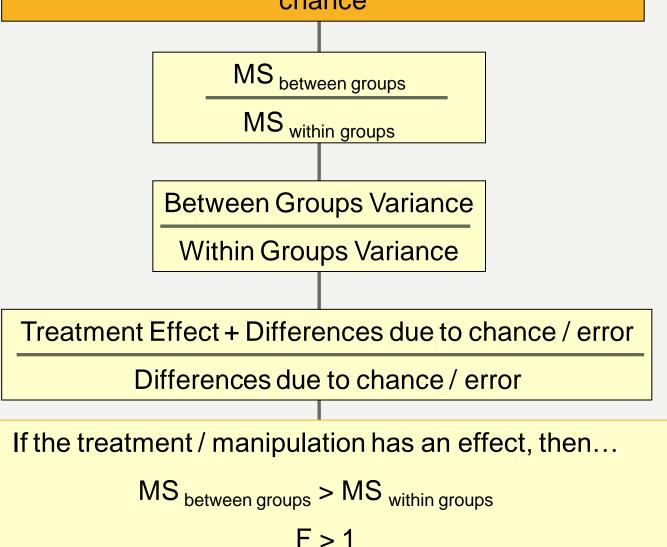
CORRELATION ACROSS TIME POINTS

Time 1 and Time 2 are highly positively correlated, but Time 1 and Time 3 are *negatively* correlated!

Thus for this example we might conclude that the conditions for compound symmetry are NOT met.

NOW WE HAVE FOUR KINDS OF VARIANCE

- TOTAL VARIANCE
 - SS_{total}
 - $-\sum (x_{ij} Grand Mean)^2$
- Variance due to the manipulation
 - $-SS_{treatment}$ $-n\sum (Group mean_j - Grand Mean)^2$


• Variance due to individual differences between participants

- SS_{participants}
- No. of conditions $\sum (Participant mean Grand Mean)^2$
- Variance due to random error

$$-SS_{random error} = SS_{total} - SS_{treatment} - SS_{participants}$$

F Ratio

Compares the variance due to the treatment / manipulation to the variance due to random error / chance

Repeated measures (no grouping factor, one repeated measures factor (time))

Source	SS	df	MS	F
Between Subject	SS _{Subject}	n - 1	MS _{Subject}	$MS_{\text{Time}} / MS_{\text{Error}}$
Time	SS _{Time}	t-l	MS _{Time}	
Between Subject Error	SS _{Error}	(n - l)(t - l)	MS _{Error}	

Person	1	2	3
1	2	4	7
2	10	12	13
3	22	29	30
4	30	31	34

Person	1	2	3	
1	2	4	7	
2	10	12	13	
3	22	29	30	
4	30	31	34	
Mean	16	19	21	18.67

SS_{treatment}: no. of people in each condition \sum (Treatment Mean - Grand Mean)²

 $4 \sum (16 - 18.67)^2 + (19 - 18.67)^2 + (21 - 18.67)^2$

Person	1	2	3	Mean per person
1	2	4	7	4.33
2	10	12	13	11.67
3	22	29	30	27
4	30	31	34	31.67
Mean	16	19	21	18.67

SS_{participants}: no. of conditions \sum (Participant Mean - Grand Mean)2 3 \sum (4.33 - 18.67)² + (11.67 - 18.67)² +...+ (31.67 - 18.67)²

Person	1	2	3	Mean per person
1	2	4	7	4.33
2	10	12	13	11.67
3	22	29	30	27
4	30	31	34	31.67
Mean	16	19	21	18.67

SS_{random error} = **SS**_{total} - **SS**_{treatment} - **SS**_{participants}

ANOVA TABLE

Source of variation	SS	df	MS	F	р
Between participants (individual differences)	K∑ (Participant Mean - Grand Mean)²	n - 1			
Treatment	n ∑ (Treatment mean _j - Grand Mean)²	K - 1	SS _T / df _T	MS _{Treatment} MS _{error}	Prob. of observing F-value when H _o is true
Random Error	SS _{total} - SS _{treatment} - SS _{participants}	(n -1)x (k -1)	SS _e / df _e		
Total	∑ (x _{ij} - Grand Mean)²	N - 1			

N = Total no. of observations, n = no. of people in each condition, K = no. of conditions

EXAMPLE (1)

- In the following study the experimenter was interested in how the level of a certain enzyme changed in cardiac patients after open heart surgery:
- For <u>n = 15</u> cardiac surgical patients, the enzyme was measured:
- Immediately after surgery (Day 0),
- One day (Day I),
- Two days (Day 2) and
- One week (Day 7) after surgery.