Boolean Algebra

١

<u>Objectives:</u>

The main purpose for this lesson is to introduce the following:

define Boolean algebra and operations of its.

Convert Boolean algebra into logical equivalence and convers.

define Boolean function and Boolean Expressions.
 define the dual of a Boolean expression.

Boolean Functions

In Boolean algebra we work with the <u>set</u>
 {0,1}, where:

• **0** ≡ **F** (False)

• **1 ≡ T** (True).

The Operations In Boolean Algebra

- The complementation of an element, denoted with a bar "----" is defined by:
- $\overline{0} = 1; \quad \overline{1} = 0$ 2. The sum (+; *OR*):
- 1+1=1; 1+0=1; 0+1=1; 0+0=0.

Boolean product(. ; AND).
 1.1=1, 1.0=0, 0.1=0, 0.0=0

Translation into a Logical Equivalence

- 0 ≡ F, • 1 ≡ T ,
- . ≡ ∧,
- + ≡ V,

Example1: Find the value of 1.0 + (0+1).

Solution:

Using the definition of operations in Boolean algebra, it follows that:

$$1.0 + (\overline{0+1}) = 0 + \overline{1}$$

= 0 + 0
= 0

Example 2:

Translate $1 \cdot 0 + \overline{(0 + 1)} = 0$, the equality found in Example 1, into a logical equivalence.

Solution:

Example 3:

Translate the logical equivalence (T ∧ T)V¬F ≡ T into an identity in Boolean algebra.

Solution:

<u>Boolean Expressions and Boolean</u> <u>Functions</u>

Let B= {0,1}. Then Bⁿ={ $(x_1, x_2, ..., x_n) | x_i \in B$ for $1 \le i \le n$ } is the set of all possible n -tuples of Os and 1s. The variable x is called a Boolean variable if it assumes values only from B, that is, if its only possible values are 0 and 1.

A function from Bⁿ to B is called a <u>*Boolean function of*</u> <u>*degree n*</u>.

Boolean Expressions

Boolean functions can be represented using expressions made up from variables and Boolean operations (., +, ----).

- The Boolean expressions in the variables x_1 , x_2 , ..., x_n are defined recursively as
- 0, 1, x₁, x₂, ..., x_n are Boolean expressions;
- if E_1 and E_2 are Boolean expressions, then $\overline{E_1}$, $(E_1.E_2)$, and (E_1+E_2) are Boolean expressions.

- The function $F(x,y) = x\overline{y}$ from the set of ordered pairs of Boolean variables to the set {0,1}
- is a *Boolean function of degree 2* with
- F (1,1)=0, F (1,0) = 1, F (0,1) = 0, and F(0, 0) = 0.
- We display these values of F in Table 1 .

TA	TABLE 1		
x y		F(x, y)	
1	1	0	
1	0	1	
0	1	0	
0	0	0	

Find the values of the Boolean function represented by $F(x,y,z) = xy + \overline{z}$

Solution:

The values of this function are displayed in Table 2.

TAB	TABLE 2				
x	у	z	xy	उ	$F(x, y, z) = xy + \overline{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

Identities of Boolean Algebra

EXAMPLE 6

Show that the distributive law x(y+z)=xy+xz is valid.

<u>Solution</u>: The identity holds because the last two columns of the table agree.

TABLE 6 Verifying One of the Distributive Laws.							
x	у	z	y + z	xy	xz	x(y+z)	xy + xz
1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

TABLE 5 Boolean Identities.		
Identity	Name	
$\overline{\overline{x}} = x$	Law of the double complement	
$ \begin{array}{l} x + x = x \\ x \cdot x = x \end{array} $	Idempotent laws	
$ \begin{aligned} x + 0 &= x \\ x \cdot 1 &= x \end{aligned} $	Identity laws	
$\begin{aligned} x+1 &= 1 \\ x \cdot 0 &= 0 \end{aligned}$	Domination laws	
$ \begin{aligned} x + y &= y + x \\ xy &= yx \end{aligned} $	Commutative laws	
x + (y + z) = (x + y) + z $x(yz) = (xy)x$	Associative laws	
x + yz = (x + y)(x + z) $x(y + z) = xy + xz$	Distributive laws	
$\overline{(\overline{x}\overline{y})} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \overline{y}$	Be Morgan's laws	
x + xy = x $x(x + y) = x$	Absorption laws	
$x + \overline{x} = 1$	Unit property	
$x\overline{x}=0$	Zero property	

Translate the distributive law x+yz=(x+y)(x+z) in Table 5 into a logical equivalence.

Solution:

Put **x≡p, y≡q, & z≡r, and use** the translation of Boolean operations

This transforms the Boolean identity into the logical equivalence pV(q∧r)≡(pVq)∧(p Vr).

Prove the absorption law x(x+y)=x <u>using the other</u> <u>identities of Boolean algebra</u>shown in

Table 5

Solution:

=x+0

= X

The steps used to derive this identity and the law used in each step follow:

x(x+y)=(x+0)(x+y) Identity law for the Boolean sum

- = x+0.y Distributive law of the Boolean sum over the Boolean product
- = x +Y.0 Commutative law for the Boolean product
 - Domination law for the Boolean product
 - Identity law for the Boolean sum

- The dual of a Boolean expression is obtained by interchanging Boolean sums and Boolean products and interchanging Os and 1 s.
- Duality of a Boolean function F is denoted by F^d

Find the dual of $\mathbf{x}(\mathbf{y} + \mathbf{0})$ and $\bar{\mathbf{x}} \cdot \mathbf{1} + (\bar{\mathbf{y}} + z)$. **Solution:** <u>Duality</u>

```
x + (y, 1) and (\bar{x} + 0). (\bar{y}, z).
```


- **0** interchanged to **1**,
- **1** interchanged to **0**,
- + interchanged to . , ٠
 - . interchanged to +

٠

An identity between functions represented

by Boolean expressions remains valid when the duals of both sides of the identity are taken.
This result, called *the duality principle*, is useful for obtaining new identities.

Construct an identity from the absorption law x(x+y)=x <u>by taking</u> <u>duals</u>.

Solution:

- Taking the duals of both sides of this identity produces the identity x+xy = x, which
- is also called an absorption law and is shown in Table 5.

- 0 interchanged to 1,
- 1 interchanged to 0,
- + interchanged to . ,
- . interchanged to +

