Boolean Algebra

Objectives:

The main purpose for this lesson is to introduce the following:
\square define Boolean algebra and operations of its.
\square Convert Boolean algebra into logical equivalence and convers.
\square define Boolean function and Boolean Expressions.
\square define the dual of a Boolean expression.

Boolean Functions

- In Boolean algebra we work with the set $\{0,1\}$, where:
- $0 \equiv \mathrm{~F}$ (False)
- $1 \equiv$ T (True).

The Operations In Boolean Algebra

1. The complementation of an element, denoted with a bar "-" is defined by:

$$
\overline{0}=1 ; \quad \overline{1}=0
$$

2. The sum (+; OR):
$1+1=1 ; 1+0=1 ; 0+1=1 ; 0+0=0$.
3. Boolean product(. ; AND).
$1.1=1,1.0=0,0.1=0,0.0=0$

Translation into a Logical Equivalence

- $0 \equiv \mathrm{~F}$,
- $1 \equiv \mathrm{~T}$,
- . \equiv,
- + \equiv V,
- ——っ

Example1:

Find the value of $1.0+(\overline{0+1})$.

Solution:

Using the definition of operations in Boolean algebra, it follows that:

$$
\begin{aligned}
1.0+(\overline{0+1}) & =0+\overline{1} \\
& =0+0 \\
& =0
\end{aligned}
$$

Example 2:

Translate $1 \cdot 0+\overline{(0+1)}=0$, the equality found in Example 1, into a logical equivalence.

Solution:

Example 3:

Translate the logical equivalence $(T \wedge T) \vee \neg F \equiv T$ into an identity in Boolean algebra.

Solution:

Boolean Expressions and Boolean

Functions

Let $B=\{0,1\}$. Then $B^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{i} \in B\right.$ for $\left.1 \leq i \leq n\right\}$ is the set of all possible n-tuples of Os and 1 s . The variable x is called a Boolean variable if it assumes values only from B, that is, if its only possible values are 0 and 1 .

A function from B^{n} to B is called a Boolean function of
degree n.

Boolean Expressions

Boolean functions can be represented using expressions made up from variables and Boolean operations (., +, -).
The Boolean expressions in the variables $\mathrm{x}_{1}, \mathrm{x}_{2}$, \ldots, x_{n} are defined recursively as

- $0,1, x_{1}, x_{2}, \ldots, x_{n}$ are Boolean expressions;
- if E_{1} and E_{2} are Boolean expressions, then $\overline{E_{1}}$, ($E_{1} \cdot E_{2}$), and ($E_{1}+E_{2}$) are Boolean expressions.

EXAMPLE 4

The function $F(x, y)=x \bar{y}$
from the set of ordered
pairs of Boolean
variables to the set $\{0,1\}$
is a Boolean function of
degree 2 with
$F(1,1)=0, F(1,0)=1, F$
$(0,1)=0$, and $F(0,0)=0$.
We display these values of

TABLE 1		
x	y	$F(x, y)$
1	1	0
1	0	1
0	1	0
0	0	0

F in Table 1.

EXAMPLE 5

Find the values of the Boolean function represented by $F(x, y, z)=x y+\bar{z}$

Solution:

The values of this function are displayed in Table 2.

TABLE 2					
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\boldsymbol{x} \boldsymbol{y}$	\bar{z}	$\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\boldsymbol{x} \boldsymbol{y}+\overline{\boldsymbol{z}}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

Identities of Boolean Algebra

EXAMPLE 6

Show that the distributive law $x(y+z)=x y+x z$ is valid. Solution:. The identity holds because the last two columns of the table agree.

TABLE 6		Verifying One of the Distributive Laws.					
x	y	z	$y+z$	$x y$	$x z$	$x(y+z)$	$x y+x z$
1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Identity	Name
$\overline{\bar{x}}=x$	Law of the double complernent
$\begin{aligned} & x+x=x \\ & x-x=x \end{aligned}$	Idempotent laws
$\begin{aligned} & x+0=x \\ & x-1=x \end{aligned}$	Identity laws
$\begin{aligned} & x+1=1 \\ & x-0=0 \end{aligned}$	Domination laws
$\begin{aligned} & x+y=y+x \\ & x y=y x \end{aligned}$	Commutative laws
$\begin{aligned} & x+(y+z)=(x+y)+z \\ & x(y z)=(x y) x \end{aligned}$	Associative laws
$\begin{aligned} & x+y z=(x+y)(x+z) \\ & x(y+z)=x y+x z \end{aligned}$	Distributive laws
$\begin{aligned} & \overline{(x y)}=\bar{x}+\bar{y} \\ & (x+y)=\bar{x} \bar{y} \end{aligned}$	Be Mgrgan's laws
$\begin{aligned} & x+x y=x \\ & x(x+y)=x \end{aligned}$	Absorption laws
$x+\bar{x}=1$	Unit property
$x \bar{x}=0$	Zero property

EXAMPLE 7

Translate the distributive

 law $x+y z=(x+y)(x+z)$ in Table 5 into a logical equivalence.
Solution:

Put $x \equiv p, y \equiv q, \& z \equiv r$, and use the translation of Boolean operations

This transforms the Boolean identity into the logical equivalence
$p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$.

EXAMPLE 8

Prove the absorption law $\mathrm{x}(\mathrm{x}+\mathrm{y})=\mathrm{x}$ using the other identities of Boolean algebra shown in

Table 5

Solution:
The steps used to derive this identity and the law used in each step follow:
$x(x+y)=(x+0)(x+y) \quad$ Identity law for the Boolean sum

$$
\begin{array}{ll}
=x+0 . y & \text { Distributive law of the Boolean sum over the } \\
& \text { Boolean product }
\end{array}
$$

$=x+Y .0 \quad$ Commutative law for the Boolean product
$=x+0 \quad$ Domination law for the Boolean product
$=x \quad$ Identity law for the Boolean sum

Duality

- The dual of a Boolean expression is obtained by interchanging Boolean sums and Boolean products and interchanging Os and 1 s .
- Duality of a Boolean function F is denoted by F^{d}

EXAMPLE 9

Find the dual of $x(y+0)$ and $\bar{x} \cdot 1+(\bar{y}+z)$.
Solution:
$x+(y \cdot 1)$ and $(\bar{x}+0) \cdot(\bar{y} \cdot z)$.

Duality

- 0 interchanged to 1 ,
- $\mathbf{1}$ interchanged to $\mathbf{0}$,
- + interchanged to . ,
- . interchanged to +

Duality Principle

An identity between functions represented by Boolean expressions remains valid when the duals of both sides of the identity are taken. This result, called the duality principle, is useful for obtaining new identities.

EXAMPLE 10

Construct an identity from the absorption law $\mathrm{x}(\mathrm{x}+\mathrm{y})=\mathrm{x}$ by taking duals.

Solution:

Taking the duals of both sides of this identity produces the identity $x+x y=x$, which
is also called an absorption law and is shown in Table 5.

Homework

Page 818

- 1,
- 3
- 5(a,b),
- 9
- 11,
- 21
- 28(a,d).

