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Lect 11: Kinetics of particles



Kinetics of Particles

Kinetics:
Study of the relations between unbalanced forces and the resulting
changes in motion.

Newton’s Second Law of Motion : The acceleration of a particle is proportional
to the resultant force acting on it and is in the direction of this force.
- A particle will accelerate when it is subjected to unbalanced forces

Three approaches to solution of Kinetics problems:

1. Force-Mass-Acceleration method (direct application of Newton's Second Law)
2. Use of Work and Energy principles

3. Impulse and Momentum methods

Limitations of this chapter:

* Motion of bodies that can be treated as particles (motion of the mass centre of
the body)

» Forces are concurrent through the mass center (action of non-concurrent
forces on the motion of bodies will be discussed in chapter on Kinetics of rigid
bodies).



Kinetics of Particles

Force-Mass-Acceleration method
Equation of Motion
Particle of mass m subjected to the action of concurrent forces F,, F,,... whose
vector sum is Y F:
- Equation of motion: > F = ma
- Force-Mass-Acceleration equation

Equation of Motion gives the instantaneous value of the acceleration
corresponding to the instantaneous value of the forces.

» The equation of motion can be used in scalar component form in any
coordinate system.

« For a3 DOF problem, all three scalar components of equation of motion will be
required to be integrated to obtain the space coordinates as a function of time.

« All forces, both applied or reactive, which act on the particle must be accounted
for while using the equation of motion.

Free Body Diagrams:
In Statics: Resultant of all forces acting on the body = 0
In Dynamics: Resultant of all forces acting on the body = ma - Motion of body



KinetiCS Of PﬁftiCleS: Force-Mass-Acceleration method

Rectilinear Motion
Motion of a particle along a straight line

For motion along x-direction, accelerations along y- and z-direction will be zero
2> 2F,=ma,

YF, =
2Fy=
For a general case:
> 2F, =ma,
> Fy=may
2F,=ma,

The acceleration and resultant force are given by:
a=ad+tajt+ak
a=Ja?+a’+a?
F = XF,i+XF j+IFk
I2F| = J(ZF,)? + (3F,)? + (3F,)?




KinetiCS Of Pa rtiCIGS: Force-Mass-Acceleration method

Rectilinear Motion

Example
A 75 kg man stands on a spring scale in an elevator. During the first 3 seconds of

motion from rest, the tension T in the hoisting cable is 8300 N. Find the reading R
of the scale in Newton during this interval and the upward velocity v of the elevator
at the end of the 3 seconds. Total mass of elevator, man, and scale is 750 kg.

Solution |
Draw the FBD of the elevator and the man alone motion

|

75(9.81) =736 N

% | |

¢

750(9.81) = 7360 N

.{

750(9.81) = 7360 N



KinetiCS Of PartiCIGS: Force-Mass-Acceleration method

Rectilinear Motion |

Example TT=3300N
Solution 4
During first 3 seconds, the forces acting on the elevator By |
are constant. Therefore, the acceleration a, will also T { Q J wc:

[ 75(9.81) =736 N

remain constant during this time.
Force registered by the scale and the velocity of the

elevator depend on the acceleration a, T

From FBD of the elevator, scale, and man taken together: OSSN = TI6ON

> F, = ma,—> 8300-7360 = 750a, > a, = 1.257 m/s?

R

From FBD of the man alone:
ZFy =ma, > R-736 = TSay -> R=830N

Velocity reached at the end of the 3 sec:

3
Av=[adt> v - 0=f 1.257 dt
0

v=3.77 m/s



KinetiCS Of PartiCIGS: Force-Mass-Acceleration method

Rectilinear Motion
Example

A small inspection car with a mass of 200 kg runs along the fixed overhead
cable and is controlled by the attached cable at A. Determine the acceleration of
the car when the control cable is horizontal and under a tension 7' = 2.4 kN.
Also find the total force P exerted by the supporting cable on the wheels.

Solution: Draw the FBD of the system

T=24kN Choosing the x-y coordinate system such that
the axes are along and normal to the motion
(acceleration)

- calculations simplified

W = mg = 1962 N



The car is in equilibrium in the y-direction since there is no acceleration in
this direction. Thus,

[SF, = 0] P-24(35) —1962(;2) =0 P =273kN Ans.
In the x-direction the equation of motion gives
[SF, = ma,] 2400(;2) — 1962(13) = 200a @ = 7.30 m/s’ Ans.
y
\

W =mg =1962 N



Sample Problem 3/3

The 250-1b concrete block A is released from rest in the position shown and
pulls the 400-1b log up the 30° ramp. If the coefficient of kinetic friction between
the log and the ramp is 0.5, determine the velocity of the block as it hits the
ground at B.

total length of the cable is L = 2s, + s, + constant

Differentiating the above equation two times gives:

0=2SC+SA5

i U i ’-""I"lr. ’ ﬂ
C g 3 (T
0=2a-+a 27/T P 1 2501b
L A - .
A

y
. 4001b

| s¢” —
N Y ' e~
250 1b |+ \

[XF, = 0] N — 400 cos 30° = N = 346 1b

E A A0 !
[ZF, = ma,] 0.5(346) — 2T + 400 sin 30° = 399 %C A l




For the block in the positive downward direction, we have

. iy o 28D
[+ | EF = ma] 250 - T 39 5 %A

Solving the three equations in a., a,, and T gives us
ay = 5.83 ft/sec? ae = —2.92 ft/sec? T = 2051b

For the 20-ft drop with constant acceleration, the block acquires a velocity

[v? = 2ax] vy = 2(5.83)(20) = 15.27 ft/sec



KinetiCS Of PartiCleS: Force-Mass-Acceleration method

Curvilinear Motion: Particles move along plane curvilinear paths.

Rectangular Coordinates
Y F.=ma, a_ =X
ZFJ, =ma, a,=}y

Normal and Tangential Coordinates

ZF” = ma, vz -
a, == = pf? = v
s |



Example (1) on curvilinear motion

Determine the maximum speed v which A
the sliding block may have as it passes .
point A without losing contact with the

surface.

Solution:
The condition for loss of contact: Normal force N exerted by the surface on the
block is equal to zero.
Draw the FBD of the block and using n-t coordinate system e
Let m be the mass of the block. l
———t

Along n-direction:
2F,=ma,
mg—N=ma,
mg = m(vV3/p)

2 V=4gp |



Example (2) on curvilinear motion

A 1500 kg car enters a section of curved p=400m
road in the horizontal plane and slows
down at a uniform rate from a speed of
100 km/h at A to 50 km/h at C. Find the
total horz force exerted by the road on
the tires at positions A, B, and C. Point

B is the inflection point where curvature
changes sign.

Solution:

The car will be treated as a particle = all the forces exerted by the road on tires
will be treated as a single force.

Normal and tangential coordinates will be used to specify the acceleration of the
car since the motion is described along the direction of the road.

Forces can be determined from the accelerations.



Example (2) on curvilinear motion

p=400m

Solution:
The acceleration is constant and its direction will be along negative t-direction.
Magnitude of acceleration:

| (50/3.6)* — (100/3.6)*
N 2(200)

[ve? = vy2 + 2a, As] a, = 1.447 m/s?

Normal components of the acceleration at A, B, and C:

(100/3.6)*
[0,, o Uzlp] At A, a, = ‘—W = 1.929 m/s?
AtB, a,=0
2
MO g =By

Forces can be found out by using equation of motion
along n- and t-directions




Example (2) on curvilinear motion

Solution:

Applying equation of motion to the FBD of the car along n- and t-directions
[EF, = ma,] F, = 1500(1.447) = 2170 N

[EF, = ma,] AtA, F, =1500(1.929) = 2890 N

AtB, F,=0
AtC, F, =1500(2.41) = 3620 N

Total horz force acting on tires of car:
AtA, F=JF2+F2= /(2890)? + (2170)2 = 3620 N

Y
AtB, F=F,=2170N o K-7F

AtC, F= JF2+F2= /(3620)2+ (2170)2 = 4220 N Al ol
Directions of forces will match with those of accelerations. n




Kinetics of Particles

Work and Energy

«Second approach to solution of Kinetics problems

Work and Kinetic Energy
*Previous discussion: instantaneous relationship between the net
force acting on a particle and the resulting acceleration of the
particle.
= Change in velocity and corresponding displacement of the
particle determined by integrating the computed accelerations
using kinematic equations

Cumulative effects of unbalanced forces acting on a particle
—> Integration of the forces wrt displacement of the particle
- leads to equations of work and energy

- Integration of the forces wrt time they are applied
- leads to equations of impulse and momentum



Kinetics of Particles: Work and Energy

Work and Kinetic Energy
Work

Work done by the force F during the displacement dr
dU = F-dr

A’

r+dr

dU = F ds cosa
The normal component of the force: F, = F sina
does no work. s e\ 0
> dU=F,ds - A
Units of Work: Joules (J) or Nm \\__‘_,F A
Calculation of Work: -
¢
A 2 —
U:j;F-dr:jl(-xdx+Fydy+dez) ’_/""ﬂl
I
or / |
/ L — dU = F,ds

U=|["F,ds




Kinetics of Particles: Work and Energy

Work and Kinetic Energy

Examples of Work
Computing the work associated with three frequently associated forces:

Constant Forces, Spring Forces, and Weight

(a) Work associated with a constant external force

Work done by the constant force P on the body while it moves from position 1 to 2:

i 4
|

|
L2 P

Jéw dr

: , ..!

1 2

U, = LZF -dr = f [(P cos a) + (Psina)j]-dxi

X
= [*Pcosadx=Pcosa(x, —x,)

X

= PlLcosa

 The normal force Psina does no work.
« Work done will be negative if a lies between 90° to 270°



Kinetics of Particles: Work and Energy

Work and Kinetic Energy

Examples of Work (b) Work associated with a spring force

Force required to compress or stretch a linear spring of stiffness K is proportional
to the deformation x. Work done by the spring force on the body while the body
moves from initial position x, to final position x,: s I requited (o

stretch or compress spring

Force exerted by the spring on the body:
F = - kxi (this is the force exerted on the body)

UI_Z:LZF-dr:f(-Iocl )-dxi = j'!crdx _______

|
| 1y

: S F=ke
|

|

-~k )

« If the initial position x, is zero (zero spring

deformation), work done is —ve for any final -~ -~ dr
position x, # 0. ol
 If we move from an arbitrary initial posn x; # 0 N~

to the undeformed final position x, = 0, work —— A —
done will be positive (same dirn of force & disp) =

Mass of the spring is assumed to be small compared to the masses of other accelerating
parts of the system = no appreciable error in using the linear static relationship F=kx.



Kinetics of Particles: Work and Energy

Work and Kinetic Energy

Examples of Work
(c) Work associated with weight

Case (i) g = constant - altitude variation is sufficiently small

Work done by weight mg of the body as it is displaced from y, to final altitude y.:
2 2 . . .
U_, = L F-dr= L (- mgj)- (dxi+ dyj)

=-mg | dy=-mg(y,~») ; 2
« Horz movement does not contribute to this work ¥ m ' d;
|
» If the body rises (y,-y, > 0) = Negative Work ~(J1 mg :_
(opposite direction of force and displacement) Y1 — =¥

» If the body falls (y,-y, <0) - Positive Work
(same direction of force and displacement)



Kinetics of Particles: Work and Energy

Work and Curvilinear Motion

Work done on a particle of mass m moving along

a curved path (from 1 to 2) under the action of F:

« Position of m specified by position vector r

« Disp of m along its path during dt represented
by the change dr in the position vector.

U, , :fF-dr = :E ds

Substituting Newton’s Second law F = ma:

Up, = [ Fdr=| ma-dr

a-dr = a;ds a;,is the tangential component of acceleration of mass
Also, a;ds = v dv

U,_, = _[12 ma-dr = :2 mvdv :%m(vf —vf)

v, and v, are the velocities at points 1 and 2, respectively.



Kinetics of Particles: Work and Energy

Principle of Work and Kinetic Energy
The Kinetic Energy T of the particle is defined as:

TH lmvz Scalar quantity with units of Work (Joules or Nm)
) T is always positive regardless of direction of velocity

Which is the total work required to be done on the particle to bring it from a state
of rest to a velocity v.

" . 1
Rewriting the equation for Work done: U,_, :Em(vf —Vf)

9
U, =1,-1 =AT May be positive, negative, or zero

- Work Energy equation for a particle
“Total Work Done by all forces acting on a patrticle as it moves from point 1 to 2
equals the corresponding change in the Kinetic Energy of the particle”

- Work always results in change in Kinetic Energy

Alternatively, the work-energy equation may be expressed as:

L+U ,=1,
- Corresponds to natural sequence of events



Kinetics of Particles: Work and Energy

Work and Kinetic Energy
Advantages of Work Energy Method

No need to compute acceleration; leads directly to velocity changes as
functions of forces, which do work.

Involves only those forces, which do work, and thus, produces change in
magnitudes of velocities.

Two or more particles connected by rigid and frictionless members can be

analyzed without dismembering the system.

* the internal forces in the connection will be equal and opposite

= net work done by the internal forces =0

= the total kinetic energy of the system is the sum of the kinetic energies of both
elements of the system

Method of Analysis:

Isolate the particles of the system

For a single particle, draw FBDs showing all externally applied forces
For a system of particles connected without springs, draw Active Force
Diagrams showing only those external forces which do work.



Kinetics of Particles: Work and Energy

Work and Kinetic Energy

Power
Capacity of a machine is measured by the time rate at which it can do
work or deliver energy - Power (= time rate of doing work)

Power P developed by a force F, which does an amount of work U:
P = dU/dt = F-dr/dt
dr/dt is the velocity v at the point of application of the force

>P=Fwv

*Power is a scalar quantity

*Units: Nm/s = J/s
Special unit: Watt (W) [US customary unit: Horsepower (hp)]
1TW=1J/s
1hp =746 W =0.746 KW



Kinetics of Particles: Work and Energy

Work and Kinetic Energy

Efficiency

Mechanical Efficiency of machine (e,,) = Ratio of the work done by a machine to
the work done on the machine during the same interval of time

«Basic assumption: machines operates uniformly = no accumulation or depletion
of energy within it.

Efficiency is always less than unity due to loss of energy and since energy cannot
be created within the machine.

*In mechanical devices, loss of energy due to negative work done by kinetic
friction forces.

At any instant of time, mechanical efficiency and mechanical power are related by:
P

outpur
e, =—
P

input

*Other energy losses are: electrical energy loss and thermal energy loss
- electrical efficiency e, and thermal efficiency e, should also be considered

Overall Efficiency: € = €, €€,



Kinetics of Particles: work and Kinetic Energy

Example -
Calculate the velocity of the 50 kg box "
when it reaches point B if it is given an
initial velocity of 4 m/s down the slope at A.
U, = 0.3. Use the principle of work.

Solution: Draw the FBD of the box

Normal reaction R = 50(9.81)cos15 =474 N
Friction Force: y,R = 0.3x474 = 1421 N

Work done by the weight will be positive and
Work done by the friction force will be negative.
Total work done on the box during the motion:
U=Fs-> U,,=50(9.81)(10sin15) — 142.1(10) =-1519 J R=474N
Using work-energy equation:

_ 1 i 1
L +U, =1, —mv; +U,_, =—mv;

2 2

50(9.81) N

uR=1421N ="

%(50)(4)3 ~1519= %(50)(1}2)2 — v, =3.15m/s

Work done is negative = velocity reduces = Kinetic Energy reduces



Kinetics of Particles: Work and Kinetic Energy

Example: A flatbed truck, which carries an 80kg crate, starts from rest and attains
a speed of 72km/h in a distance of 7om on a level road with constant acceleration.
Calculate the work done by the friction force acting on the crate during this interval
if u;, and y, between the crate and the truck bed are (a) 0.3 and 0.28, and (b) 0.25

and 0.2.

Solution: Draw the FBD of the crate

If the crate does not slip on the flatbed, accin of
the crate will be equal to that of the truck:

80(9.81) N
[v? = 2as] E{:
F—>
vz (72/3.6)%
Q=== 2.67 ml',Sz 80(9.81) N

2s 2(75)



Kinetics of Particles: Work and Kinetic Energy

Example: Solution: Acceleration of the crate = 2.67 m/s?

Case (a): u,=0.3, y, =0.28

The accln of the crate requires a force (friction force)

on the flatbed: F =ma =(80)2.67 =213 N

Maximum possible value of frictional force (limiting friction for impending motion):

Fi., = U N =0.3(80)(9.81) = 235 N which is more than F.

- The crate does not slip and work done by the actual static friction force (213 N):
U=Fs=213(75) = 16000 J = 16 kJ

Case (b): u,=0.25, u, =0.20

The accln of the crate requires a force (friction force) on the flatbed:
F=ma=(80)2.67 =213 N

Maximum possible value of frictional force (limiting friction for impending motion):
Fimn = HJN =0.25(80)(9.81) = 196.2 N which is less than F required for no slipping.
- The crate slips, and the actual friction force is: F = y N =0.2(80)(9.81) = 157 N
- And the actual accln of the crate becomes: a = F/m = 157/80 = 1.962 m/s?

The distances travelled by the crate and the truck are in proportion to their accins.
- Crate has a displacement of: (1.962/2.67)75 = 55.2 m.

- Work done by the kinetic friction: U = Fs = 157(55.2) = 8660 J = 8.66 kJ



Kinetics of Particles: Work and Energy

Potential Energy

- In work energy method, work done by gravity forces, spring forces, and other
externally applied forces was determined by isolating particles.

- Potential Energy approach can be used to specifically treat the work done by
gravity forces and spring forces - Simplify analysis of many problems.

Gravitational Potential Energy
« Motion in close proximity to earth’s surface - g constant

* The gravitational potential energy of a particle V, = T i Vg =mgh
work done (mgh) against the gravitational field to elevate the &
particle a distance h above some arbitrary reference plane, mg
where V is taken as zero - V, = mgh DLV, =0

This work is called potential energy because it may be
converted into energy if the particle is allowed to do work on
supporting body while it returns to its lower original datum.

In going from one level h, to higher level h,, change in potential
energy: AV, = mg(h, —h,) = mgAh

The corresponding work done by the gravitational force on particle is —-mg4h =
work done by the gravitational force is the negative of the change in V.



Kinetics of Particles: Work and Energy

Potential Energy

Elastic Potential Energy

 Work done on linear elastic spring to deform it is stored in the spring and is
called its elastic potential energy V..

« Recoverable energy in the form of work done by the spring on the body
attached to its movable end during release of the deformation of spring.

Elastic potential energy of the spring = work done on it to deform at an amount x:

[Vﬂ = j kx dx = ékxz} k is the spring stiffness
0

If the deformation of the spring increases from x, to x:
Change in potential energy of the spring is final value minus initial value:

AV, = %klrzz — ") Always positive as long as deformation increases
If the deformation of spring decreases during the motion interval - negative Av,

Force exerted on spring by moving body is equal and opposite to the force exerted by the
spring on the body - work done on the spring is the negative of the work done on the spring

-~ Replace work done U by the spring on the body by —V,, negative of the potential energy
change for the spring = the spring will be included in the system



Kinetics of Particles: Work and Energy

Potential Energy: Work-Energy Equation
Total work done is given by: U, , =7, -7, =AT
Modifying this egn to account for the potential energy terms:

Upp + (-AV,) + (-AV,) = AT > Uy, = AT+ AV

U’,, Is work of all external forces other than the gravitational and spring forces
(Gravitational and spring forces are also known as Conservative Forces and all other
external forces that do work are also known as Non-Conservative Forces)

AT is the change in kinetic energy of the particle

AV is the change in total potential energy

« The new work-energy equation is often far more convenient to use because
only the end point positions of the particle and end point lengths of elastic
spring are of significance.

Further, following the natural sequence of events: I, +V;+U,_, =T, +7,

If the only forces acting are gravitational, elastic, and nonworking constraint forces

- U’,_, term will be zero, and the energy equation becomes:
T+V. =T +V. or E —E E = T+V is the total mechanical energy of the particle
oo mene Y772 and its attached spring

= This equation expresses the “Law of Conservation of Dynamical Energy”



Kinetics of Particles: Work and Energy

Conservation of Energy LtV =L +V, or E =E,

« During the motion sum of the particle’s kinetic and potential energies remains
constant. For this to occur, kinetic energy must be transformed into potential
energy, and vice versa.

A ball of weight Wis dropped from a height h above the ground (datum)

« PE of the ball is maximum before it is dropped, at which time its KE is zero.
Total mechanical energy of the ball in its initial position is:
E=T+V, =0+ Wh=Wh N .

« When the ball has fallen a distance h/2, its speed is: ¥~ = vj + 2a.(y — w)

Energy of the ball at mid-height position: v = V2g(h/2) = Vgh.
1w h
E=T+V,=-——(Vgh)+ W() = Wh Potential Encrgy (max)
’ ’ 28 ( s ) 2 ] @ Kinetic Energy (7ero)

« Just before the ball strikes the ground, its PE=0
and its Spé&d S ?.} =V 28!1 Potential Energy and
The total mechanical energy of the ball: h T@ Kinetic Energy

h

E:T3+V3=£E(V2gh)2+0=Wh 2
2 & Datum l @

Potential Energy (zero)
Kinetic Energy (max)




Kinetics of Particles: Work and Energy

Potential Energy

Example: A 3 kg slider is released from rest at
position 1 and slides with negligible friction in
vertical plane along the circular rod. Determine the
velocity of the slider as it passes position 2. The
spring has an unstretched length of 0.6 m.

Solution:

*Reaction of rod on slider is normal to the motion - does no work > U’ , =0
Defining the datum to be at the level of position 1

Kinetic Energy: T, =0 and T, = %2 (3)(v,)?

Gravitational Potential Energies:

V,=0 and V,=-mgh=-3(9.81)(0.6)=-17.66 J

Initial and final elastic potential energies:

V, = Vekx,? =0.5(350)(0.6)? = 63J and V,= 1/sz«'x22=0.5(350)(0.6“\;"'2 - 0.6)°=10.81J

T,+V,+U,_, =T, +V,

>0 + (0+63) + 0 = 72 (3)(v,)?> + (-17.66 + 10.81)
2>V, =6.82m/s



