Chapter 3

Vectors
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Lecture Content

eCoordinate systems

e\ectors and scalar quantities
eProperties of vectors

eComponents of vectors and unit vectors
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Coordinate systems
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Vector and Scalar quantities

*\What to dress? Temperature and unit
*Scalar quantity is specified by a single value with appropriate

unit and has no direction. Examples: mass, volume, distance

*What you need for flying a Kite? Wind and direction.
*Vector guantity is completely specified by a number and

appropriate unit plus direction. Examples: displacement,

velocity .
!
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Vectors
*A (bold) is a vector, .
A is a scalar. ﬁ
*Two vectors are equal if the magnitude and
direction are the same.
«Adding vectors
*Negative of a vector

*VVector subtraction

C=A-B
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For example, if you walked 3.0 m toward the east and then 4.0 m toward the north,
as shown in Figure 3.7, you would find }fourself 5.0 m from where you started, mea-
sured at an angle of 53° north of east. Your total displacement is the vector sum of the

individual displacements.
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\ il > Figure 3.7 Vector addition. Walking first 3.0 m
|3_|_-,| ml due east and then 4.0m due north leaves you
L1 ] 5.0 m from your starting point.




When two vectors are added, the sum is independent
of the order of the addition. (This fact may seem
trivial, but as you will see in Chapter 11, the order is
iImportant when vectors are multiplied). This can be
seen from the geometric construction in Figure 3.9
and is known as the commutative law of addition:

A+B=B+A
A
2
v B
B "
‘%{f
A

Figure 3.9 This construction
shows thatA+ B =B + A—in
other words, that vector addition
IS commutative.



When three or more vectors are added, their sum is independent of the way in
which the individual vectors are grouped together. A geometric proof of this rule
for three vectors is given in Figure 3.10. This is called the associative law of

addition:
A+ B+C)=(A+B) +C (3.8)

In summary, a vector quantity has both magnitude and direction and also
obeys the laws of vector addition as described in Figures 3.6 to 3.10. When two or

Associative Law

Figure 3.10 Geometric constructions for verifying the associative law of addition.

Negative of a Vector

The negative of the vector A is defined as the vector that when added to A gives zero

for the vector sum. That is, A + (—A) = 0. The vectors A and — A have the same mag-
nitude but point in opposite directions.



Subtracting Vectors

The operation of vector subtraction makes use of the definition of the negative of a
vector. We define the operation A — B as vector — B added to vector A:

A-B=A+(—B (3.7)

The geometric construction for subtracting two vectors in this way is illustrated in
Figure 3.11a.

Another way of looking at vector subtraction is to note that the difference A — B
between two vectors A and B is what you have to add to the second vector to obtain the
first. In this case, the vector A — B points from the tip of the second vector to the tip
of the first, as Figure 3.11b shows.

¥Yector >ubiraction
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(a) (b)

Figure 3.11 (a) This construction shows how to subtract vector B from vector A. The
vector — B is equal in magnitude to vector B and points in the opposite direction. To
subtract B from A, apply the rule of vector addition to the combination of A and — B:
Draw A along some convenient axis, place the tail of — B at the tip of A, and C is the
difference A — B. (b) A second way of looking at vector subtraction. The difference
vector C = A — B is the vector that we must add to B to obtain A.



Example 3.2 A Vacation Trip

A car travels 20.0 km due north and then 35.0 km in a di-
rection 60.0° west of north, as shown in Figure 3.12a. Find
the magnitude and direction of the car’s resultant
displacement.
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Figure 3.12 (Example 3.2) (a) Graphical method for
finding the resultant displacement vector R = A + B.
(b) Adding the vectors in reverse order (B + A) gives
the same result for R.
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The second way to solve the problem is to analyze it al-
gebraically. The magnitude of R can be obtained from
the law of cosines as applied to the trniangle (see Appendix
B.4). With # = 180° — 60° = 120° and R?= A? + B? —
2AB cos #, we find that

R= ‘-J[AE + B2 — 2ABcos

— 1/(20.0 km)2 + (35.0 km)2 — 2(20.0 km)(35.0 km) cos 120°

= 48.2 km
sinf3 sin@
B R
inB =2 sing =~ KN 190° = 0.629
sinf3 = R SN0 = o P = 0.

B = 39.0°

The resultant displacement of the car is 48.2 km in a direc-
tion 39.0° west of north.
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Vectors: Rules of addition

« Trigonometric Rule
— Law of Sines

— Law of Cosine

Sine law:

Cosine law:

A _ B _ C

sina sinbh sinc C =VA2 + BE—2ABcosc
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3.4 Components of a Vector and Unit Vectors y

The graphical method of adding vectors is not recommended whenever high accuracy
is required or in three-dimensional problems. In this section, we describe a method of
adding vectors that makes use of the projections of vectors along coordinate axes.

These projections are called the components of the vector. Any vector can be com- x
pletely described by its components.
(a)
From Figure 3.13 and the definition of sine and cosine, we see that cos § = A,/A
and that sin f = A_,./ A. Hence, the components of A are ¥
A, = Acost k8 0 L __-_______
Aj. = Asin @ (3.9) A A,
These components form two sides of a right triangle with a hypotenuse of length A.
Thus, it follows that the magnitude and direction of A are related to its components o - x
through the expressions © A,
A=A+ AP (3.10) (b)
1 Figure 3.13 (a) A vector A lying in
f=tan"! (‘_L) (3.11) !_he ay plane can be represented by
A, its component vectors A, and A,.

(b) The y component vector Ay can
Note that the signs of the components 4, and AJ, depend on the angle 6. For be moved to the right so that it
example, if § = 120°, then A, is negative and A, is positive. If § = 225°, then both A, adds to A,. The vector sum of the
: component vectors is A. These

and A‘. are negative. Figure 3.14 summarizes the signs of the components when A lies : -
- three vectors form a right triangle.

in the various quadrants.



Figure 3.14 summarizes the signs of the components when
A lies in the various quadrants.

y
A, negative | A, positive
A, positive | A, positive

X
A, negative | A, positive
A, negative A, negative

Figure 3.14 The signs of the com-
ponents of a vector A depend on
the quadrant in which the vector is
located.
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Unit Vectors

Vector quantites ofen are expressed in terms of unit vectors. A unit vector 1s a dimen-
sionless vector having a magnifude of Exacﬂy L, Unit vectors are used to specify a
givcn direction and have no other ph}fsical signiﬁcance. They are used smlely 48  Conve-

nience In describing a direction in space. We shall use the symbols ! j, and k to repre-

[al
sent unit vectors pointing in the positive , y, and 2 directions, respectively. (The “hats” on s
the symbols are a standard notation for unit vectors.) The unit vectors 1 j,:m{l k form a P —=
sel ﬂ[ mutually pcrpendlcuhr vectors In & nghthandtd comdlmte svslf:m 5 shmm m E
A1 I
A = *
(b

Active Figure 2.16 (a) The unit
veCbors : j. and k are directed
along the x, y. and z axes, respec-
tively. (b) Vector A = Ax“i + A, j§ b
ing in the xy plane has c-umpu::ﬁcnts
Ay and A
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Consider a vector A lying in the xy plane, as shown in Figure 3.16h. The product
of the component A, and the unit vector. i is the vector A i which lies on the x axis

and has ]'[T'igl'l][lldﬁ (The vector A i 1S an 1]ttrnatma rtpresenhtmn of ‘u’EC’[Dl’
A.) Likewise, A‘.j isav

s an alternative representation of vector AT. }- Thus, the unit-vector notation for the

axis. (Again, vector .{,1. ]

vector A is

A=4d+A4j (3.12)

A
(b)

Active Figure 2.16 (a) The unit
veCbors : j. and k are directed
along the x, y. and z axes, respec-
tively. (b) Vector A = _Ax“i + Ay j by
ing in the xy plane has components
Ay and A

16



For example, consider a point lying in the xy plane and having Cartesian coordinates
(x.y), as in Figure 3.17. The point can be specified by the peosition vector r, which in

unit—vector form is given h}'

r=xi+yj (3.13)

This notation tells us that the components of r are the lengths xand y.

(x,y)

Figure 3.17 The point whose Cartesian coordinates
are (x, y) can be represented by the position vector

r=xi+ '|.j
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We obtain the magnitude of R and the angle it makes with the x axis from its compo-

nents, using the relationships

R=\R2+ R2=V(A, + B)? + (4, + B)? (3.16)
R, A, + B

tanf = —L = 21— (3.17)
R, A, + B,

We can check this addition by components with a geometric construction, as shown
n Figure 3.18. Remember that you must note the signs of the components when using

either the algebraic or the graphical method.

I
IRV
v T
o
v AL
A B>
R,

Figure 3.18 This geometric con-
struction for the sum of two vectors
shows the relationship between the
components of the resultant R and
the components of the individual
veCctors.
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At times, we need to consider situations involving motion in three component direc-
tions. The extension of our methods to three-dimensional vectors is straightforward. If

A and B both have «x, ¥ and z components, we express them in the form

A=ad+aj+ak (3.18)
B-Bi+Bj+Bk (3.19)

The sum of A and B is
R= (A, +B)i+ (4, + B)j+ (A, + Bk (3.20)

Note that Equation 3.20 differs from Equation 3.14: in Equation 3.20, the resultant vec-
tor also has a z component R, = A, + B_. If a vector R has x, y, and z components, the

magnitude of the vectoris R = 'V’Rxﬂ + R\r.E + R The angle 6, that R makes with the

x axis is found from the expression cos #, = R, /R, with similar expressions for the an-

gles with respect to the y and z axes.



Example 3.3 The Sum of Two Vectors

Find the sum of two vectors A and B lying in the xy plane
and given by

A=(20i+20)m and B =(20i — 40j) m

Solution You may wish to draw the vectors to conceptualize
the sitnation. We categorze this as a simple plug-in problem.
Comparing this expression for A with the general expres-
sion A = A;1 + Ay, we see that A, = 2.0 mand Ay = 2.0 m.
Likewise, B, = 2.0 m and B, = — 4.0 m. We obuain the resul-
tant vector R, using Equation 3.14:

R=A+B=(20+20im+ (20— 40)jm
= (4.0i — 2.0§) m

or

The magnitde of R is found using Equation 3.16:

R=VRZ+R2=\4.0m)?+ (-20m)2 =\20m
= 45m

We can find the direction of R from Equation 3.17:

tan @ = R}- . —E.U'ITI
i, 4.0 m

= — (.50

Your calculator likely gives the answer —27° for #=
tan~ '(—0.50). This answer is correct if we interpret it to
mean 27° clockwise from the x axis. Our standard form has
been to quote the angles measured counterclockwise from

the + xaxis, and that angle for this vector is # = 333° .
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Example 3.4 The Resultant Displacement

A p"t]'tlf.?lf_‘ undergoes three cansecutne dlsp]acemems
d, = {131 +30j + 121&) cm, dy = {231 - 14j = 5.0k) cm
and dy= (=131 + 151} cm. Find the components of the
resultant displacement and its magnitude.

Solution Three-dimensional displacements are more diffi-
cult to imagine than those in two dimensions, because the
latter can be drawn on paper. For this problem, let us concef-
tualize that you start with your pencil at the origin of a piece
of graph paper on which you have drawn x and y axes. Move
your pencil 15 cm to the right along the x axis, then 30 cm
upward along the yaxis, and then 12 cm verlically away from
the graph paper. This provides the displacement described
by d;. From this point, move your pencil 23 cm to the right
parallel to the x axis, 14 cm parallel to the graph paper in
the —y direction, and then 5.0 cm vertically downward to-
ward the graph paper. You are now at the displacement
from the origin described by d; + dy. From this point, move
your pencil 13 cm to the left in the — x direction, and (fi-
nallyl) 15 cm parallel to the graph paper along the y axis.

Your final position is at a displacement d; + dy + d; from
the origin.

Despite the difficulty in conceptualizing in three dimen-
sions, we can calegorize this problem as a plug-in problem due
to the careful bookkeeping methods that we have developed
for vectors. The mathematical manipulation keeps track of
this motion along the three perpendicular axes in an orga-
nized, compact way:

R=d +ds+ dy

= (15+923—13)icm + (30 -

: 14 + 15)j cm
+ (12 =50+ 0k cm
= {bei - Slj - 7.l]fi} cm

The resultant displacement has components R, = 25 cm,
R;= 31 cm,and R, = 7.0 cm. Its magnitude is

R=\RZ+R?+R’

=25 em)?+ (31 em)? + (70cm)? = 40 em
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Example 3.5 Taking a Hike

A hiker begins a trip by first walking 25.0 km southeast from
her car. She stops and sets up her tent for the night. On the
second day, she walks 40.0 km in a direction 60.0° north of
east, at which point she discovers a forest ranger’s tower.

(A) Determine the components of the hiker’s displacement
for each day.

Solution We conceptualize the problem by drawing a sketch as
in Figure 3.19. If we denote the displacement vectors on the
first and second days by A and B, respectively, and use the car
as the origin of coordinates, we obtain the vectors shown in
Figure 3.19. Drawing the resultant R, we can now cafegorize this
as a problem we’ve solved before—an addition of two vectors.
This should give you a hint of the power of categorization—
many new problems are very similar to problems that we have
already solved if we are careful to conceptualize them.

B, = Bcos 60.0° = (40.0 km) (0.500) =

B, = Bsin 60.0° = (40.0 km) (0.866) = 34.6 km

20.0 km

We will analyze this problem by using our new knowledge
of vector components. Displacement A has a magnitude of
25.0 km and is directed 45.0° below the positive x axis. From
Equations 3.8 and 3.9, its components are

A, = Acos (—45.0°) = (25.0 km)(0.707) = 17.7 km

Ay = Asin(—-45.0°) = (25.0km) (-0.707) = —17.7km

The negative value of A, indicates that the hiker walks in the
negative y direction on the first day. The signs of A, and A,
also are evident from Figure 3.19. -

The second displacement B has a magnitude of 40.0 km
and is 60.0° north of east. Its components are

ylkm) | | INL LT

: jjwjﬁ,—«jf}:jjjjjjjj

ol L L T ISTT T T T T T T
T I I I I Tower

10 R f

—t 1-0 x(km)

L CArTNUas.0020 f30 40 50 | ||

10— LY A0 ;I N S S S .

| .A. 600°0 | | | | | ||

20— Tent —

ment of the hiker is the vector R = A + B.



(B) Determine the components of the hiker’s resultant dis-
placement R for the trip. Find an expression for R in terms

of unit vectors.

Solution The resultant displacement for the ripR=A + B
has components given by Equation 3.15:

R.=A,+ B,=17.7km + 20.0km = 37.7km

X

R =A

) ¥

+ B =—177km + 346 km = 169 km

¥

In unit-vector form, we can write the total displacement as

R= (37.7i+ 16.9j) km

y(km) N
I N R
TP w1
ol L ST TTTTTTTT]
T T I I Tower
10 R f
r -(1-,3 x(km)
(I s 45.00.20 430 40| 50 | |
—_10 g ]
- A 60-00 --------
20 Tent +— 44—+ L 1

ment of the hiker is the vector R = A + B.
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Unit vectors

*Multiplying vector by a constant.

Projection (components) of vector

*Why projection is important? Accuracy, 3D,

Dr. Feras Fraige
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Unit vectors

*Unit vectors in X, y, z coordinate are i, j, k
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Dot product

sLet a and b be two vectors defined as

a=a i+a,j+az;kandb=Db;i+Db,j+ b;kthen
the dot product is a scalar value defined as
arb=a;b,+a,b,+a;b; Or=||a|| ||b|| cos 6
Example 1: 100 N force acting on a block making an
angle 60 deg with the horizontal. If the particle moves 2
m horizontally under the action of this force, find the

work done by the force? cos 60 = 0.5

Example 2: potential difference
i
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Cross product
eLet a and b be two vectors defined as

a=a;l+a,]J+as;kandb=Db;i+Db,]+ b; kthenthe

cross product is a vector value defined as | J
axb = (abs —ash,) I + (a;b; —agh,) | + (&b, —ab;) k- p, b,
Example 1: 100 N force acting on a wrench (on the horizontal)

making an angle 30 deg as shown. Determine the moment

acting on the nut at position a. sin 60 = 0.5

Example 2: Magnetic force on a moving charged

Particle in a magnetic field

tq
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Line Integral
Integral that is performed along a path between two

points.

"B
AV=— E-ds
JA

q .
E-ds =k, —5 r-ds

Dr. Feras Fraige Physics |




Surface Integral
Integral that is performed on a surface.

'[-D',r.; — ' E-dA

surface

o|f the surface is closed, the it becomes:

. el

Oy = ':ﬂ:' E-dA = i#i- E, dA
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