General Exponential and Logarithmic Functions Math 106
 Lecture 9

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

2015

Def: General Exponential Function:
For any numbers $a>0$ and x, the General Exponential Function with base a is

Def: General Exponential Function:

For any numbers $a>0$ and x, the General Exponential Function with base a is

$$
a^{x}=e^{x \ln a}, \quad x \mapsto a^{x} .
$$

Def: General Exponential Function:

For any numbers $a>0$ and x, the General Exponential Function with base a is

$$
a^{x}=e^{x \ln a}, \quad x \mapsto a^{x} .
$$

when $a=e$, we will obtain that

$$
a^{x}=e^{x \ln a}=e^{x \ln a}=e^{x} .
$$

Remarks

- The function domain for $f(x)=a^{x}$ is \mathbb{R}.

Remarks

- The function domain for $f(x)=a^{x}$ is \mathbb{R}.
- $a>1 \rightarrow \ln a>0$.

Then the function is incresing since x increased.

Remarks

- The function domain for $f(x)=a^{x}$ is \mathbb{R}.
- $a>1 \rightarrow \ln a>0$.

Then the function is incresing since x increased.

- $a<1 \rightarrow \ln a<0$

Then the function id decreasing.

Remarks

- The function domain for $f(x)=a^{x}$ is \mathbb{R}.
- $a>1 \rightarrow \ln a>0$.

Then the function is incresing since x increased.

- $a<1 \rightarrow \ln a<0$

Then the function id decreasing.

- $a=1 \rightarrow f(x)=1$

$$
f(x)=a^{x}
$$

Figure: a^{x}.

Properties of the General Exponential Function:

Thm: for $a, b>0$ and for all x, y

- $a^{(x)} a^{(y)}=a^{(x+y)}$,

Properties of the General Exponential Function:

Thm: for $a, b>0$ and for all x, y

- $a^{(x)} a^{(y)}=a^{(x+y)}$,
- $\frac{a^{(x)}}{a^{(y)}}=a^{(x-y)}$,

Properties of the General Exponential Function:

Thm: for $a, b>0$ and for all x, y

- $a^{(x)} a^{(y)}=a^{(x+y)}$,
- $\frac{a^{(x)}}{a^{(y)}}=a^{(x-y)}$,
- $\left(a^{x}\right)^{y}=a^{x y}$,

Properties of the General Exponential Function:

Thm: for $a, b>0$ and for all x, y

- $a^{(x)} a^{(y)}=a^{(x+y)}$,
- $\frac{a^{(x)}}{a^{(y)}}=a^{(x-y)}$,
- $\left(a^{x}\right)^{y}=a^{x y}$,
- $a^{x} b^{x}=(a b)^{x}$.

Derivative of General Exponential Function :

 Thm:$$
\begin{gathered}
\frac{d}{d x} a^{x}=a^{x} \ln a \\
\frac{d}{d x} a^{f(x)}=a^{f(x)}(\ln a) f^{\prime}(x)
\end{gathered}
$$

Derivative of General Exponential Function :

Thm:

$$
\begin{gathered}
\frac{d}{d x} a^{x}=a^{x} \ln a \\
\frac{d}{d x} a^{f(x)}=a^{f(x)}(\ln a) f^{\prime}(x)
\end{gathered}
$$

Thm:

$$
\frac{d}{d x}\left(x^{p}\right)=p x^{p-1}, \quad \forall x \in \mathbb{R}^{+}, \forall p \in \mathbb{R} .
$$

EX: Find the derivative:
(1) $y=5^{x^{2}+5}$,

EX: Find the derivative:
(1) $y=5^{x^{2}+5}$,
(2) $y=\sin x 3^{\sin x}$.

EX: Find the derivative:
(1) $y=5^{x^{2}+5}$,
(2) $y=\sin x 3^{\sin x}$.

$$
\text { (3) } y=\sqrt{x}^{x} \text {. }
$$

Integration of General Exponential Function:

- $\int a^{x} d x=\frac{1}{\ln a} a^{x}+c$,

Integration of General Exponential Function:

- $\int a^{x} d x=\frac{1}{\ln a} a^{x}+c$,
- $\int a^{f(x)} f^{\prime}(x) d x=\frac{1}{\ln a} a^{f(x)}+c$.

EX: find the integral:

$$
\text { (1) } \int 5^{5 x+15} d x
$$

EX: find the integral:
(1) $\int 5^{5 x+15} d x$,
(2) $\int \frac{9^{\sqrt{x}}}{\sqrt{x}} d x$.

Def: we define the General Logarithmic Function as the inverse of General Exponential Function with base a. We denoted by $\log _{a}$

Def: we define the General Logarithmic Function as the inverse of General Exponential Function with base a. We denoted by $\log _{a}$

$$
\begin{gathered}
\log _{a}:(0, \infty) \mapsto \mathbb{R} \\
x=a^{y} \Leftrightarrow y=\log _{a}(x) .
\end{gathered}
$$

Def: we define the General Logarithmic Function as the inverse of General Exponential Function with base a. We denoted by $\log _{a}$

$$
\begin{gathered}
\log _{a}:(0, \infty) \mapsto \mathbb{R} \\
x=a^{y} \Leftrightarrow y=\log _{a}(x) .
\end{gathered}
$$

Remarks:

- $\ln =\log _{e}$

Remarks:

- $\ln =\log _{e}$
- $\log _{a}(x)=\frac{\ln x}{\ln a}$,

Remarks:

- $\ln =\log _{e}$
- $\log _{a}(x)=\frac{\ln x}{\ln a}$,
- $\log =\log _{10}$

Remarks:

- $\ln =\log _{e}$
- $\log _{a}(x)=\frac{\ln x}{\ln a}$,
- $\log =\log _{10}$
- $\forall x, y \in \mathbb{R}^{+}, r \in \mathbb{R}$:

$$
\begin{gathered}
\log _{a}(x y)=\log _{a}(x)+\log _{a}(y) \\
\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y) \\
\log _{a}\left(x^{r}\right)=r \log _{a} .
\end{gathered}
$$

$$
\log _{a}(x)
$$

Figure: $\log _{a}(x)$.

Derivative of General Logarithmic Function :

 Thm:$$
\begin{aligned}
\frac{d}{d x} \log _{a}(x) & =\frac{1}{\ln a}\left(\frac{1}{x}\right), \\
\frac{d}{d x} \log _{a} f(x) & =\frac{1}{\ln a}\left(\frac{f^{\prime}(x)}{f(x)}\right) .
\end{aligned}
$$

EX: Find the derivative:

$$
\text { (1) } y=\log _{7}\left(x^{3}+2 x^{2}\right),
$$

EX: Find the derivative:

$$
\text { (1) } y=\log _{7}\left(x^{3}+2 x^{2}\right),
$$

$$
(2) y=\log (\sin x)
$$

Integration of General Logarithmic Function:

$$
\int \frac{1}{x \ln x} d x=\log _{a}(x)+c
$$

EX: find the integral:

$$
\text { (1) } \int \frac{d x}{x \log x}
$$

Thanks for listening.

