Gauss-Weingarten Equations Math 473 Introduction to Differential Geometry Lecture 30

Dr. Nasser Bin Turki

King Saud University Department of Mathematics

December 1, 2018

Dr. Nasser Bin Turki Gauss-Weingarten Equations Math 473 Introduction to Different

- **3 b** - **3**

Motivation:

Let $X : U \to \mathbb{R}^3$ be a regular surface patch and let $N : U \to \mathbb{R}^3$ be a unit normal on X. At any point of the surface we have the vectors X_u , X_v , N. The vectors X_u and X_v are linearly independent since the surface X is regular. The vector N is orthogonal to both X_u and X_v , hence is not a linear combination of X_u and X_v . Therefore the vectors X_u , X_v , N are linearly independent and form a basis. The Gauss-Weingarten equations play the same role for the basis (X_u, X_v, N) as the Serret-Frenet equations play for the basis (T, N, B) and the Darboux equations play for the basis (T, U, N), namely the Gauss-Weingarten equations express the derivatives of the vectors X_u , X_v , N as linear combinations of the vectors X_u , X_v , N.

周 ト イ ヨ ト イ ヨ ト 二 ヨ

To be able to compute the coefficients in the Gauss-Weingarten equations, we need to compute the dot-products of the derivatives X_{uu} , X_{uv} , X_{vv} , N_u , N_v with the vectors X_u , X_v , N. To this end we consider the dot-products of the vectors X_u , X_v , N with each other

$$\begin{pmatrix} X_u \bullet X_u & X_u \bullet X_v & X_u \bullet N \\ X_v \bullet X_u & X_v \bullet X_v & X_v \bullet N \\ N \bullet X_u & N \bullet X_v & N \bullet N \end{pmatrix} = \begin{pmatrix} E & F & 0 \\ F & G & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

and differentiate these equations.

Lemma (1):

Differentiating the equation $N \bullet N = 1$ with respect to u resp. v we obtain that

$$N_u \bullet N = N_v \bullet N = 0.$$

Thus the vectors N_u resp. N_v are orthogonal to the normal N (or equal to 0) and are therefore linear combinations of the vectors X_u and X_v .

• • = • • = •

-

Lemma (1):

Differentiating the equation $N \bullet N = 1$ with respect to u resp. v we obtain that

$$N_u \bullet N = N_v \bullet N = 0.$$

Thus the vectors N_u resp. N_v are orthogonal to the normal N (or equal to 0) and are therefore linear combinations of the vectors X_u and X_v .

Lemma (2):

Differentiating the equations $X_u \bullet N = 0$ and $X_v \bullet N = 0$ we obtain that the coefficients of the second fundamental form satisfy the equations

$$e = X_{uu} \bullet N = -X_u \bullet N_u,$$

$$f = X_{uv} \bullet N = -X_u \bullet N_v = -X_v \bullet N_u,$$

$$g = X_{vv} \bullet N = -X_v \bullet N_v.$$

• • = • • = •

Lemma (1):

Differentiating the equation $N \bullet N = 1$ with respect to u resp. v we obtain that

$$N_u \bullet N = N_v \bullet N = 0.$$

Thus the vectors N_u resp. N_v are orthogonal to the normal N (or equal to 0) and are therefore linear combinations of the vectors X_u and X_v .

Lemma (2):

Differentiating the equations $X_u \bullet N = 0$ and $X_v \bullet N = 0$ we obtain that the coefficients of the second fundamental form satisfy the equations

$$e = X_{uu} \bullet N = -X_u \bullet N_u,$$

$$f = X_{uv} \bullet N = -X_u \bullet N_v = -X_v \bullet N_u,$$

$$g = X_{vv} \bullet N = -X_v \bullet N_v.$$

Proof

• • = • • = •

Lemma (3): Differentiating the equations

$$X_u \bullet X_u = E, \quad X_u \bullet X_v = X_v \bullet X_u = F, \quad X_v \bullet X_v = G$$

we obtain:

(a) $X_{uu} \bullet X_u = \frac{1}{2}E_u$, **(a)** $X_{uu} \bullet X_v = F_u - \frac{1}{2}E_v$, **(a)** $X_{uv} \bullet X_u = \frac{1}{2}E_v$, **(a)** $X_{uv} \bullet X_v = \frac{1}{2}G_u$, **(a)** $X_{vv} \bullet X_u = F_v - \frac{1}{2}G_u$, **(a)** $X_{vv} \bullet X_v = \frac{1}{2}G_v$.

< ∃ →

Lemma (3): Differentiating the equations

$$X_u \bullet X_u = E, \quad X_u \bullet X_v = X_v \bullet X_u = F, \quad X_v \bullet X_v = G$$

we obtain:

X_{uu} • X_u = ¹/₂E_u,
X_{uu} • X_v = F_u - ¹/₂E_v,
X_{uv} • X_u = ¹/₂E_v,
X_{uv} • X_v = ¹/₂G_u,
X_{vv} • X_u = F_v - ¹/₂G_u,
X_{vv} • X_v = ¹/₂G_v.

Proof:

< ∃ >

Theorem (1):

The Gauss-Weingarten equations express the partial derivatives X_{uu} , X_{uv} , X_{vv} , N_u , N_v in the basis X_u , X_v , N:

$$\begin{split} X_{uu} &= \Gamma_{11}^{1} \cdot X_{u} + \Gamma_{11}^{2} \cdot X_{v} + e \cdot N, \\ X_{uv} &= \Gamma_{12}^{1} \cdot X_{u} + \Gamma_{12}^{2} \cdot X_{v} + f \cdot N, \\ X_{vv} &= \Gamma_{22}^{1} \cdot X_{u} + \Gamma_{22}^{2} \cdot X_{v} + g \cdot N, \\ N_{u} &= \beta_{1}^{1} \cdot X_{u} + \beta_{1}^{2} \cdot X_{v}, \\ N_{v} &= \beta_{2}^{1} \cdot X_{u} + \beta_{2}^{2} \cdot X_{v}, \end{split}$$

with coefficients β_i^j and Γ_{ij}^k . The coefficients Γ_{ij}^k are called the *Christoffel symbols*.

b 4 3 b 4 3 b

The Christoffel symbols can be computed as follows

$$\begin{pmatrix} \Gamma_{11}^1 & \Gamma_{12}^1 & \Gamma_{22}^1 \\ \Gamma_{21}^2 & \Gamma_{22}^2 & \Gamma_{22}^2 \end{pmatrix} = \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} E_u/2 & E_v/2 & F_v - G_u/2 \\ F_u - E_v/2 & G_u/2 & G_v/2 \end{pmatrix}.$$

The coefficients β_i^j can be computed as follows

$$\left(\begin{array}{cc} \beta_1^1 & \beta_2^1 \\ \beta_1^2 & \beta_2^2 \end{array}\right) = - \left(\begin{array}{cc} E & F \\ F & G \end{array}\right)^{-1} \left(\begin{array}{cc} e & f \\ f & g \end{array}\right).$$

• • = • • = •

э

Example (1): Let $X : U \to \mathbb{R}^3$ be given by X(u, v) = (u, v, 1). Compute the Christoel symbols Γ_{ij}^k of X. Compute the coefficients β_i^j of X. Compute the Gauss-Weingarten equations of the surface X. **Example (2):** Let $X : U \to \mathbb{R}^3$ be given by $X(u, v) = (\cos v, \sin v, u)$. Compute the Christoel symbols Γ_{ij}^k of X. Compute the coefficients β_i^j of X. Compute the Gauss-Weingarten equations of the surface X. **Theorem (2):** (Theorema Egregium) The Gauss curvature is an intrinsic quantity, i.e. it can be expressed in terms of the coefficients E, F, G of the first fundamental form and their derivatives. The explicit formula for the Gauss curvature in terms of E, F, G is:

$$\begin{split} & \mathcal{K} = \frac{1}{(EG - F^2)^2} \\ & \cdot \left(\left| \begin{array}{ccc} -\frac{1}{2}E_{vv} + F_{uv} - \frac{1}{2}G_{uu} & \frac{1}{2}E_u & F_u - \frac{1}{2}E_v \\ F_v - \frac{1}{2}G_u & E & F \\ & \frac{1}{2}G_v & F & G \end{array} \right| - \left| \begin{array}{ccc} 0 & \frac{1}{2}E_v & \frac{1}{2}G_u \\ \frac{1}{2}E_v & E & F \\ & \frac{1}{2}G_u & F & G \end{array} \right| \right). \end{split}$$

• • = • • = •

Theorem (3): (Minding 1830)

The geodesic curvature of a curve on a surface is an intrinsic quantity. The explicit formula for the geodesic curvature of the curve $\gamma(t) = X(u(t), v(t))$ is

$$\kappa_g = \frac{\sqrt{EG - F^2}}{|\gamma'|^3} \cdot \begin{vmatrix} u' & u'' + \Gamma_{11}^1 \cdot u'^2 + 2\Gamma_{12}^1 \cdot u'v' + \Gamma_{22}^1 \cdot v'^2 \\ v' & v'' + \Gamma_{11}^2 \cdot u'^2 + 2\Gamma_{12}^2 \cdot u'v' + \Gamma_{22}^2 \cdot v'^2 \end{vmatrix},$$

where $|\gamma'| = \sqrt{u'^2 \cdot E + 2u'v' \cdot F + v'^2 \cdot G}$.

「ア・・ マー・ ・ マー・ ・ マー・

Exercise (1): Let $X : \mathbb{R}^2 \to \mathbb{R}^3$ be given by $X(u, v) = (\sin u \sin v, \cos u \sin v, \cos u)$. Compute the Christoel symbols Γ_{ij}^k of X. Compute the coefficients β_i^j of X. Compute the Gauss-Weingarten equations of the surface X.

Thanks for listening.

æ