Gauss-Weingarten Equations Math 473
 Introduction to Differential Geometry Lecture 30

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

December 1, 2018

Gauss Curvature

Motivation:

Let $X: U \rightarrow \mathbb{R}^{3}$ be a regular surface patch and let $N: U \rightarrow \mathbb{R}^{3}$ be a unit normal on X. At any point of the surface we have the vectors X_{u}, X_{v}, N. The vectors X_{u} and X_{v} are linearly independent since the surface X is regular. The vector N is orthogonal to both X_{u} and X_{v}, hence is not a linear combination of X_{u} and X_{v}. Therefore the vectors X_{u}, X_{v}, N are linearly independent and form a basis.

The Gauss-Weingarten equations play the same role for the basis $\left(X_{u}, X_{v}, N\right)$ as the Serret-Frenet equations play for the basis (T, N, B) and the Darboux equations play for the basis (T, U, N), namely the Gauss-Weingarten equations express the derivatives of the vectors X_{u}, X_{v}, N as linear combinations of the vectors X_{u}, X_{v}, N.

To be able to compute the coefficients in the Gauss-Weingarten equations, we need to compute the dot-products of the derivatives $X_{u u}, X_{u v}, X_{v v}, N_{u}, N_{v}$ with the vectors X_{u}, X_{v}, N. To this end we consider the dot-products of the vectors X_{u}, X_{v}, N with each other

$$
\left(\begin{array}{ccc}
X_{u} \bullet X_{u} & X_{u} \bullet X_{v} & X_{u} \bullet N \\
X_{v} \bullet X_{u} & X_{v} \bullet X_{v} & X_{v} \bullet N \\
N \bullet X_{u} & N \bullet X_{v} & N \bullet N
\end{array}\right)=\left(\begin{array}{ccc}
E & F & 0 \\
F & G & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and differentiate these equations.

Lemma (1):

Differentiating the equation $N \bullet N=1$ with respect to u resp. v we obtain that

$$
N_{u} \bullet N=N_{v} \bullet N=0 .
$$

Thus the vectors N_{u} resp. N_{v} are orthogonal to the normal N (or equal to 0) and are therefore linear combinations of the vectors X_{u} and X_{v}.

Lemma (1):

Differentiating the equation $N \bullet N=1$ with respect to u resp. v we obtain that

$$
N_{u} \bullet N=N_{v} \bullet N=0 .
$$

Thus the vectors N_{u} resp. N_{v} are orthogonal to the normal N (or equal to 0) and are therefore linear combinations of the vectors X_{u} and X_{v}.

Lemma (2):

Differentiating the equations $X_{u} \bullet N=0$ and $X_{v} \bullet N=0$ we obtain that the coefficients of the second fundamental form satisfy the equations

$$
\begin{aligned}
& e=X_{u u} \bullet N=-X_{u} \bullet N_{u}, \\
& f=X_{u v} \bullet N=-X_{u} \bullet N_{v}=-X_{v} \bullet N_{u}, \\
& g=X_{v v} \bullet N=-X_{v} \bullet N_{v} .
\end{aligned}
$$

Lemma (1):

Differentiating the equation $N \bullet N=1$ with respect to u resp. v we obtain that

$$
N_{u} \bullet N=N_{v} \bullet N=0 .
$$

Thus the vectors N_{u} resp. N_{v} are orthogonal to the normal N (or equal to 0) and are therefore linear combinations of the vectors X_{u} and X_{v}.

Lemma (2):

Differentiating the equations $X_{u} \bullet N=0$ and $X_{v} \bullet N=0$ we obtain that the coefficients of the second fundamental form satisfy the equations

$$
\begin{aligned}
& e=X_{u u} \bullet N=-X_{u} \bullet N_{u}, \\
& f=X_{u v} \bullet N=-X_{u} \bullet N_{v}=-X_{v} \bullet N_{u}, \\
& g=X_{v v} \bullet N=-X_{v} \bullet N_{v} .
\end{aligned}
$$

Proof

Lemma (3):

Differentiating the equations

$$
X_{u} \bullet X_{u}=E, \quad X_{u} \bullet X_{v}=X_{v} \bullet X_{u}=F, \quad X_{v} \bullet X_{v}=G
$$

we obtain:
(1) $X_{u u} \bullet X_{u}=\frac{1}{2} E_{u}$,
(2) $X_{u u} \bullet X_{v}=F_{u}-\frac{1}{2} E_{v}$,
(1) $X_{u v} \bullet X_{u}=\frac{1}{2} E_{v}$,
(1) $X_{u v} \bullet X_{v}=\frac{1}{2} G_{u}$,
(J) $X_{v v} \bullet X_{u}=F_{v}-\frac{1}{2} G_{u}$,
(อ) $X_{v v} \bullet X_{v}=\frac{1}{2} G_{v}$.

Lemma (3):

Differentiating the equations

$$
X_{u} \bullet X_{u}=E, \quad X_{u} \bullet X_{v}=X_{v} \bullet X_{u}=F, \quad X_{v} \bullet X_{v}=G
$$

we obtain:
(1) $X_{u u} \bullet X_{u}=\frac{1}{2} E_{u}$,
(2) $X_{u u} \bullet X_{v}=F_{u}-\frac{1}{2} E_{v}$,
(1) $X_{u v} \bullet X_{u}=\frac{1}{2} E_{v}$,
(1) $X_{u v} \bullet X_{v}=\frac{1}{2} G_{u}$,
(1) $X_{v v} \bullet X_{u}=F_{v}-\frac{1}{2} G_{u}$,
(อ) $X_{v v} \bullet X_{v}=\frac{1}{2} G_{v}$.
Proof:

Theorem (1):

The Gauss-Weingarten equations express the partial derivatives $X_{u u}, X_{u v}, X_{v v}, N_{u}, N_{v}$ in the basis $X_{u}, X_{v}, N:$

$$
\begin{aligned}
X_{u u} & =\Gamma_{11}^{1} \cdot X_{u}+\Gamma_{11}^{2} \cdot X_{v}+e \cdot N, \\
X_{u v} & =\Gamma_{12}^{1} \cdot X_{u}+\Gamma_{12}^{2} \cdot X_{v}+f \cdot N, \\
X_{v v} & =\Gamma_{22}^{1} \cdot X_{u}+\Gamma_{22}^{2} \cdot X_{v}+g \cdot N, \\
N_{u} & =\beta_{1}^{1} \cdot X_{u}+\beta_{1}^{2} \cdot X_{v}, \\
N_{v} & =\beta_{2}^{1} \cdot X_{u}+\beta_{2}^{2} \cdot X_{v},
\end{aligned}
$$

with coefficients β_{i}^{j} and $\Gamma_{i j}^{k}$. The coefficients $\Gamma_{i j}^{k}$ are called the Christoffel symbols.

The Christoffel symbols can be computed as follows

$$
\left(\begin{array}{ccc}
\Gamma_{11}^{1} & \Gamma_{12}^{1} & \Gamma_{22}^{1} \\
\Gamma_{11}^{2} & \Gamma_{12}^{2} & \Gamma_{22}^{2}
\end{array}\right)=\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{ccc}
E_{u} / 2 & E_{v} / 2 & F_{v}-G_{u} / 2 \\
F_{u}-E_{v} / 2 & G_{u} / 2 & G_{v} / 2
\end{array}\right) .
$$

The coefficients β_{i}^{j} can be computed as follows

$$
\left(\begin{array}{ll}
\beta_{1}^{1} & \beta_{2}^{1} \\
\beta_{1}^{2} & \beta_{2}^{2}
\end{array}\right)=-\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{ll}
e & f \\
f & g
\end{array}\right) .
$$

Applications of the Gauss-Weingarten Equations

Example (1):

Let $X: U \rightarrow \mathbb{R}^{3}$ be given by $X(u, v)=(u, v, 1)$. Compute the Christoel symbols $\Gamma_{i j}^{k}$ of X. Compute the coefficients β_{i}^{j} of X. Compute the Gauss-Weingarten equations of the surface X.

Examples

Example (2):

Let $X: U \rightarrow \mathbb{R}^{3}$ be given by $X(u, v)=(\cos v, \sin v, u)$. Compute the Christoel symbols $\Gamma_{i j}^{k}$ of X. Compute the coefficients β_{i}^{j} of X. Compute the Gauss-Weingarten equations of the surface X.

Theorema Egregium

Theorem (2): (Theorema Egregium)
The Gauss curvature is an intrinsic quantity, i.e. it can be expressed in terms of the coefficients E, F, G of the first fundamental form and their derivatives. The explicit formula for the Gauss curvature in terms of E, F, G is:

$$
\begin{aligned}
K & =\frac{1}{\left(E G-F^{2}\right)^{2}} \\
& \cdot\left(\left|\begin{array}{ccc}
-\frac{1}{2} E_{v v}+F_{u v}-\frac{1}{2} G_{u u} & \frac{1}{2} E_{u} & F_{u}-\frac{1}{2} E_{v} \\
F_{v}-\frac{1}{2} G_{u} & E & F \\
\frac{1}{2} G_{v} & F & G
\end{array}\right|-\left|\begin{array}{ccc}
0 & \frac{1}{2} E_{v} & \frac{1}{2} G_{u} \\
\frac{1}{2} E_{v} & E & F \\
\frac{1}{2} G_{u} & F & G
\end{array}\right|\right) .
\end{aligned}
$$

Minding 1830

Theorem (3): (Minding 1830)
The geodesic curvature of a curve on a surface is an intrinsic quantity. The explicit formula for the geodesic curvature of the curve $\gamma(t)=X(u(t), v(t))$ is

$$
\kappa_{g}=\frac{\sqrt{E G-F^{2}}}{\left|\gamma^{\prime}\right|^{3}} \cdot\left|\begin{array}{cc}
u^{\prime} & u^{\prime \prime}+\Gamma_{11}^{1} \cdot u^{\prime 2}+2 \Gamma_{12}^{1} \cdot u^{\prime} v^{\prime}+\Gamma_{22}^{1} \cdot v^{\prime 2} \\
v^{\prime} & v^{\prime \prime}+\Gamma_{11}^{2} \cdot u^{\prime 2}+2 \Gamma_{12}^{2} \cdot u^{\prime} v^{\prime}+\Gamma_{22}^{2} \cdot v^{\prime 2}
\end{array}\right|,
$$

where $\left|\gamma^{\prime}\right|=\sqrt{u^{\prime 2} \cdot E+2 u^{\prime} v^{\prime} \cdot F+v^{\prime 2} \cdot G}$.

Exercise

Exercise (1):
Let $X: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by
$X(u, v)=(\sin u \sin v, \cos u \sin v, \cos u)$. Compute the Christoel symbols $\Gamma_{i j}^{k}$ of X. Compute the coefficients β_{i}^{j} of X. Compute the Gauss-Weingarten equations of the surface X.

Thanks for listening.

