I. Introduction

- Immunity = ability to recognize and protect against nonself
- Many eukaryotic parasites cause chronic infections
- Cannot be cleared by host immune system; evade immune responses
- Damage associated with parasitic infection often results largely or partly from host's immune response to chronic exposure to parasite antigens
- Resistance may be incomplete:
 - Premunition: presence of parasite induces immune response the conveys resistance to further infection; parasite remains alive but its reproduction and other activities are restrained.
 - Concomitant Immunity: presence of parasite induces immune response that conveys resistance to further infection; parasite eliciting response is unaffected

II. Types of Immunity

A. Acquired immunity

- -- specific to particular non-self material
- -- requires prior exposure to invader
- -- requires time for development during 1st exposure
- -- occurs more rapidly and vigorously on 2nd exposure

II. Types of Immunity

- A. Acquired immunity
 - 1. Humoral immune response: involves B-cells & T-cells, and antibodies
 - 2. Cell mediated immune response: involves T-cells, no antibodies

II. Types of Immunity

- **B.** Innate immunity:
 - -- not specific for one particular pathogen
 - -- does not require prior exposure
 - -- occurs rapidly and vigorously with each exposure
 - -- dramatically influenced and strengthened as a consequence of acquired immune responses.

- A. Phagocytes
 - 1. function
 - -- can recognize nonself: (recognize microbial molecules)
 - -- carry out phagocytosis

III. Cells of Immune System

- A. Phagocytes
 - 1. function
 - -- produce lysosomes that release:
 - digestive enzymes
 - enzymes that catalyze production of cytotoxic compounds:
 - -- reactive oxygen intermediates (ROIs) H₂O₂, O· and OH· radicals
 - -- reactive nitrogen intermediates (RNIs) nitric oxide (NO), nitrite, nitrate

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Phagocytosis of food particles Golgi complex Food vacuole Lysosome Endosome Digestive Exocytosis

III. Cells of Immune System

A. Phagocytes

- 2. categories of phagocytes
 - a. Mononuclear phagocyte system ("fixed" phagocytes)
 - -- develop from monocytes that arise from stem cells in bone marrow
 - -- can produce cytokines (hormones that affect other cells of immune system)
 - -- leave bloodstream and become stationed in different regions throughout body (not circulating)
 - -- in lymph nodes, spleen, lung = macrophages
 - -- in liver = Kupffer cell
 - in CNS = microglial cells
 - b. Polymorphonuclear leukocytes
 - -- circulating phagocytes in blood; also called granulocytes
 - -- neutrophils: most abundant; first line of defense
 - -- eosinophils:
 - -- basophils:

- A. Phagocytes
- **B.** Lymphocytes
 - 1. B cells
 - -- mature in bone marrow
 - -- produce antibodies; have antibody receptors on cell surface
 - -- can recognize nonself
 - a. Plasma cells: produce large amounts of specific antibody, then die
 - b. Memory B cells: long lived; produce specific antibody rapidly upon 2nd exposure

- A. Phagocytes
- **B.** Lymphocytes
 - 1. B cells
 - 2. T cells
 - -- mature in thymus gland
 - -- have T-cell receptors; can recognize nonself
 - -- produce cytokines (as can macrophages); activate transcription factors in target cells
 - Interleukins: activate macrophages and lymphocytes
 - Tumor necrosis factor (TNF): mediates inflammation; fever
 - Interferon y (INF-y): activates endothelial cells to allow lymphocytes and phagocytes to pass through wall of vessel; activates macrophages

- A. Phagocytes
- **B.** Lymphocytes
 - 1. B cells
 - 2. T cells
 - a. T-helper cells (T_H)
 - -- have coreceptor protein CD4 and CD28; costimulatory molecules
 - -- T₁1 active in cell-mediated immunity
 - -- T_H2 active in humoral immunity
 - b. Cytotoxic T lymphocytes
 - -- have coreceptor protein CD8
 - bind with target cell and secrete protein that causes pores in membrane
 → lysis
 - c. T- supressor cells
 - -- inhibit other T- and B-cells and suppress immune responses
 - d. T-memory cells
 - -- long lived; activated during 2nd exposure

III. Cells of Immune System

- A. Phagocytes
- **B.** Lymphocytes
- C. Mast cells
 - -- basophil-like cells; not phagocytic
 - -- when activated release histamines, serotonin, etc.
 - -- involved in inflammation response and allergies

D. Natural Killer (NK) cells

- -- lymphocyte-like cells
- -- kill infected cells (lysis)
- -- some respond to antibodies; involved in humoral response
- -- some respond to cytokines = lymphocyte activated killer (LAK) cells; involved in cell mediated immune response

Mast cell

IV. Complement

-- series of proteins activated in a sequence in response to invading pathogen

A. Classical pathway

- -- depends upon antibodies bound to surface of pathogen (complement proteins interact with bound Ab)
- -- causes lysis and stimulates phagocytosis

B. Alternative pathway

- -- not antibody dependent (complement proteins interact with polysaccharides in outer surface of pathogen)
- -- causes lysis and stimulates phagocytosis

Note: host's own cells are not lysed because regulatory proteins inactivate the first component of complement when it binds to host cells.

V. Basis of Self/Non-self Recognition

- A. Major histocompatibility complex (MHC)
 - -- group of genes that code for proteins embedded in cell surfaces
 - -- MHC proteins among most variable known; each individual is unique
- **B.** Types of MHC proteins
 - 1. Class I: found on surface of virtually all cells
 - 2. Class II: found primarily on macrophages and lymphocytes

VI. Recognition Molecules

A. Antibodies = immunoglobulins

- -- each individual produces an enormous variety of antibodies
- -- each antibody binds with only one specific type of antigen
- -- occur on surface of B cells or secreted into blood by plasma cells
- -- 10¹¹ types of antibody receptors; results from two Recombination Activating Genes, RAG 1 & 2, that rearrange gene segments during development

1. Structure

- a. 2 heavy chains,2 light chains
- b. Variable region (Fab)
 - -- highly variable
 - -- forms antigenbinding site
 - -- determines which antigen can bind

VI. Recognition Molecules

- A. Antibodies = immunoglobulins
 - 1. Structure
 - c. Constant region

(Fc)

- -- determines class of Ab
 - IgM
 - IgG
 - IgA
 - lgE
- -- class determines what happens once Ab binds with antigen

VI. Recognition Molecules

A. Antibodies = immunoglobulins

- 2. Function
 - -- Fab regions bind with one particular antigen; label invader for elimination
 - -- method of elimination depends on projecting Fc region
 - Recognized by macrophage

 phagocytosis =

 psonization (lgG)
 - Activates classical pathway of complement → lysis
 - Antibody-dependent, cell-mediated cytotoxicity (ADCC)
 - -- neutrophils, eosinophils, natural killer cells have receptors for Fc regions of bound Ab
 - -- phagocytize and/or adhere to pathogen and release cytotoxic compounds

Fig. 15.8. Phagocytosis of a bacterium coated with immunoglobulin lgG molecules (modified and redrawn from Becker and Deamer 1933).

VI. Recognition Molecules

B. T-cell receptors

-- each individual produces an enormous variety of T-cell receptors

1. structure

- -- each receptor has variable region and constant region
- -- variable region binds with only one specific type of antigen
- -- occur on surface of T cells (constant region is transmembrane)

-- have associated coreceptors (also transmembrane) & costimulatory

molecules

VI. Recognition Molecules

B. T-cell receptors

2. function

- -- T-cell receptor binds to antigen (epitope); coreceptor binds with MHC class II
- -- transmit signals into T cell; cytokines produced

- A. Humoral immune response
 - 1. B cell with appropriate Ab on surface binds with antigen
 - -- internalizes Ab-antigen complex
 - -- moves portion of antigen (epitope) to cleft in MHCII protein on its own surface (= antigen presenting cell or APC)
 - -- is now a sensitized B cell

- A. Humoral immune response
- 1. Simultaneously, a macrophage engulfs antigen and presents epitope in cleft of MHC-II protein
 - -- recognized by TH cell with T-cell receptor for specific antigen
 - -- secretes LI-1; contributes to activation of T_H2 cells

- A. Humoral immune response
 - 2. activated TH2 with receptor for the specific epitope recognizes epitope bound to MHCII on sensitized B cell
 - -- T-cell receptor binds with epitope-MHCII complex; CD4 coreceptor binds with MHCII

- A. Humoral immune response
 - 2. activated TH2 with receptor for the specific epitope recognizes epitope bound to MHCII
 - -- T-cell receptor binds with epitope-MHCII complex; CD4 coreceptor binds with MHCII

- A. Humoral immune response
 - 2. activated TH2 with receptor for the specific epitope recognizes epitope bound to MHCII on B cell
 - -- T-cell receptor binds with epitope-MHCII complex; CD4 coreceptor binds with MHCII
 - -- TH2 secretes IL-4, IL-5, IL-6, IL-10
 - 3. Interleukins activate B cells with same epitope and MHCII protein on surface (B cell moves from recognition phase to proliferation phase)

- A. Humoral immune response
 - 4. activated B cell multiplies rapidly producing many plasma cells & memory B cells
 - 5. Plasma cells secrete large quantities of antibody specific for the particular antigen
 - 6. antibodies bind to antigen; trigger opsonization, classical complement, ADCC
 - 7. memory B cells give rapid, vigorous Ab response to subsequent exposure to antigen

- **B.** Cell-mediated immune response
- 1. Epitope presented by APC (macrophage; infected cell)
- 2. Secrete IL-1, activate TH1; recognize epitope-MHCII complex
- 3. Activated TH1 secretes IL-2, TNF, INF-y
- 4. IL-2:
 - -- promotes activity of activated B and T cells
 - -- activates NK cells → lymphocyte-activated killer cells (LAK)
 - -- also activates cytotoxic T cells (CD8+ cells)
- 5. INF-y: -- activates macrophages
 - -- promotes B-cell proliferation
 - -- affects endothelial cells so lymphocytes can pass through into surrounding tissue (TNF also does this)
 - -- causes inflammation
- 6. Activated macrophages secrete ROIs, RNIs; secrete TNF → activates polymorphonuclear leukocytes (inflammation); cytokines
- 7. Memory T cells

VII. Acquired Immune Response

- C. Inflammation:
- -- mobilization of body's defenses against invader or tissue damage, and for repair

1. Delayed type hypersensitivity (DTH)

- -- type of cell mediated immunity; depends on activated macrophages
- -- requires at least 24 hrs from antigen introduction to response
- -- TH1 recognize specific antigen, secrete IL-2, TNF, INF-y
- -- TNF and INF-y activate endothelial cells; macromolecules & leucocytes move into surrounding tissue
- -- fibrinogen → fibrin; area becomes swollen & firm
- -- activated macrophages phagocytize antigen, secrete cytokines, promote healing
- -- if antigen cannot be removed → deposition of fibrous tissue = fibrosis; nodules of inflammatory tissue (granulomas) accumulate

VII. Acquired Immune Response

C. Inflammation

2. immediate hypersensitivity

- -- involves mast cells with receptors for Fc region of IgE antibodies
- -- when antigen binds to bound IgE antibody, causes mast cell to release histamine, etc.
- -- histamine causes dilation of local blood vessels & increased permeability
- -- blood plasma escapes causing swelling; redness
- -- neutrophils move out and attack first; then macrophages; pus forms
- -- if systemic = anaphylaxis
- -- basis of allergic reactions and asthma: ex. Bee sting
 - -- first exposure to venom causes overproduction of IgE
 - -- second exposure causes massive mast cell response; anaphylaxis

An Allergic Reaction — Overview

VIII. Innate Immune Response:

- -- non-acquired; not dependent upon prior exposure
- -- interacts with and strengthened by acquired immune responses

A. Physical barriers

- 1. skin (may be cornified or sclerotized)
- 2. mucus layers

B. Chemical and cellular barriers antimicrobial substances

- -- low pH of stomach and vagina
- -- digestive enzymes
- -- breast milk: IgA, IgG, lysosyme
- -- mucus with IgA and Iysozyme (attacks cell walls of bacteria)
- -- interferons: inflammation
- -- TNF: inflammation, fever
- -- complement: esp. alternative pathway
- -- defensins: each type effective against a different category of michobes

IX. Pathogenesis of Parasite Infections

- A. Physical trauma: destruction of cells and tissues
- B. Nutrition robbing: often associated with gut parasites
- C. Toxin production: IgG and IgM can bind and neutralize
- D. Host immune response and inflammation: (immunopathology)

- X. Parasite evasion of host immune responses
 - A. intracellular; occupy gut lumen; secrete protective cysts
 - B. Infect cells of immune system
 - C. Circumvent (to manage to get around) antibodies
 - Shift surface antigens
 - Shed surface antigens
 - Adsorb host antigens
 - Inhibit binding of Fc region
 - Cleave off Fc region of bound antibodies
 - Migrate around body of host
 - D. Circumvent cytokines
 - Inhibit IL-1, IL2
 - cause nonspecific proliferation of B cells (polyclonal B cell activation) and exhaustion of immune system
 - Produce antioxidants