Bertrand Curves
 Math 473
 Introduction to Differential Geometry Lecture 14

Dr. Nasser Bin Turki
King Saud University
Department of Mathematics

October 14, 2018

Bertrand Curves

Definition (1): Let $\alpha: I \mapsto \mathbb{R}^{3}$ be unit speed curve. Let the curvature $\kappa(t)>0$ and the torsion $\tau(t) \neq 0$ for all $t \in I$.

Bertrand Curves

Definition (1): Let $\alpha: I \mapsto \mathbb{R}^{3}$ be unit speed curve. Let the curvature $\kappa(t)>0$ and the torsion $\tau(t) \neq 0$ for all $t \in I$. The Curve α is called a Bertrand Curve if there exists a curve $\beta: I \mapsto \mathbb{R}^{3}$ such that the principle normal lines of α and β at $t \in I$ are equal

$$
N_{\alpha}(t)= \pm N_{\beta}(t)
$$

Bertrand Curves

Definition (1): Let $\alpha: I \mapsto \mathbb{R}^{3}$ be unit speed curve. Let the curvature $\kappa(t)>0$ and the torsion $\tau(t) \neq 0$ for all $t \in I$. The Curve α is called a Bertrand Curve if there exists a curve $\beta: I \mapsto \mathbb{R}^{3}$ such that the principle normal lines of α and β at $t \in I$ are equal

$$
N_{\alpha}(t)= \pm N_{\beta}(t) .
$$

In this case β is called a Bertrand mate of α.

Example

Let $\alpha(t)=\frac{1}{2}\left(\cos ^{-1} t-t \sqrt{1-t^{2}}, 1-t^{2}, 0\right)$ be unit speed curve

Example

Let $\alpha(t)=\frac{1}{2}\left(\cos ^{-1} t-t \sqrt{1-t^{2}}, 1-t^{2}, 0\right)$ be unit speed curve

and $\beta(t)=\frac{1}{2}\left(\cos ^{-1} t-t \sqrt{1-t^{2}}, 1-t^{2}+\sqrt{1-t^{2}}, 0\right)$.

The curve α and β are Bertrand curves and we say that β is a Bertrand mate of α.

Theorem(1):

Let $\alpha: / \mapsto \mathbb{R}^{3}$ be a Bertrand curve and $\beta: / \mapsto \mathbb{R}^{3}$ be the Bertrand mate of α. Then, the distance between corresponding points of $\alpha(t)$ and $\beta(t)$ is constant.

Theorem(1):

Let $\alpha: / \mapsto \mathbb{R}^{3}$ be a Bertrand curve and $\beta: / \mapsto \mathbb{R}^{3}$ be the Bertrand mate of α. Then, the distance between corresponding points of $\alpha(t)$ and $\beta(t)$ is constant.
(Hint: if $\alpha(t)$ is unit speed parametrisation curve, then there is a function $\lambda(t)$ such that $\alpha(t)+\lambda(t) N_{\alpha}(t)=\beta(t)$ gives the other curve.)

Proof:

Theorem(2):
Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a Bertrand curve and $\beta: I \mapsto \mathbb{R}^{3}$ be the Bertrand mate of α. Then

Theorem(2):

Let $\alpha: I \mapsto \mathbb{R}^{3}$ be a Bertrand curve and $\beta: I \mapsto \mathbb{R}^{3}$ be the Bertrand mate of α. Then
(1) $T_{\alpha}(t) \bullet T_{\beta}(t)=c_{1}$
(1) $B_{\alpha}(t) \bullet T_{\beta}(t)=c_{2}$,
where c_{1}, c_{2} are constant.

Proof:

Thanks for listening.

