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Bertrand Curves

Definition (1): Let α ∶ I ↦ R3 be unit speed curve. Let the
curvature κ(t) > 0 and the torsion τ(t) ≠ 0 for all t ∈ I .

The Curve
α is called a Bertrand Curve if there exists a curve β ∶ I ↦ R3

such that the principle normal lines of α and β at t ∈ I are equal

Nα(t) = ±Nβ(t).

In this case β is called a Bertrand mate of α.
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Example

Let α(t) = 1
2(cos

−1 t − t
√

1 − t2,1 − t2,0) be unit speed curve

and β(t) = 1
2(cos

−1 t − t
√

1 − t2,1 − t2
+

√

1 − t2,0).
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The curve α and β are Bertrand curves and we say that β is a
Bertrand mate of α.
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Theorem(1):
Let α ∶ I ↦ R3 be a Bertrand curve and β ∶ I ↦ R3 be the Bertrand
mate of α. Then, the distance between corresponding points of
α(t) and β(t) is constant.

(Hint: if α(t) is unit speed parametrisation curve, then there is a
function λ(t) such that α(t) + λ(t)Nα(t) = β(t) gives the other
curve.)
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Proof:
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Theorem(2):
Let α ∶ I ↦ R3 be a Bertrand curve and β ∶ I ↦ R3 be the Bertrand
mate of α. Then

(i) Tα(t) ●Tβ(t) = c1

(ii) Bα(t) ●Tβ(t) = c2,

where c1, c2 are constant.
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Proof:
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Thanks for listening .
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