# Applications of the Serret-Frenet Equations Math 473 <br> Introduction to Differential Geometry Lecture 10 

Dr. Nasser Bin Turki<br>King Saud University<br>Department of Mathematics

September 25, 2018

We can use Serret-Frenet equations to prove the useful formulas for curvature and torsion.

Theorem (1):
For a regular parametrised space curve $\alpha: / \mapsto \mathbb{R}^{3}$ the curvature $\kappa$ and the torsion $\tau$ can be computed as

$$
\kappa=\frac{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|}{\left|\alpha^{\prime}\right|^{3}}, \quad \tau=\frac{\left[\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right]}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|^{2}}
$$

where $\left[\alpha^{\prime} \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right]$ is the triple scalar product given by $\left[\alpha^{\prime}, \alpha^{\prime \prime}, \alpha^{\prime \prime \prime}\right]=\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \bullet \alpha^{\prime \prime \prime}$.

## Proof:

Theorem (2):
The Serret-Frenet basis can also be computed as

$$
T=\frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}, \quad B=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|}, \quad N=B \times T .
$$

Theorem (2):
The Serret-Frenet basis can also be computed as

$$
T=\frac{\alpha^{\prime}}{\left|\alpha^{\prime}\right|}, \quad B=\frac{\alpha^{\prime} \times \alpha^{\prime \prime}}{\left|\alpha^{\prime} \times \alpha^{\prime \prime}\right|}, \quad N=B \times T .
$$

Proof:

## Examples

## Example(1):

Let $\alpha: \mathbb{R} \mapsto \mathbb{R}^{3}$ be given by $\alpha(t)=(2 t+\sin t, \cos t, t)$. Compute the velocity and the speed of $\alpha$. Show that $\alpha$ is a regular space curve. Compute the unit tangent $T$, the binormal $B$, the principal normal $N$, the curvature $\kappa$ and the torsion $\tau$ of $\alpha$. You need not attempt to simplify the expressions obtained.


## Thanks for listening.

