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The useful formulas for curvature and torsion

We can use Serret-Frenet equations to prove the useful formulas
for curvature and torsion.

Theorem (1):
For a regular parametrised space curve α ∶ I ↦ R3 the curvature κ
and the torsion τ can be computed as

κ = ∣α′ × α′′∣
∣α′∣3 , τ = [α′, α′′, α′′′]

∣α′ × α′′∣2 ,

where [α′α′′, α′′′] is the triple scalar product given by
[α′, α′′, α′′′] = (α′ × α′′) ● α′′′.
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Proof:
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Theorem (2):
The Serret-Frenet basis can also be computed as

T = α′

∣α′∣ , B = α′ × α′′
∣α′ × α′′∣ , N = B ×T .

Proof:
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Examples

Example(1):
Let α ∶ R↦ R3 be given by α(t) = (2t + sin t, cos t, t). Compute
the velocity and the speed of α. Show that α is a regular space
curve. Compute the unit tangent T , the binormal B, the principal
normal N, the curvature κ and the torsion τ of α. You need not
attempt to simplify the expressions obtained.
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Thanks for listening .
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