Biochemical Calculations

312 BCH
Prepared by: Nora Aljebrin
Office: Building 5, 3 ${ }^{\text {rd }}$ floor, 304

Reference:

Biochemical calculations by Irwin H. Sege

Online copy: http://site.iugaza.edu.ps/bzabut/wpcontent/uploads/biochemical\ calculation.pdf

Midterm dates

- $1^{\text {st }}$ Midterm:
- $5^{\text {th }}$ week, 4 / 2 / 2019
- Time $12-1 \mathrm{pm}$.
- $2^{\text {nd }}$ Midterm:
- $10^{\text {th }}$ week, 11 / 3 /2019
- Time 12.1 pm .

Marks distribution

- Midterm 1: 15 marks (15\%)
- Midterm 2: 20 marks (20\%)
- Lab: 25 marks (25\%)
- Final exam: 40 marks (40\%)

Glassware

Bottles

Wide neck, amber, bottles; can be used for a wide range of light sensitive liquid or solid storage.

Reagent bottles

Narrow neck bottles; can be used for a wide range of liquid storage, media preparation and sampling applications.

Glassware continued

Media-lab bottles

Wash bottles

Glassware continued

Beakers

Conical shape beakers; ideally used for titrations and mixing application, these conical shape beakers are a cross between a standard beaker and conical flask.

Griffin beaker; is great for general laboratory use.

Glassware continued

Flasks

Volumetric flasks; are precision measuring instruments.

Boiling flasks

Erlenmeyer Conical flasks

Glassware continued

Volumetric ware

Burette

Burette clamp

Cylinder

Mixing cylinder

Glassware continued

Test tubes

Test tubes

Test tubes with ground socket joint.

Culture Tubes
Centrifuge Tubes

Glassware continued

Pipettes

One mark pipette

Type 1
Graduated pipettes
Type 2

Pasteur Pipettes

Two mark pipette with safety bulb at top.

Glassware continued

Funnels

Filter funnels

Dropping \& Separating Funnels

Buchner Funnels

Lab equipment

Petri dishes

Balance

Evaporating dishes Ring Stand

Vial Racks

Test Tube Clamp

pH meter

Test Tube Rack

Lab equipment continued

Solution Composition

- A solute is the substance being dissolved.
- A solvent is the liquid in which the solute is dissolved.
- A solute is dissolved in a solvent.
- An aqueous solution has water as solvent.

Aqueous Solution

- The majority of reactions occur in solutions.
- There are several ways to express the concentration of a substance in a solution based on:
- The volume
- The weight
- Degree of saturation

Concentrations Based

 on Volume
Concentration based on volume

- Here the concentrations are based on the amount of dissolved solute per unit volume
- The calculations depending on volume include:
- Molarity (M)
- Normality (N)
- Activity (a)
- Weight/Volume percent (w/v \%)
- Volume/volume percent (v/v\%)
- Milligram percent (mg \%)
- Osmolarity (osm)

Avogadro's Number

- It is the number of molecules per mole of substance
- OR it is the number of atoms per gram-atom of substance
- $\underline{\text { OR }}$ it is the number of ions per g-ion of substance
- Avogadro's number $=6.023 \times 10^{23}$
- For example: 1 mole of water contains Avogadro's no. of 6.023×10^{23} molecules

1- Molarity

- Is the number of moles of solute per liter of solution

$$
M=\frac{\text { No. of moles }}{\text { Volume of solution in } L}
$$

- No. of moles $=\mathrm{Wt}_{\mathrm{g}} / \mathrm{MWT}$ (molecular weight)
- 1 mole contains Avogadro's number of molecules per liter (6.023 $\times 10^{23}$).
- Molar concentrations are usually given in square brackets.
- Example: $[\mathrm{H}]=$ molarity of hydrogen ion

$$
+\stackrel{+}{\mathrm{NaOH}}]=\text { molarity of Sodium Hydroxide }
$$

Examples

- A solution of NaCL had 0.8 moles of solute in 2 liters of solution. What is its molarity?

$$
\begin{aligned}
M & =\frac{\text { no. of moles }}{\text { volume of solution in } \mathrm{L}} \\
M & =\frac{0.8}{2} \\
M & =0.4 \text { molar }
\end{aligned}
$$

Given values:

No. of moles $=0.8 \mathrm{~mol}$
$V=2 L$
$\mathrm{M}=$??

Examples

- How many grams of solid NaOH are required to prepared 500 ml of 0.04 M solution?
$M=\frac{\text { no. of moles }}{\text { volume of solution in } L}$
no. of moles $=0.04 \times 0.5$
no. of moles $=0.02$ mole
no. of moles $=\frac{\text { weight in gram }}{\text { molecular weight (MWT) }}$
MWT of $\mathrm{NaOH}=23+16+1=40$
Wt in grams $=$ no. of moles \times MWT
wt in grams $=0.02 \times 40$
wt in grams $=0.8$ grams

Given values:

$\mathrm{M}=0.04 \mathrm{M}$
$\mathrm{V}=500 \mathrm{ml}=500 \div 1000=$
0.5 L
$W t=? ?$

2. Normality

- Is the number of equivalents of solute per liter of solution

$$
N=\frac{\text { no. of equivalents }}{\text { volume of solution in } L}
$$

$$
\text { no. of equivalents }=\frac{\text { weight in gram }}{\text { Equivalent weight }(E W)}
$$

$$
\text { equivalent weight }=\frac{M W T}{n}
$$

$n=$ is the number of replaceable hydrogen (H+ in acids) or hydroxyl ions (OH . in bases) per molecule
$O R$
$n=$ is the number of electrons gained or lost per molecule (in oxidizing or reducing agents)

Relationship between molarity and normality

- For example: A 0.01 M solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is 0.02 N

Example

What is the normality of $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution that contains 24.5 g of solute in a total volume of 100 ml ?
$\mathrm{N}=\mathrm{n} \times \mathrm{M}$
$M=$ No. of moles $/ V_{(L)}$

- No. of moles $=W t_{g} /$ MWT
- MWT of $\mathrm{H}_{2} \mathrm{SO}_{4}=2+32+(16 \times 4)=98 \mathrm{~g}$
- No. of moles $=24.5$ / 98

Given values:

$$
\begin{aligned}
& \mathrm{Wt}=24.5 \mathrm{~g} \\
& \mathrm{~V}=100 \mathrm{ml}=100 \div 1000= \\
& 0.1 \mathrm{~L} \\
& \mathrm{n}=2 \\
& \mathrm{~N}=? ?
\end{aligned}
$$

Another way to solve it

- Normality $(N)=$ No. of equivalents $/ V_{(L)}$
- No. of equivalents $=W t_{g}$ of solute / equivalents weight (EW)
- $E W=M W T$ of solute / n
- MWT of $\mathrm{H}_{2} \mathrm{SO}_{4}=2+32+(16 \times 4)=98 \mathrm{~g}$
- $\mathrm{EW}=98 / 2=49$
- No. of equivalents $=\mathrm{Wt}_{\mathrm{g}}$ of solute / equivalents weight (EW)

$$
=24.5 \mathrm{~g} / 49=0.5 \mathrm{eq}
$$

- Normality $(N)=$ No. of equivalents $/ V_{(L)}$

$$
=0.5 / 0.1=5 \text { Normal }
$$

3. Osmolarity

- It is the molarity of particles in a solution.

Osmolarity $=\mathrm{n} \times \mathrm{M}$

- n is the number of ions (or dissociable particles) produced per molecule.
- A IM solution of a non-dissociable solute is also 1 osmolar.
- It is often considered in physiological studies where tissues or cells must be bathed in a solution of the same osmolarity as the cytoplasm in order to prevent the uptake or release of water.

Isotonic solution

- ISO - means alike.
- TONICITY - refers to osmotic activity of body fluids; tells the extent that fluid will allow movement of water in \& out of the cell.
- Meaning .. that the solutions on both sides of selectively permeable membrane have established equilibrium.

Osmosis

Solute molecules

Direction of water movement

Qemosis is the diffusion of water across a membrane．Like other molecules，water will mowe from قn area of high concentration to ヨn ares of low concentration．
The more solute there is in a solution，the lower the concentr．ヨtion of water in th．\dagger solution．There is terminology to describe concentration differences between two solutions．A solution with higher solute concentration is hypertonic relative to one with lower solute concentration．Gonversely，a solution with lower solute concentration is hypotonic rel قtive to one with higher solute concentration．If two solutions hawe the same concentration they are isotonic．＇W＇ョter will move from a hypotonic to a hypertonic solution．

Example (1)

- A solution of KCl that has a molarity of 0.03 M what is the osmolarity?
Given values:
Molarity $=0.03 \mathrm{M}$
KCl is dissociable $(\mathrm{K}+, \mathrm{Cl} \cdot), \rightarrow n=$ 2

Osmolarity =??
Osmolarity $=\mathrm{M} \times \mathrm{n}$
$=2 \times 0.03=0.06$ Osmolar

Example (2)

- When you want to study RBC and its osmolarity in the cytoplasm is 0.308 osmolar.
- What do you think the osmolarity of the in vitro solution should be?

Memorize
 0.308 osmolar.

Red blood cells suspended in a 0.308 osmolar NaCl solution would neither shrink nor swell.

Example (3)

Classify these solution in regards to the RBC osmolarity

1) 0.56 osmolar \rightarrow Hypertonic
2) 0.21 osmolar \rightarrow Hypotonic
3) $0.154 \mathrm{M} \mathrm{NaCl} \rightarrow$ Isotonic
osmolarity $=n \times M=2 \times 0.154=0.308$ osmolar

4- Weight/Volume Percent (wt/v\%)

- It is the weight in gram of a solute per 100 ml of solution.

$$
w t / v \%=\frac{\text { Wt in gram of solute }}{100 \mathrm{ml} \text { of solution }}
$$

- It is often used for routine laboratory solutions where exact concentration are not too important.

5. Milligram Percent (mg\%)

It is the weight in mg of a solution per 100 ml of solution.

$$
\mathrm{mg} \%=\frac{\text { Wt in } \mathrm{mg} \text { of solute }}{100 \mathrm{ml} \text { of solution }}
$$

It is often used in clinical laboratories.

- For example, a clinical blood sugar value of 255; means 255 mg of glucose per 100 mg of blood serum.

6- volume / volume percent (v / v \%)

- It is the volume in $\mathrm{m} /$ of a solute per 100 ml of solution.

Example

- A 0.04 M solution of NaOH was prepared by the use of 0.8 g of

NaOH and the total volume of the solution was 500 ml .
a. Express the concentration g / I.
b. $W / V \%$.
c. $\mathrm{mg} \%$.
d. Osmolarity.
e. Normality.

$$
\begin{aligned}
& \text { Given values: } \\
& \text { •Molarity }=0.04 \mathrm{M} \\
& \cdot \mathrm{Wt}=0.8 \mathrm{~g} \\
& \cdot \mathrm{~V}=500 \mathrm{ml} \rightarrow 0.5 \mathrm{~L}
\end{aligned}
$$

a. Concentration as g/L.

Since $0.8 \mathrm{~g} \rightarrow 500 \mathrm{ml}$
? $\rightarrow 1000 \mathrm{ml}(1 \mathrm{~L})$
The weight of NaOH in $1 \mathrm{~L}=(1000 \times 0.8) / 500=1.6 \mathrm{gm}$
b. W/V\%
$=($ Weight in gram solute $) /(100 \mathrm{ml}$ of solution $)$

The weight of NaOH in $100 \mathrm{ml}=(100 \times 0.8) / 500=0.16 \%$
c. $\mathrm{mg} \%$
$=($ weight in mg of solute $) /(100 \mathrm{ml}$ of solution $)$
Since $0.16 \% \times 1000=160 \mathrm{mg} \%$

d. Osmolarity

NaOH yeilds two particals ($\mathrm{Na}+$ and $\mathrm{OH}-$) per molecule
$\rightarrow \mathrm{O}=\mathrm{n} \times \mathrm{M}=2 \times 0.04=0.08$ Osmolar

e. Normality

NaOH contains one OH per molecule
$\rightarrow \quad \mathrm{N}=\mathrm{n} \times \mathrm{M}=1 \times 0.04=0.04 \mathrm{~N}$

Concentrations Based

on Weight

Concentrations based on weight

They include:

- weight/weight percent (w/w\%)
- Molality (m)

(w/w\%)

- The weight in g of a solute per 100 g of solution.

$$
w / w \%=\frac{\text { no. of gram of solute }}{100 \mathrm{~g} \text { of solution }}
$$

- The concentration of many commercial acids are giver in terms of $w / w \% \rightarrow$ so, in order to calculate the volume of stock solution required for a given preparation you must know its density or

```
specific gravity
\[
P=\text { density }=\text { weight per unit volume }
\]
\[
\mathrm{SG}=\text { specific gravity }=\text { density relative to water. Density of water is } 1 \mathrm{~g} / \mathrm{ml} \text {, }
\]
```


Weight/weight \% cont'ed

- The relationships between the weight, density, and $\%$ w/w can be combined into a single expression.

$$
\mathrm{wt}_{\mathrm{g}}=\mathrm{Vol}_{\mathrm{ml}} \times P_{\mathrm{g} / \mathrm{ml}} \times \mathrm{w} / \mathrm{w} \%
$$

Where:
$w t_{g}=$ weight of pure substance required in g
Vol $_{\mathrm{ml}}=$ volume of stock solution needed in ml (attention!!!)
$\mathrm{w} / \mathrm{w} \%=$ fraction of total weight that is pure substance as a decimal

Example

Describe the preparation of 2 liters of a 0.4 M HCl solution starting with a concentrated (stock) solution of HCl with $28 \% \mathrm{w} / \mathrm{w} \%$, the specific gravity is

First we must calculate the wt:

Given values:
Total volume $=2 \mathrm{~L}$
$\mathrm{M}=0.4 \mathrm{M}$
$\mathrm{w} / \mathrm{w} \%=28 \% \rightarrow$ as decimal $(\div 100)=$
0.28
$P=1.15$
MW of $\mathrm{HCl}=1+35.5=36.5 \mathrm{~g} /$ mole

No. of moles of pure HCl needed $=\mathrm{MxV}=0.4 \times 2=0.8$ moles
The weight in grams of pure HCl needed $=$ no. of moles* $\mathrm{MW}=0.8^{*} 36.5=29.2 \mathrm{~g}$
Apply the formula above:
$29.2=? \times 1.15 \times 0.28 \rightarrow \mathrm{~V}=90.7 \mathrm{ml}$
So the volume of the stock HCl needed is 90.7 ml and make up the volume to 2 liters with distilled water

Molality (m)

- It is the no. of moles of solute per $1000 \mathrm{~g}(1 \mathrm{~kg})$ of solvent

$$
\frac{\text { no. of moles of solute }}{1000 \mathrm{~g} \text { of solvent }}
$$

$$
m=
$$

- Used in physical calculations (e.g., calculations of boiling point elevation)

Example (1)

- Calculate the molality of a concentrated HCl stock solution which has a $28 \% \mathrm{w} / \mathrm{w} \%, \mathrm{~S} . \mathrm{G}=1.15$.

Since the weight of solution $=$ weight of solvent + weight of solute .
Thus, the weight of solvent $=$ weight of solution \cdot weight of solute.

$$
=100 g-28 g=72 g
$$

MW of $\mathrm{HCl}=1+35.5=36.5 \mathrm{~g} / \mathrm{mole}$
No. of moles of solute $=28 / 36.5=0.77$ mole
0.77 mole of solute \rightarrow in 72 g of solvent
? mole of solute \rightarrow in 1000 g of solvent (according to molality's definition)
No. of moles of solute 1000 g of solvent $=(0.77 * 1000) / 72$
$=10.69$ moles \rightarrow The molality is 10.69 m

Example (2)

- What is the molality if you had 2 moles of solute dissolved into 1 L of solvent

1 liter of solvent is equal to $1000 \mathrm{~g}(1 \mathrm{Kg})$ of solvent
\{when the density (specific gravity)is not given\}

$$
\rightarrow m=2 / 1=2 m
$$

Mole Fraction

- also called molar fraction, is the number of moles of solute as a proportion of the total number of moles in a solution
- Example: in a sol. containing n_{1} moles of compound $1, n_{2}$ moles of compound $2, n_{3}$ moles of compound3, the mole fraction of compound 2 equals:

$$
M F_{2}=n_{2} /\left(n_{1}+n_{2}+n_{3}\right)
$$

Example

- Calculate the mole fraction of concentrated HCl solution $28 \mathrm{w} / \mathrm{w}$ \%

No. of moles = wt / Mwt
In 100 g of solution:

$$
\begin{gathered}
28 \mathrm{~g} \mathrm{HCl} / 36.5=0.767 \text { moles of } \mathrm{HCl} \\
\text { And }
\end{gathered}
$$

$$
\begin{gathered}
72 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / 18=4 \text { moles of } \mathrm{H}_{2} \mathrm{O} \\
\mathrm{MF}_{\mathrm{HCl}}=0.767 /(0.767+4)=0.161
\end{gathered}
$$

