Biochemical Calculations

312 BCH Prepared by: Nora Aljebrin Office: Building 5, 3rd floor, 304

Biochemical calculations by Irwin H. Sege

Online copy: http://site.iugaza.edu.ps/bzabut/wp-content/uploads/biochemical%20calculation.pdf

Midterm dates

• 1st Midterm:

- 5th week, 4 / 2 / 2019
- Time 12-1 pm.

• 2nd Midterm:

- 10th week, 11 / 3 /2019
- Time 12-1 pm.

Marks distribution

- Midterm 1: 15 marks (15%)
- Midterm 2: 20 marks (20%)
- Lab: 25 marks (25%)
- Final exam: 40 marks (40%)

Glassware

Bottles

Wide neck, amber, bottles; can be used for a wide range of light sensitive liquid or solid storage.

Reagent bottles

Narrow neck bottles; can be used for a wide range of liquid storage, media preparation and sampling applications.

Media-lab bottles

Wash bottles

Beakers

Conical shape beakers; ideally used for titrations and mixing application, these conical shape beakers are a cross between a standard beaker and conical flask.

Griffin beaker; is great for general laboratory use.

Flasks

Volumetric flasks; are precision measuring instruments.

Boiling flasks

PYBER 500 ML

Distillation flasks

Cell culture flasks

Erlenmeyer Conical flasks

Volumetric ware

Burette

Burette clamp

Cylinder

Mixing cylinder

Test tubes

Test tubes

Test tubes with ground socket joint.

Culture Tubes

Centrifuge Tubes

Pipettes

One mark pipette

Two mark pipette with safety bulb at top.

Pasteur Pipettes

Funnels

Filter funnels

Dropping & Separating Funnels

Buchner Funnels

Lab equipment

Lab equipment continued

Micropipettes

Multichannel micropipettes

Tips

Eppendorf tubes

Solution Composition

- A solute is the substance being dissolved.
- A solvent is the liquid in which the solute is dissolved.
- A solute is dissolved in a solvent.
- An aqueous solution has water as solvent.

Aqueous Solution

- The majority of reactions occur in solutions.
- There are several ways to express the concentration of a substance in a solution based on:
 - The volume
 - The weight
 - Degree of saturation

Concentrations Based on Volume

Concentration based on volume

- Here the concentrations are based on the amount of dissolved solute per unit volume
- The calculations depending on volume include:
 - Molarity (M)
 - Normality (N)
 - Activity (a)
 - Weight/Volume percent (w/v %)
 - Volume/volume percent (v/v%)
 - Milligram percent (mg %)
 - Osmolarity (osm)

Avogadro's Number

- It is the number of molecules per mole of substance
- <u>OR</u> it is the number of atoms per gram-atom of substance
- <u>OR</u> it is the number of ions per g-ion of substance
- Avogadro's number = 6.023×10^{23}
- For example: 1 mole of water contains Avogadro's no. of
 6.023 × 10²³ molecules

1- Molarity

• Is the number of moles of solute per liter of solution

 $M = \frac{No. \text{ of moles}}{Volume \text{ of solution in L}}$

- No. of moles = Wt_g / MWT (molecular weight)
- 1 mole contains Avogadro's number of molecules per liter (6.023 x 10²³).
- Molar concentrations are usually given in square brackets.

Examples

• A solution of NaCL had 0.8 moles of solute in 2 liters of solution. What is its molarity?

M = 0.4 molar

Examples

 How many grams of solid NaOH are required to prepared 500 ml of 0.04 M solution?

 $M = \frac{\text{no. of moles}}{\text{volume of solution in L}}$ no. of moles = 0.04 × 0.5 no. of moles = 0.02 mole no. of moles = $\frac{\text{weight in gram}}{\text{molecular weight (MWT)}}$ MWT of NaOH = 23+16 + 1 = 40 Wt in grams = no. of moles × MWT wt in grams = 0.02 × 40 wt in grams = 0.8 grams

Given values: M= 0.04 M V= 500 ml = 500 ÷ 1000 = 0.5 L Wt=??

2- Normality

• Is the number of equivalents of solute per liter of solution

 $N = \frac{\text{no. of equivalents}}{\text{volume of solution in L}}$

no. of equivalents = $\frac{\text{weight in gram}}{\text{Equivalent weight (EW)}}$ equivalent weight = $\frac{\text{MWT}}{n}$

n = is the number of replaceable hydrogen (H+ in acids) or hydroxyl ions (OH- in bases) per molecule

OR

n = is the number of electrons gained or lost per molecule (*in oxidizing or reducing agents*)

Relationship between molarity and normality

For example: A 0.01 M solution of H₂SO₄ is 0.02 N

Example

What is the normality of H_2SO_4 solution that contains 24.5 g of solute in a total volume of 100 ml?

- $N = n \times M$
- $M = No. of moles / V_{(L)}$
- No. of moles = Wt_g / MWT
- MWT of $H_2SO_4 = 2 + 32 + (16 \times 4) = 98g$
- No. of moles = 24.5/ 98
- No. of moles = 0.25 mole
- $M = No. of moles / V_{(L)}$
- M = 0.25/0.1 = 2.5 molar
- $N = n \times M$
- $N = 2 \times 2.5 = 5$ normal

Given values:

Wt= 24.5g V= 100 ml = 100 ÷ 1000 = 0.1 L n= 2 N=??

Another way to solve it

- Normality (N) = No. of equivalents / $V_{(L)}$
- No. of equivalents = Wt_g of solute / equivalents weight (EW)
- EW= MWT of solute / n
- MWT of $H_2SO_4 = 2 + 32 + (16 \times 4) = 98 g$
- EW= 98 / 2 = 49
- No. of equivalents = Wt_g of solute / equivalents weight (EW)
- = 24.5 g / 49 = 0.5 eq
- Normality (N) = No. of equivalents / $V_{(L)}$

=0.5 / 0.1 = 5 Normal

3- Osmolarity

• It is the molarity of particles in a solution.

Osmolarity = $n \times M$

- *n* is the number of ions (or <u>dissociable</u> particles) produced per molecule.
- *A 1M solution of a <u>non-dissociable</u> solute is also 1 osmolar.*

 It is often considered in physiological studies where tissues or cells must be bathed in a solution of the same osmolarity as the cytoplasm in order to prevent the uptake or release of water.

Isotonic solution

- ISO means alike.
- TONICITY refers to osmotic activity of body fluids; tells the extent that fluid will allow movement of <u>water</u> in & out of the cell.
 - Meaning .. that the solutions on both sides of selectively permeable membrane have established equilibrium.

Osmosis

Osmosis is the <u>diffusion</u> of water across a membrane. Like other molecules, water will move from an area of high concentration to an area of low concentration. The more <u>solute</u> there is in a solution, the lower the concentration of water in that solution. There is terminology to describe concentration differences between two solutions. A solution with higher solute concentration is hypertonic relative to one with lower solute concentration. Conversely, a solution with lower solute concentration is hypotonic relative to one with higher solute concentration. If two solutions have the same concentration they are isotonic. Water will move from a hypotonic to a hypertonic solution.

 A solution of KCl that has a molarity of 0.03 M what is the osmolarity ?

2

Osmolarity =??

Molarity= 0.03 M KCl is dissociable (K+, Cl-), $\rightarrow n=$

Osmolarity = M x n

 $= 2 \times 0.03 = 0.06$ Osmolar

- When you want to study RBC and its osmolarity in the cytoplasm is
 0.308 osmolar.
 - What do you think the osmolarity of the *in vitro* solution should be?

Example (3)

Classify these solution in regards to the RBC osmolarity

1) 0.56 osmolar \rightarrow Hypertonic

2) 0.21 osmolar \rightarrow Hypotonic

3) 0.154 M NaCl → Isotonic

osmolarity = *n x M* = *2 x 0.154* = *0.308 osmolar*

4- Weight/Volume Percent (wt/v%)

It is the weight in gram of a solute per 100 ml of solution.

wt/v
$$\% = \frac{\text{Wt in gram of solute}}{100 \text{ ml of solution}}$$

 It is often used for routine laboratory solutions where exact concentration *are not too important*.

5- Milligram Percent (mg%)

• It is the weight in *mg* of a solution per **100 ml of solution**.

$$mg \% = \frac{Wt in mg of solute}{100 ml of solution}$$

- It is often used in clinical laboratories.
 - For example, a clinical blood sugar value of 255; means 255mg of glucose per 100 mg of blood serum.

6- volume / volume percent (v / v %)

• It is the volume in *ml* of a solute per 100 ml of solution.

• A 0.04M solution of NaOH was prepared by the use of 0.8 g of

NaOH and the total volume of the solution was 500 ml.

- a. Express the concentration g/l.
- b. W/V %.
- **c.** mg%.
- d. Osmolarity.
- e. Normality.

Given values: •Molarity= 0.04 M •Wt = 0.8 g •V= 500 ml → 0.5 L a. Concentration as g/L.

The weight of NaOH in $1L = (1000 \times 0.8)/500 = 1.6$ gm

b. W/V%

= (Weight in gram solute)/(100ml of solution)

0.8 g → 500 ml

The weight of NaOH in $100 \text{ ml} = (100 \times 0.8)/500 = 0.16\%$

c. mg%

= (weight in mg of solute)/(100 ml of solution)

Since 0.16% x 1000 = 160 mg%

d. Osmolarity

NaOH yeilds two particals (Na+ and OH-) per molecule

 \rightarrow 0= n x M = 2 x 0.04 = 0.08 Osmolar

e. Normality

NaOH contains one OH per molecule

 \rightarrow N = n × M = 1 × 0.04 = 0.04 N

Concentrations Based on Weight

Concentrations based on weight

- They include:
 - weight/weight percent (w/w%)
 - Molality (m)

(W/W%)

The weight in g of a solute per 100g of solution.

 $w/w\% = \frac{\text{no. of gram of solute}}{100g \text{ of solution}}$

• The concentration of many commercial acids are giver in terms of $w/w\% \rightarrow so$, in order to calculate the volume of stock solution required for a given preparation you must know its *density* or

SG= specific gravity = density relative to water. Density of water is 1 g/ml,

SG is numerically equal to density.

Weight/weight % cont'ed

• The relationships between the weight, density, and % w/w can be combined into a single expression.

$$wt_g = Vol_{ml} \times P_{g/ml} \times w/w \%$$

Where:

wt_g = weight of pure substance required in g

Vol_{ml} = volume of stock solution needed in ml (attention!!!)

w/w% = fraction of total weight that is pure substance *as a decimal*

Describe the preparation of 2 liters of a 0.4M HCl solution starting with a concentrated (stock) solution of HCl with 28% w/w%, the specific gravity is

$$\frac{1.1}{wt_g = Vol_{ml} \times P_{g/ml} \times w/w \%}$$

First we must calculate the wt:

Given values: Total volume = 2L M = 0.4 M $w/w\% = 28\% \rightarrow as decimal (÷100) =$ 0.28 P = 1.15MW of HCL = 1+25.5 = 26.5 g/mala

MW of HCl = 1+35.5 = 36.5 g/mole

No. of moles of pure HCl needed = MxV = 0.4x 2 = 0.8 moles

The weight in grams of pure HCI needed = no. of moles* MW = 0.8* 36.5 = 29.2g

Apply the formula above:

29.2 = ? X 1.15 x 0.28 → V = 90.7 ml

So the volume of the stock HCl needed is 90.7ml and make up the volume to 2 liters with distilled water

Molality (m)

It is the no. of moles of solute per 1000 g (1kg) of solvent
 <u>no. of moles of solute</u>

1000 g of solvent

m =

 Used in physical calculations (e.g., calculations of boiling point elevation)

 Calculate the molality of a concentrated HCl stock solution which has a 28% w/w%, S.G= 1.15.

Since the weight of solution = weight of solvent + weight of solute.

Thus, the weight of solvent = weight of solution - weight of solute.

= 100g – 28 g = 72g

MW of HCl = 1+35.5 = 36.5 g/mole

No. of moles of solute = 28 / 36.5 = 0.77 mole

0.77 mole of solute \rightarrow in 72 g of solvent

? mole of solute in 1000 g of solvent (according to molality's definition)

No. of moles of solute 1000 g of solvent = $(0.77 \times 1000) / 72$

= 10.69 moles \rightarrow The molality is 10.69m

• What is the molality if you had 2 moles of solute dissolved into 1 L of solvent

1 liter of solvent is equal to 1000 g (1Kg) of solvent

{when the density (specific gravity)is not given}

Mole Fraction

- also called *molar fraction*, is the number of moles of solute as a proportion of the total number of moles in a solution
- Example: in a sol. containing n_1 moles of compound 1, n_2 moles of compound 2, n_3 moles of compound 3, the mole fraction of compound 2 equals:

 $MF_2 = n_2 / (n_1 + n_2 + n_3)$

- Calculate the mole fraction of concentrated HCl solution 28 w/w
 %
- No. of moles = wt / Mwt
- In 100 g of solution :

28 g HCl / 36.5 = 0.767 moles of HCl And 72 g H₂O / 18 = 4 moles of H₂O

 $MF_{HCI} = 0.767 / (0.767 + 4) = 0.161$