
• Let  f  be a function.  Its Laplace transform (function) is denoted 
by the corresponding capitol letter F.   Another notation is         

• Input to the given function f  is denoted by t; input to its Laplace 
transform  F  is denoted by s.   

• By default, the domain of the function f=f(t) is the set of all non-
negative real numbers.  The domain of its Laplace transform 
depends on  f  and can vary from a function to a function.

The Laplace Transform

L(f).
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Definition of the Laplace Transform
• The Laplace transform F=F(s)  of a function   f=f

(t)  is defined by   

   

• The integral is evaluated with respect to  t,   
hence once the limits are substituted, what is 
left are in terms of s. 

L(f)(s) = F (s) =
� ∞

0
e−tsf(t) dt.
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Example: Find the Laplace transform of the constant function

Solution:
f(t) = 1, 0 ≤ t <∞.

F (s) =
� ∞

0
e−tsf(t) dt =

� ∞

0
e−ts(1) dt

= lim
b→+∞

� b

0
e−ts dt

= lim
b→+∞

�
e−ts

−s

�b

0

provided s �= 0.

= lim
b→+∞

�
e−bs

−s
− e0

−s

�

= lim
b→+∞

�
e−bs

−s
− 1
−s

�
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At this stage we need to recall a limit from Cal 1:

Hence, 

Thus,
F (s) =

1
s
, s > 0.

In this case the domain of the transform is the set of 
all positive real numbers.

e−x →
�

0 if x→ +∞
+∞ if x→ −∞

.

lim
b→+∞

e−bs

−s
=

�
0 if s > 0
+∞ if s < 0

.
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Table of Transforms

f(t) = 1, t ≥ 0 F (s) = 1
s , s ≥ 0

f(t) = tn, t ≥ 0 F (s) = n!
sn+1 , s ≥ 0

f(t) = eat, t ≥ 0 F (s) = 1
s−a , s > a

f(t) = sin(kt), t ≥ 0 F (s) = k
s2+k2

f(t) = cos(kt), t ≥ 0 F (s) = s
s2+k2

f(t) = sinh(kt), t ≥ 0 F (s) = k
s2−k2 , s > |k|

f(t) = cosh(kt), t ≥ 0 F (s) = s
s2−k2 , s > |k|
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The Laplace Transform is Linear
If  a  is a constant and  f  and  g  are functions, then 

For example, by the above property (1)

As an another example, by property (2)

L(e5t + cos(3t)) = L(e5t) + L(cos(3t)) =
1

s− 5
+

s

s2 + 9
, s > 5.

L(3t5) = 3L(t5) = 3
� 5!
s6

�
=

360
s6

, s > 0.

L(af) = aL(f) (1)
L(f + g) = L(f) + L(g) (2)
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An example where both (1) and (2) are used,
L(3t7 + 8) = L(3t7) + L(8) = 3L(t7) + 8L(1) = 3

� 7!
s8

�
+ 8

�1
s

�
, s > 0.

The Laplace transform of the product of two functions 
L(fg) �= L(f)L(g).

As an example, we determine

The respective domains of the above three transforms 
are  s>0, s>6, and s>12; equivalently, s>12. 

L(3 + e6t)2 = L(3 + e6t)(3 + e6t) = L(9 + 6e6t + e12t)
= L(9) + L(6e6t + L(e12t)
= 9L(1) + 6L(e6t) + L(e12t)

=
9
s

+
6

s− 6
+

1
s− 12

.
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The Inverse Transform
Lea   f   be a function and                  be its Laplace 
transform.  Then, by definition,  f   is the inverse 
transform of  F.   This is denoted by         

L(f) = F

L−1(F ) = f.

As an example, from the Laplace Transforms Table, 
we see that

Written in the inverse transform notation

L−1

�
6

s2 + 36

�
= sin(6t).

L(sin(6t)) =
6

s2 + 36
.
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Recall that                      Hence,  for example,   L(tn) = n!
sn+1 .

 
L−1

�
7!
s8

�
= t7.

Here, by examining the power  s8 we saw that  n=7.

Now consider               Here  n+1=11.   Hence n=10.  
Now, we need to make the numerator to be 10!.

L−1
�

5
s11

�
.

L−1

�
5

s11

�
= 5L−1

�
1

s11

�

=
5

10!
L−1

�
10!
s11

�

=
5

10!
t10.
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 Consider

          ,  is that of the Laplace transforms of sin/cos.s2 + k2

L−1

�
7s + 15
s2 + 2

�
= L−1

�
7s

s2 + 2

�
+ L−1

�
15

s2 + 2

�

= 7L−1

�
s

s2 + 2

�
+ 15L−1

�
1

s2 + 2

�

= 7 cos(
√

2t) +
15√

2
L−1

� √
2

s2 + 2

�

= 7 cos(
√

2t) +
15√

2
sin(
√

2t)

More Examples of Inverse Transforms
L−1

�
7s + 15
s2 + 2

�
. The form of the denominator,
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Partial Fractions
Consider the rational expressions

3s + 5
s2 − 3s− 10

=
3s + 5

(s− 5)(s + 2)

The  denominator is factored, and the degree of the 
numerator is at least one less that that of the 
denominator, in fact, it is exactly one less than the 
degree of the denominator.

We can, therefore, put the rational expression in 
partial fractions. This means for constants  A  and  B,   
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3s + 5
(s− 5)(s + 2)

=
A

s− 5
+

B

s + 2
.

To determine A and  B, first clear the denominators:
3s + 5

✭✭✭✭✭✭✭(s− 5)(s + 2)✭✭✭✭✭✭✭(s− 5)(s + 2) =
A

✘✘✘✘(s− 5)✘
✘✘✘(s− 5)(s + 2) +

B

✘✘✘✘(s + 2)
(s− 5)✘✘✘✘(s + 2).

Thus we have the polynomial equality:

3s + 5 = A(s + 2) + B(s− 5) = (A + B)s + 2A− 5B.

By comparing the coefficients of   s   and constant 
coefficients, we get two equations in A  and  B.

A + B = 3
2A− 5B = 5

we have the decomposition
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We can solve for A and B  by using Cramer’s rule

A =
det

�
3 1
5 −5

�

det
�

1 1
2 −5

� , and B =
det

�
1 3
2 5

�

det
�

1 1
2 −5

�

Now by the definition of the determinant, 

det
�

a b
c d

�
= ad− cb.

Hence, 
A =

20
7

, and B =
1
7
.

.
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We can now determine the inverse transform

L−1

�
3s + 5

(s− 5)(s + 2)

�
= L−1

�
A

s− 5
+

B

s + 2

�

= AL−1

�
1

s− 5

�
+ B L−1

�
1

s + 2

�

=
20
7

e5t +
1
7
e−2t.

This could also have been directly determined by 
using a formula from your Table of Laplace 
Transforms from the text. 
This inverse transform will be used in slide #19 to 
solve an IVP.
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Put                    in partial fractions.               3s+4
(s−2)(s2+7)

Since  s2 +7  is a quadratic, when it is put in partial 
fractions, its numerator must be the general polynomial 
of degree one. 

3s+4
(s−2)(s2+7) = A

s−2 + Bs+D
s2+7

3s + 4

✭✭✭✭✭✭✭
(s− 2)(s2 + 7)✭

✭✭✭✭✭✭
(s− 2)(s2 + 7) =

A

✘✘✘s− 2✘✘✘✘(s− 2)(s2+7)+
Bs + D

✘✘✘s2 + 7
(s−2)✘✘✘✘(s2 + 7)

Hence, we have the equality of polynomials:

Comparing the coefficients of   s2, s, and constant coefficients,  

A + B = 0, −2B + D = 3, and 7A− 2D = 4.

Partial Fractions: More Examples 

3s + 4 = A(s2 +7)+ (Bs+D)(s− 2) = (A+B)s2 +(−2B +D)s+7A− 2D
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From the first equation, we get that B=-A.  Sub in the 
second, to get

2A + D = 3 (1)
7A− 2D = 4 (2)

Then,

Hence, 

A =
det

�
3 1
4 −2

�

det
�

2 1
7 −2

� =
−10
−11

, and D =
det

�
2 3
7 4

�

det
�

2 1
7 −2

� =
−13
−11

.

A =
10
11

, B = −A = −10
11

, D =
13
11

.
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Transforms of Derivatives
Given a function  y=y(t),   the transform of its 
derivative   y´  can be expressed in terms of the 
Laplace transform of  y: L(y�) = sL(y)− y(0).

The corresponding formula for  y´´  can be obtained 
by replacing y  by  y´  (equation 1 below).

L(y�)� = sL(y�)− y�(0) (1)
= s(sL(y)− y(0))− y�(0) (2)

= s2L(y)− sy(0)− y�(0). (3)

Hence, L(y��) = s2L(y)− sy(0)− y�(0).
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Solving IVP with Laplace Transforms

Solve the IVP y� − 5y = −e−2t, y(0) = 3.

Taking the Laplace transform of both sides, 
L(y� − 5y) = L(−e−2t) (1)

L(y�)− 5L(y) = − 1
s + 2

(2)

sL(y)− y(0)− 5L(y) = − 1
s + 2

(3)

(s− 5)L(y)− 3 = − 1
s + 2

(4)

(s− 5)L(y) = − 1
s + 2

+ 3 =
3s + 5
s + 2

(5)

L(y) =
3s + 5

(s− 5)(s + 2)
(6)

Example 1:
Solution:
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Hence, by the definition of the inverse transform, 

y = L−1

�
3s + 5

(s− 5)(s + 2)

�
=

20
7

e5t +
1
7
e−2t.

The above  inverse transform was found in slide # 14.

Solve the IVP: Example 2:
y�� + 7y = 10e2t, y(0) = 0, y�(0) = 3.

Solution: Taking the Laplace transform of both sides,

L(y��) + 7L(y) = 10L(e2t)

30

s2L(y)− sy(0)− y�(0) + 7L(y) = 10
s−2
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(s2 + 7)L(y)− 3 = 10
s−2

(s2 + 7)L(y) = 3 + 10
s−2 = 3(s−2)+10

s−2

L(y) = 3s+4
(s−2)(s2+7)

Then, y = L−1
�

3s+4
(s−2)(s2+7)

�
.

partial fraction decomposition in slide # 15 and 16, 

y = 10
11L

−1
�

1
s−2

�
− 10

11L
−1

�
s

s2+7

�
+ 13

11L
−1

�
1

s2+7

�
.

y = 10
11e2t − 10

11 cos(
√

7t) + 13
11
√

7
sin(

√
7t).

Whence, 

 Now using the
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Example 1 L(cos(kt)) = s
s2+k2 . To find L(eat cos(kt))

we replace   s   by  s-a.   Hence,

L(eat cos(kt)) = s−a
(s−a)2+k2 .

The inverse version is also useful:  

The corresponding sine version is

L−1
�

k
(s−a)2+k2

�
= eat sin(kt).

Notice matching  s-a  on the numerator and denominator.

Lemma: Let L(y(t)) = Y (s). Then L(eaty(t)) = Y (s− a).

L−1
�

s−a
(s−a)2+k2

�
= eat cos(kt).
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Find: L−1
�

4s+1
s2+10s+34

�
.

Here the denominator does not factor over the reals.   
Hence  complete the square.

s2 + 10s + 34 = s2 + 10s + 25� �� �−25 + 34 = (s + 5)2 + 9.

L−1
�

4s+1
s2+10s+34

�
= L−1

�
4s+1

(s+5)2+9

�

= L−1
�

4(s+5)−20+1
(s+5)2+9

�
= L−1

�
4(s+5)−19
(s+5)2+9

�

= 4L−1
�

(s+5)
(s+5)2+9

�
− 19L−1

�
1

(s+5)2+9

�

= 4e−5t cos(3t)− 19
3 L

−1
�

3
(s+5)2+9

�

= 4e−5t cos(3t)− 19
3 e−5t sin(3t).

this  s  must now be 
made into (s+5). 
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Example 1: Now L(eat) = 1
s−a , s �= a.

In other words, L−1
�

1
(s−a)2

�
= teat.

Lemma: Let L(f(t)) = F (s). Then L(tf(t)) = −F �(s).

Hence, L(teat
) = −

�
1

s−a

��
=

1
(s−a)2 , s �= a.

Example 2: Find

Solution: Now Then by the Lemma, 

f(t) = L−1(ln
�

s + 2
s− 3

�
).

L(f(t)) = ln
�

s + 2
s− 3

�
.

Next Slide

L(tf(t)) = −
�

ln
�

s + 2
s− 3

���

= −(ln(s + 2)− ln(s− 3))�
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L(tf(t)) = −(
1

s + 2
− 1

s− 3
) =

1
s− 3

− 1
s + 2

.

Hence, tf(t) = L−1(
1

s− 3
)− L−1(

1
s + 2

)

= e3t − e−2t.

Hence, f(t) =
e3t − e−2t

t
, t > 0.
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Unit Function and Piece-wise Defined Functions

Let a≥0.  The Heaviside unit function U(t–a) is defined by

U(t− a) =

�
1 if t ≥ a

0 if 0 ≤ t < a
.

The unit function can be used to express piecewise 
functions.

a

1
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Let f  be the piecewise defined function

Now consider the function 

If  0≤t<8,  then  U(t–8) = 0. Then

If  t≥8,  then  U(t–8) = 1. 

4 + (6− 4)U(t− 8) = 4 + 6− 4 = 6.

Thus, we see that  

f(t) = 4 + 2U(t− 8).

f(t) =

�
4 if 0 ≤ t < 8
6 if t ≥ 8

.

Example 1:

4 + (6− 4)U(t− 8).

4 + (6− 4)U(t− 8) = 4.

Then
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Consider the piecewise defined function

f(t) =






t if 0 ≤ t < 2
t2 if 2 ≤ t < 6
t3 if 6 ≤ t

.

We can express f in terms of unit functions.

f(t) = t + (t2 − t)U(t− 2) + (t3 − t2)U(t− 6).

Example 2:

Notice how the coefficients of the unit functions are  
related to the outputs by the piece-wise defined 
function.
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Truncating a Function

a

y=f(t) y=g(t)

The graph of  g  has been obtained by truncating that of  f.

g(t) =

�
0 if 0 ≤ t < a

f(t) if t ≥ a
. g(t) = f(t)U(t− a).
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Truncating a Function

a

y=f(t) y=g(t)

The graph of g has been obtained by truncating that of  f.

y=g

b

g(t) = f(t)U(t− a)− f(t)U(t− b).g(t) =






0 if 0 ≤ t < a

f(t) if a ≤ t < b

0 if b ≤ t

.

a b
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Translating and Truncating a Function

a

y=f(t) y=g(t)

The graph of  g  has been obtained translating the 
graph of  f   by  c  units to the right and then 
truncating it.

ba b

y=gy=g

c

y=f(t-c)

g(t) =






0 if 0 ≤ t < a

f(t− c) if a ≤ t < b

0 if b ≤ t

.
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y=f(a)

a

=

�
0 if 0 ≤ t < a

f(t− a) if a ≤ t
.y(t) = f(t− a)U(t− a)

Example 1: Find L(sin(t− 2)U(t− 2)).
Solution: Here a  is  2  and f(t− 2) = sin(t− 2). We
need  f(t)  to determine F(s).  We can get it from the 
formula for  f(t–2)  by replacing  t   by t+2.
f(t + 2− 2) = sin(t + 2− 2), i.e., f(t) = sin(t). Hence,
L(sin(t− 2)U(t− 2)) = F (s)e−2s = 1

s2+4e−2s.

Proposition 1 Let a ≥ 0 and L(f(t)) = F (s). Then

L(f(t− a)U(t− a)) = e−asF (s).
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Example 2: Determine L(t2U(t− 2)).
Solution: Recall the formula

L(f(t− a)U(t− a)) = e−asF (s), where F (s) = L(f).
In this case, a=2, and f(t− a) = f(t− 2) = t2.

to obtain  F(s), we first need  f(t).  In order to 
do that 

replace  t  in the formula for  f(t–2)  by  t+2. 

f(t− 2) = t2

f(t + 2− 2) = (t + 2)2 = t2 + 4t + 4
f(t) = t2 + 4t + 4
F (s) = L(t2) + 4L(t) + 4L(1)

=
2
s3

+
4
s2

+
4
s
, s > 0.

Thus L(t2U(t− 2)) =
�

2
s3 + 4

s2 + 4
s

�
e−2s, s > 0.
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Example 3: Determine L
�
sin(π

2 t)U(t− 3)
�
.

Now to obtain      ,               

Solution: Comparing                       U(t− a)

Hence, f(t− 3) = sin(π
2 t). f(t)

by          in the formula for f(t− 3).t + 3 Then, 

f(t + 3− 3) = sin(π
2 (t + 3)) = sin(π

2 t + π
2 3)).

Now an elementary trig identity states
sin(3π

2 + θ) = − cos(θ).

Whence, f(t) = − cos(π
2 t). Thus F (s) = − s

s2+ π2
4

.

L
�
sin(π

2 t)U(t− 3)
�

= e−3s s

s2+ π2
4

.

U(t− 3) with , we get a=3.
replace t
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Let
L−1(e−asF (s)) = U(t− a)f(t− a).

L−1(F (s)) = f(t). Then

Example 1: L−1

�
s

s2 + 4

�
= cos(2t).

Hence L−1

�
s

s2 + 4
e−7s

�
= cos(2(t− 7))U(t− 7).

The presence of e−7s caused two changes to cos(2t) :

the input t was replaced by t− 7 and then cos(2(t− 7))

was multiplied by U(t− 7).

Recall
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Example 2: Determine  L−1

�
e−7s

(s− 5)2 + 4

�
.

First consider the inverse without the factor e−7s.

L−1

�
1

(s− 5)2 + 4

�
= e5t sin(2t).

Thus, 

L−1

�
e−7s

(s− 5)2 + 4

�
=

� �� �
e5(t−7) sin(2(t− 7)) U(t− 7).

Replace  t  by  t–7.
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Convolutions
Let f and g  be functions.   The convolution of  f  with 
g  is defined by 

����
f ∗ g(t) =

� t

0
f(τ)g(t− τ) dτ.

Thus in a convolution integral, in general, you will see a          
   factor (the t  in the output by  f  replaced by   ), and a            
         factor (the t in the output by g replaced by        ).t− τ

τ

sin 3t ∗ e5t =
� t
0 sin(3τ)� �� � e5(t−τ)

� �� � dτ.

the   factor the         factorτ t− τ

τ

t− τ
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Example 1: Let             and        f(t) = t2 g(t) = 2t + 3. Find f ∗ g.

Solution:

f ∗ g(t) =
� t
0 f(t)g(t− τ) dτ =

� t
0 τ2(2(t− τ) + 3) dτ.

=
� t
0 τ2(2t + 3− τ) dτ = (2t + 3)

� t
0 τ2 dτ −

� t
0 τ3 dτ

= (2t + 3)
�

τ3

3

�t

0
−

�
τ4

4

�t

0
= (2t + 3) t3

3 −
t4

4

=
5t4

12
+ t3.
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Example 2:
Express the following integral as a convolution.

� t

0
τ3 cos(t− τ) dτ.

‘τ ’ factor ‘t− τ ’ factor

Replace τ by t to
get the first factor
of the convolution

Replace t− τ by t to
get the second factor
of the convolution

� t

0
τ3 cos(t− τ) dτ = t3 ∗ cos(t)
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Example 3:
� t
0 e2(t−τ)τ3 dτ = t3 ∗ e2t.

Example 4:
In the following example ‘t− τ ’ factor is missing.
That is because the second factor of the convolution 
was a constant. � t

0 τ3 dτ = t3 ∗ 1.

Example 5:
� t
0 et−2τ dτ =

� t
0 e−τet−τ dτ = e−t ∗ et.

We see that the convolution is not the constant e−t ∗ et

Here is an alternative view of the same integral 
� t
0 et−2τ dτ =

� t
0 ete−2τ dτ = et

� t
0 e−2τ dτ = et(e−2t ∗ 1).

However, in general f(g ∗ h) �= (fg) ∗ (fh).

function 1.
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Laplace Transform of Convolutions
The Laplace transform of the product of two functions
is not equal to the product of the two transforms:

L(fg) �= L(f)L(g).

The convolution behaves far better:
L(f ∗ g) = L(f)L(g).

 Example 1: Without evaluating the integral, find
L

�� t
0 e2(t−τ)τ3 dτ

�
.

By Example 3  of the previous slide 

L
�� t

0 e2(t−τ)τ3 dτ
�

= L
�
t3 ∗ e2t

�
= L(t3)L(e2t)= 3!

s4(s−2) , s > 2.

40



Example 2: L
�� t

0 et+τ sin(t− τ) dτ
�

= L
�� t

0 eteτ sin(t− τ) dτ
�

= L
�
et

� t
0 eτ sin(t− τ) dτ

�

= L
�
et(et ∗ sin t)

�

Now L(et ∗ sin t) = L(et)L(sin t) = 1
s−1

1
s2+1 , s > 1.

The effect  of multiplying this input to the Laplace 
transform by et is to replace the  s  in the output by 

L
�
et(et ∗ sin t)

�
= 1

(s−1)−1
1

(s−1)2+1 = 1
(s−2)((s−1)2+1) , s > 2.

s–1.  Hence
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Example 3: Find L
�� t

0 t sin(τ) dτ
�

.

L
�� t

0 t sin(τ) dτ
�

= L
�
t
� t
0 sin(τ) dτ

�
Solution:

= L (t(sin t ∗ 1))

Recall that L(tf(t)) = −F �(s), where L(f(t)) = F (s).

Now, L ((sin t ∗ 1)) = L(sin t)L(1) = 1
s2+1

1
s , s > 0.

Hence, L (t(sin t ∗ 1)) = −
�

1
s(s2+1)

��
, s > 0

= − 3s2+1
s2(s2+1)2 , s > 0.
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Integro-differential Equations
Solve:

f(t) = t + sin t ∗ f(t) Now use  the

Hence, 

Laplace transform to convert the convolution product 
to regular products. 

L(f(t)) = L(t) + L(sin t ∗ f(t)) = 1
s2 + 1

s2+1L(f(t).

(1− 1
s2+1 )L(f(t)) = 1

s2

( s2+1−1
s2+1 )L(f(t)) = 1

s2 i.e., ( s2

s2+1 )L(f(t)) = 1
s2

Thus,               L(f(t)) = s2+1
s4 = 1

s2 + 1
s4 . Hence,

f(t) = L−1
�

1
s2

�
+ L−1

�
1
s4

�
= L−1

�
1
s2

�
+ 1

3!L
−1

�
3!
s4

�
= t + t3

6 .

Notice that                           .
f(t) = t +

� t
0 sin(τ)f(t− τ) dτ. input to f

Solution:

Example:
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Solve: y�(t) = 1− sin t−
� t
0 y(τ) dτ, y(0) = 0.

L(y�(t)) = L(1)− L(sin t)− L
�� t

0 y(τ) dτ
�

,

Take Laplace

transforms to get
sL(y(t))− y(0) = 1

s −
1

s2+1 − L(y(t) ∗ 1),

sL(y(t)) = 1
s −

1
s2+1 − L(y(t))L(1),

sL(y(t)) = 1
s −

1
s2+1 −

L(y(t))
s ,

sL(y(t)) + L(y(t))
s = 1

s −
1

s2+1 ,

(s + 1
s )L(y(t)) = 1

s −
1

s2+1 ,

(s2+1)
s L(y(t)) = 1

s −
1

s2+1 , Next Slide
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L(y(t)) = s
(s2+1)

1
s −

s
(s2+1)

1
s2+1 ,

L(y(t)) = 1
(s2+1) −

s
(s2+1)2 ,

y(t) = L−1
�

1
(s2+1)

�
− L−1

�
s

(s2+1)2

�
,

y(t) = sin t− 1
2 t sin t �
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Using the Dirac’s Delta Function
Solve the IVP y� + 4y = δ(t− 2), y(0) = 6.

L(y�) + 4L(y) = L(δ(t− 2))
� �� �
sL(y)− y(0)+4L(y) =

e−2s

s

(s + 4)L(y) = y(0) +
e−2s

s
= 6 +

e−2s

s

L(y) =
6

(s + 4)
+

e−2s

s(s + 4)
=

6
(s + 4)

+
e−2s

4s
− e−2s

4(s + 4)

y(t) = 6e−4t +
1
4
U(t− 2)− e−4(t−2)

4
U(t− 2).
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Systems of Equations and Laplace Transform
Let               and             be functions of     Suppose  x = x(t) y = y(t) t.

y by converting the equations into two in        and       .
By taking the Laplace Transforms, we will solve for x and

sL(x)− x(0) + 3L(x) + sL(y)− y(0) =
1
s

sL(x)− x(0)− L(x) + sL(y)− y(0) =
1

s− 1
.

L(x) L(y)

From (1)
From (2)

(1)
(2)

(3)
(4)

From (3)

From (4)

x� + 3x + y� = 1
x� − x + y� = et, x(0) = 0, y(0) = 0.

L(x�) + 3L(x) + L(y�) = L(1)
L(x�)− L(x) + L(y�) = L(et).
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Using              and              and collecting like termsx(0) = 0 y(0) = 0,

Using Cramer’s rule,

L(x) =

det

�
1
s s
1

s−1 s

�

det
�

s + 3 s
s− 1 s

� , L(y) =

det

�
s + 3 1

s

s− 1 1
s−1

�

det
�

s + 3 s
s− 1 s

�

L(x) =
1− s

s−1

s2 + 3s− s2 + s
, L(y) =

s+3
s−1 −

s−1
s

s2 + 3s− s2 + s

(s + 3)L(x) + sL(y) =
1
s

(s− 1)L(x) + sL(y) =
1

s− 1

48



L(x) =
1− s

s−1

4s
, L(y) =

s+3
s−1 −

s−1
s

4s

L(x) =
1
4s
− 1

4(s− 1)
, L(y) =

s + 3
4s(s− 1)

− s− 1
4s2

Hence,                    .                   x(t) = 1
4 −

1
4et. In L(y) put the first fraction in

partial fractions and distribute the s2 in the second 
L(y) = − 3

4s + 1
s−1 −

�
1
4s −

1
4s2

�
. Hence, 

L(y) = − 1
s + 1

s−1 + 1
4s2 . Hence, y = −1 + et + 1

4 t.

The partial fraction calculations:
s+3

4s(s−1) = A
s + B

s−1 ⇒ s + 3 = 4A(s− 1) + 4Bs.   Hence,
4A + 4B = 1 and           .−4A = 3. Solve for  A  and  B.

to get                                           .
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Periodic Functions

The graph is made by repeating a beginning part.  The

T 2T 3Tt

f(t)

T+t

f(T+t)

2T+t

f(2T+t)

This part is repeated

smallest  T>0  such that  f(t+T)=f(t)  for all  t  is called
period of the function.  The Laplace transform of  f  is 

L(f)(s) =
1

1− e−Ts

� T

0
e−tsf(t) dt.

0
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2a 4a 6a

Example: Find the Laplace Transform of the periodic
function f  whose graph is given below.

1

-1

The period of f is 2a and, i.e., f(t)=f(t+2a), for all t and 

f(t) =

�
1 if 0 ≤ t < a

−1 if a ≤ t < 2a
.

L(f(t))(s) =
1

1− e−2as

� 2a

0
e−tsf(t) dt,

Applying the formula for the transform of a periodic function, we have
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=
1

1− e−2as

�� a

0
e−tsf(t) dt +

� 2a

a
e−tsf(t) dt

�

=
1

1− e−2as

�
e−as

−s
− 1
−s

− e−2as

−s
+

e−as

−s

�

=
1

1− e−2as

��
e−ts

−s

�a

0

−
�
e−ts

−s

�2a

a

�

=
1

1− e−2as

�� a

0
e−ts dt−

� 2a

a
e−ts dt

�

=
1

(1− e−2as)
1
s
(1− 2e−as + e−2as)
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=
1
s

1
(1− e−as)(1 + e−as)

(1− e−as)(1− e−as)

=
1
s

(1− e−as)
(1 + e−as)

, s > 0

Recall

tanh(x) =
(ex − e−x)
(ex + e−x)

=
e−x(ex − e−x)
e−x(ex + e−x)

=
(1− e−2x)
(1 + e−2x)

Whence, 
L(f)(s) =

tanh(as
2 )

s
, s > 0.

2x=as
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