Agarose Gel Electrophoresis of DNA

By: Sahar alSubaie

principle :

Agarose Gel Electrophoresis uses electrical field to separate macromolecules (DNA and Protein) that differ in <u>size</u>, <u>charge</u> and <u>configuration</u>.

DNA :

DNA molecules have –ve charges.
 They differ in size (bp).

Factors affect electrophoresis

Molecule's charge

DNA (-ve charged molecule) moves from cathod (-ve) to Anode(+ve) pole

Molecule's size

The lighter the molecule the faster it is .

The Agarose concentration:

- The higher the concentration the smaller the size of molecule that can pass the matrix.
- The higher the concentration of gel the slower the movement of particles.
 - 2% is the concentration of choice for separation of most of DNA fragments.

The gel matrix EM. Image

Conformation of DNA.

The liner DNA is slower than supercoiled molecule .

Applied current

In general ,the higher the current ampere and Voltage the faster the net movement of molecules

Direction of electrical field

- For DNA separation the direction is from cathode to anode
- So make sure to put your sample at the right direction or no movement will result.
- Be carful to choose the right electrical connection of the device too.

electrophoresis buffer

As it provides the ions which transfer the electrical filed within the fluid .

Also they modify the net charges of the molecules

Intercalating dyes

Ethidium Bromide binds (intercalation between the base pairs) to the DNA and decrease its mobility.

The larger the DNA molecule the more Ethidium Bromide binds to it.

Equipment of agarose gel electrophoresis

Electrophoresis chamber . Power supply. Gel casting trays. □ Sample combs to form sample wells. Running buffer. Loading buffer. **D**. Ethedium bromide. (mutagen) Transilluminator.

Gel casting tray & combs

Running buffers:

Choosing depends on the size of DNA.
 <u>TAE buffer (Tris Acetate EDTA)</u> :the most common used buffer.
 <u>TBE buffer (Tris Borate/EDTA)</u> is often used for smaller DNA fragment (i.e less than 500bp).

Loading buffer:

This buffer mixed with the sample, it gives the samples :

- ✓ color
- ✓ density
- ✓ makes it easy loading in the wells.

It consists of bromophenol blue(the tracing dye), sucrose and water.

Markers (DNA ladder):

Different kinds of markers

- most of them are bacteriophage DNA cut with restriction enzymes
- Storing markers ready mixed with loading buffer at 4C.
- Choosing marker with a good resolution for fragment size in the experiment.

DNA size marker

Visualization:

Transiluminator (an ultraviolet light box) is used to visualize :✓ Ethidium bromide- stained DNA in gels.

✓ Ethidium bromide-free techniques are available also.

Purposes:

To look at the DNA
To quantify it
To isolate a particular band.

Applications:

- Estimation DNA quantity and quality
- Using a DNA ladder to approximate the size of DNA molecules.
- Analysis of PCR products.
- Separation of restriction enzyme digested DNA prior to Southern Blot transfer.
- Quantity is assessed using lambda DNA ladder.
- Quality of DNA is assessed by observing the absence of streaking or fragments (or contaminating DNA bands).

Procedure:

- Prepare a 1% agarose solution, measure 3 g agarose into a flask and add 150 ml 1X buffer. Microwave until agarose is dissolved and solution is clear.
- Allow solution to cool to about 55°C before pouring. Add 10 μl of Ethidium bromide or alternative dye
- Prepare gel tray and place comb in gel tray.
- Pour 50°C gel solution into tray and allow gel to solidify about 20 minutes at room temperature.
- To run, gently remove the comb, place tray in electrophoresis chamber, and cover (just until wells are submerged) with electrophoresis buffer (the same buffer used to prepare the agarose).
- To prepare samples for electrophoresis, add 1 μl of 6x gel loading dye for every 5 μl of DNA solution. Mix well & load. Don't forget to load the DNA size marker.
- Electrophorese at 50-150 volts until dye markers have migrated an appropriate distance, depending on the size of DNA to be visualized.
 - Visualize DNA under the UV transilluminator.

References:

- OpenWetWare contributors, "20.109(F07): Agarose gel electrophoresis," OpenWetWare, , http://openwetware.org/index.php?title=20.109%28F07%29:_Agarose_gel_electrophoresis&oldid=153043 (accessed August 29, 2016).
- Tirabassi, R. (2016) How to identify Supercoils, Nicks and circles in Plasmid Preps. Available at: http://bitesizebio.com/13524/how-to-identify-supercoils-nicks-and-circles-in-plasmid-preps/ (Accessed: 29 August 2016).
- Sigmon, J. and Larcom, L. (1996) 'The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis', Electrophoresis., 17(10), pp. 1524–7.
- Inc, T.F.S. (2015) Nucleic acid Stains—Section 8.1. Available at: https://www.thermofisher.com/sa/en/home/references/molecular-probes-the-handbook/nucleic-aciddetection-and-genomics-technology/nucleic-acid-stains.html (Accessed: 29 August 2016).
- Sambrook and Russell (2001). Molecular Cloning: A Laboratory Manual (3rd ed.). Cold Spring Harbor Laboratory Press. (Sambrook and Russell cites the paper:Glasel J. (1995). "Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios". BioTechniques 18: 62–63.)
- Clark, W. and K. Christopher. 2000. An introduction to DNA: Spectrophotometry, degradation, and the "Frankengel' experiment. Pages 81-99, in Tested studies for laboratory teaching, Volume 22 (S. J. Karcher, Editor). Proceedings of the 22nd Workshop/Conference of the Association for Biology Laboratory Education (ABLE), 489 pages.
- The Analysis of DNA or RNA using Its Wavelengths: 230 nm, 260 nm, 280 nm". Bioteachnology.com. 2010-01-13. Retrieved 2010-03-12.