Determination of sodium benzoate in fruit juice

Preservatives

- A substance which when added to food is capable <u>of inhibiting, retarding or arresting the</u> <u>process of **fermentation**, acidification or other decomposition of food.</u>

- Used to prevent and retard the microbial spoilage of food.

Examples of preservatives

- Benzoic acid
- Sodium benzoate
- Potassium benzoate
- Sorbic acid
- Potassium sorbate
- Propionic acid
- Sodium propionate
- Calcium propionate

"Preservatives preserve food, they don't preserve you".

- The **inhibitory action** of preservatives is due to their interfering with the mechanism of cell division, permeability of cell membrane and activity of enzymes.

SCARY SEVEN: INGREDIENT PRESERVATIVES

REPORTED =

MCLUDE

ALLERGIC REACTIONS

ALWAYS READtheLABEL

Propyl Gallate **VEGETABLE** OIL

FROZEN FISH & SOME **CHOCOLATES**

Polysorbates 60, 65 & 80

ICE CREAM

Potassium Sorbate COTTAGE CHEESE, MARGARINE

BACON, SAUSAGÉS

CEREAL

Sodium benzoate

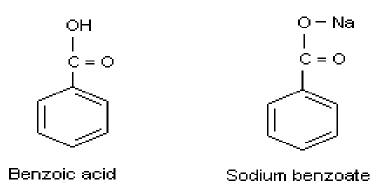
- Sodium benzoate(MW = 144) is a preservative. As a food additive, sodium benzoate has the E number E211.
- It is bacteriostatic and fungistatic.
- It is most widely used <u>in acidic foods</u> such as salad dressings (vinegar), carbonated drinks (carbonic acid), jams and fruit juices and pickles (vinegar).
- It is also used as a <u>preservative in medicines</u>.

Sodium benzoate

- When added in high concentration it **affects the taste of juice**.
- Sodium benzoate is usually permitted at a concentration of <u>up to 1.3 g/l of juice</u>. (**not exceed 0.13** %)

Objective

To estimate the concentration of benzoate in fruit juice.



Principle

The benzoate anion is not soluble in non-polar solvents because of its <u>negative charge</u>.

However, in acid solution, benzoic acid is formed. This is neutral & quite non-polar.

Moreover, it is soluble in non-polar solvents.

Principle-continue

- Benzoic acid is **separated** from a known quantity of the sample **by saturating** with NaCl and then acidifying with dilute HCl and extracting with chloroform.
- The chloroform layer is made mineral acid(inorganic acid) free and the solvent is removed by evaporation. The residue is dissolved in neutral alcohol and the <u>amount of benzoic acid is</u> <u>determined by **titration** against standard alkali (0.05 M NaOH) using phenolphthalein as an indicator.</u>

Method:

- Weight 10 g of sample into a beaker and add 1 ml of 10% NaOH solution and 12 g NaCl.
- Add sufficient water to bring the vol. up to about 50 ml and let it stand for 30 min. with frequent shaking.
- Add 1 drop of ph.ph (the color will change), add drops of **HCl** until the color change (disappear), then add excess 3 ml **HCl**.
- Add 25 ml of **chloroform**.
- Transfer into **separator funnel**. Let it stand for 20 min with frequent shaking.
- Transfer 12.5 ml of the chloroform layer (lower layer) into a conical flask and evaporate of the chloroform on a steam bath.
- Add 50 ml of 50% ethanol solution.
- Titrate with 0.05 M NaOH add 1 drops of ph.ph as indicator (colorless in acidic).

Calculate the amount of sodium benzoate in the sample.

Calculation:

```
1 ml of 0.05M NaOH → 0.0072 g sodium benzoate
..... ml NaOH → ? gm of sodium benzoate
% of sodium benzoate = (wt. of sodium benzoate / wt. of sample) X 100
```

- Normal range not exceed 0.13 %