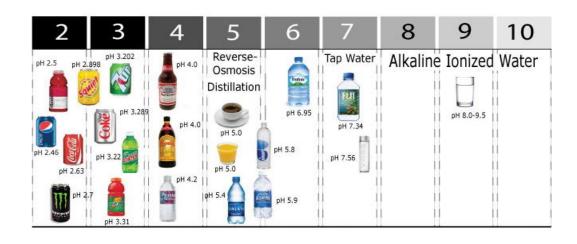
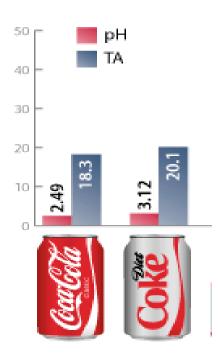

Estimation of inorganic phosphate in soft drink

Phosphate in food

Phosphate occurs naturally in the form of organic esters in many kinds of food, including meat, potatoes, bread, and milk.

Phosphate also used as a food additive (inorganic phosphate) as a preservative, a flavor or color enhancer, extend shelf life, and retain moisture.


Soft drinks are complex mixtures containing a variety of substances such as coloring compounds, flavoring agents, acidifiers, sweeteners, preservatives, and caffeine.


The most common acidifier used in soft drinks is **phosphoric** which gives a <u>tangy taste</u> in the mouth.

Phosphoric acid can also acts as a preservative, keeping the contents of the bottle fresh.

Due to the use of phosphoric acid, **cola is a actually more acid than vinegar** which no body can drink straight. But a ton of <u>sugar</u>, <u>dyes and flavoring are added to mask the acidity</u>.

objective

Estimation of organic phosphate in soft drink.

Principle:

Phosphoric acid is **colorless**, they cannot be directly determined using visible-light spectrophotometry.

Instead, we will quantitatively <u>convert them into a colored substance</u>, whose **absorbance can be easily measured**.

Inorganic phosphate reacts with ammonium molybdate in an acid solution (ammonium molybdate prepared in sulphoric acid in this experiment) to form phosphomolybdic acid.

Phosphomolybdic acid is then reduced by a reducing agent (3% ascorbic acid) to give molybdenum blue a green/blue color but does not affect the uncombined molybdic acid.

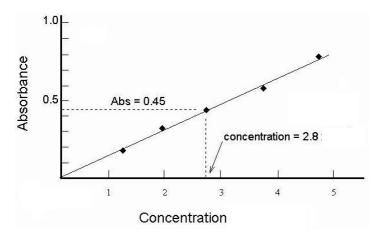
Inorganic phosphate + ammonium molybdate phosphomolybdic acid phosphomolybdic acid molybdenum blue

Method

	Standard phosphate solution	Soft drink sample	Water	Ammonium molybdate	Ascorbic acid
Blank			2		
3 ppm	2				
4.5 ppm	2				
6 ppm	2				
12 ppm	2			0.5 ml	0.5 ml
15 ppm	2				
SD		0.5	1.5		
SD		0.2	1.8		

Method

- Mix throughly after each addition.
- Allow to stand for 10 min. (a deep blue/green color should develop).
- Measure the absorbance at 650 nm.


concentration	Absorbance
3 ppm	
4.5 ppm	
6 ppm	
12 ppm	
15 ppm	
SD unknown	
SD unknown	

Results and Calculations:

- Plot a graph between absorbance and concentration of phosphate in various standard solutions and obtain the calibrated curve.
- From the curve determine the amount of phosphate in the test solution.

Inorganic phosphate concentration (ppm) = dilution factor x concentration.

* Note: Soft drink sample was diluted in the sample preparation (1:10)

[Two dilution factor]