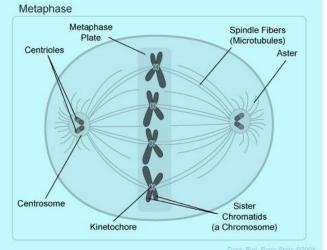
Harvest and Staining Protocols


By: Sahar AlSubaie

Harvest Protocols:

- Arresting cells at metaphase stage .
- □ Hypotonic treatment.
 - Cells fixation.

metaphase stage:

chromosomes are lined at the equatorial plate before sister chromatides are pulled to opposite poles by spindle fibers for incorporation into the two daughter cells.

Arresting cells at metaphase stage.

Done by adding mitotic arrestant such as Colcemid.

Mechanism of Colcemid action:

preventing spindle fibers formation and thereby preventing pulling the two sister chromatides to the daughter cells.

Hypotonic treatment:

Using hypotonic solution results in :

✓ Swelling of the cells :

Thinning cytoplasm & enhance chromosome spreading✓ Lysis of RBCs.

Cells fixation:

- □ Fixative is added to kill and preserve the cells.
- □ It removes the water from the cell (dehydrate them).
- □ hardens membranes and chromatin.

Cells fixation:

- 1st few drops of fixative stop the action of hypotonic solution and prepare cells for next higher fixative concentrations
- The brown supernatant is the color of the methemoglobin.(formed after the addition of fixative)
- Multiple fixative steps should be carried out. (until a clear supernatant is obtained)

Procedure:

 \blacksquare after incubation , add 50 μl of colcemid.

 \blacksquare Incubate for 15 mins at 37 $^{\circ}{\rm C}$.

Centrifuge the tube for 8 mins at 1200 rpm speed .

 $\hfill Discard$ the supernatant without touching the buffy coat (because cells are there)

 $\hfill resuspend pellets$:Mix thoroughly using the your palm hand , continue until the buffy coat disappears.

 $\square Add \ 2 \ ml \ of \ pre-warmed \ hypotonic \ solution(0.075 \ M \ KCl) \ drop \ by \ drop \ while \ mixing \ using \ vortex$.

Add 8 ml of hypotonic solution without mixing .

□Incubate at 37 °C for 15 mins.

□1st wash : Add 1 ml of fixative(3:1 methanol: acetic acid) dropwise

Centrifuge for 8 min at 1200 rpm.

Procedure:

Remove the supernatant but not completely .

- ■Mix thoroughly as the cells are so sticky
- Add 2 ml of fixative drop by drop using vortex .
- Add more fixative (up to 10 ml) without using vortex.
- Centrifuge for 8 min at 1200 rpm.
- \Box Now the 2nd wash: starts after removing the supernatant.
- □Mix to detach the cells from the tube wall
- Add 10 ml of fixative
- Centrifuge for 8 min at 1200 rpm.
- Don't remove the supernatant now.
- □Keep at 4 °C until you can do the dropping and staining

Dropping Protocol:

Procedure:

 Replace the fixative with a new one. Using a fine glass pasture pipette make a gentle mix without making air bubbles, as this will cause cells to clump.
Clean the slides with methanol, that will help to get a uniformity in spreading.

3. Carry the slide in 45 degrees and drop the sample from about one meter apart.

4. As a test slide drop about 4 drops on the slide, leave to air dry completely and observe the mitotic index and metaphases compactness.

Aging: Put the slides in the oven at 60C over night or at 90C for 90 minutes, that will driving off water and get better banding pattern.

Staining:

Staining Protocols:

- **G** banding (Giemsa)
- Q banding (Quinacrine, fluorescent stain)
- **R** banding (Reverse)
- **C** banding (Centromeric(heterochromatin)
- □ Ag-Nor stain (Nucleolar Organizing Regions)

The most common .

Typsin hydrolyses the protein component of the chromatin (Wang and Federoff) :

allowing the Giemsa dye to react with the exposed DNA.

Giemsa stain is a complex mixture of dyes:

The basic dye: aminophenothiazin dyes azure A,azureB, azure C, thionin, and mythelen blue.

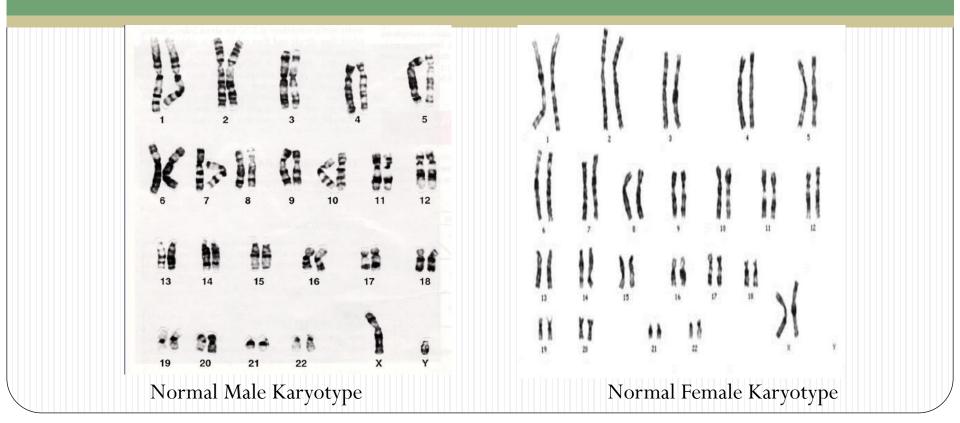
The acidic dye: eosin.

Immersing slides in fetal calf serum to stop the activity of the trypsin since the serum contains α 1-antitrypsin

- Appropriately stained chromosomes neither too dark nor too pale.
- Under-trypsinized chromosomes
 - have indistinct bands and little contrast. i.e.fuzzy in appearance.

- Over-trypsinized chromosomes
 - have sharp bands and often appear frazzled at the ends.
- **D** Eventually overtrypsinized chromosomes
 - are very pale after staining and may appear ghost-like and very swollen.

- Each chromosomes characterized by dark & light bands
- 400 bands in the haploid genome
- Light bands are genetically active sites
- Dark bands are gene poor rich in AT pairs.


- Chromosomes 13,18,21gene poor (very dark chromosomes)
- Chromosome 21 is smaller than Chromosome 22
- Chromosome 21(200 genes) is half as many as Chromosome22 (400 genes)

Procedure :

- Slides must cool down to RT
- ☐ Immerse in trypsin solution 10-15 sec
- □ Wash in phosphate buffer or serum (to end trypsin activity)
- Transfer to Gimsa stain 4 mins.
- □ All the staining solution must be kept at 37 °C water bath during staining procedure.
- Raines in D-water
- Leave to dry completely
- Examine under microscope

Analysis:

- □ Count chromosomes in 10-15 metaphases
- □ Count 30 if mosaicism suspected
- Detailed analysis of 3-5metaphase

Q banding

- Used for Y chromosome abnormalities or mosaicism
- Similar to G band (but It can detect polymorphism)
- Examined under fluorescent microscope

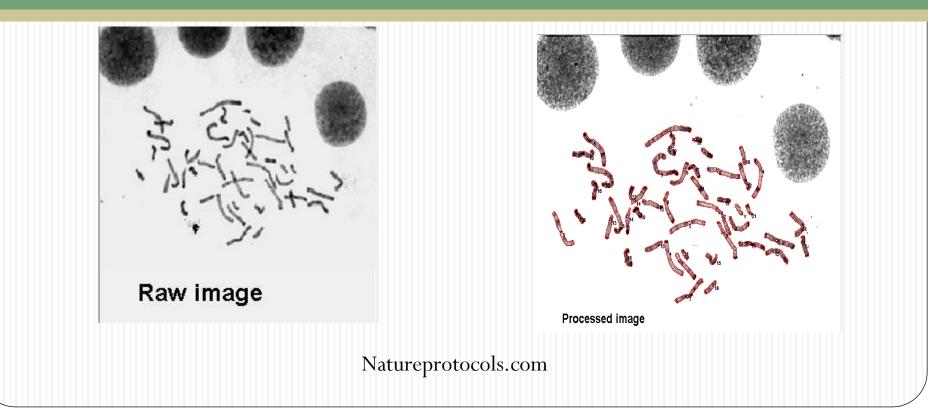
R banding:

- □ Used to identify X chromosome abnormality
- ☐ Heat chromosomes before treating with Gimsa
- Light and dark bands are reversed

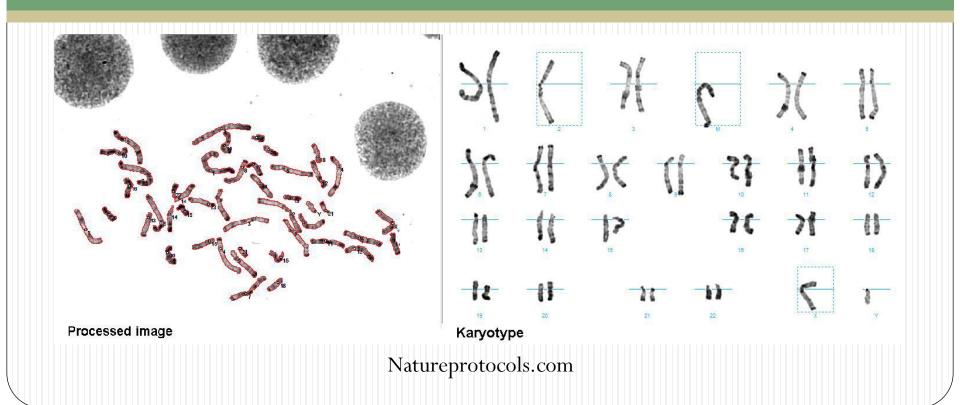
C banding

To identify centromere/ heterochromatin Heterochromatic region: -contains highly repetitive DNA sequence -highly condense chromatin fibres -genetically inactive (structural elements) •Treated chromosomes:

-Acid


-Alkaline

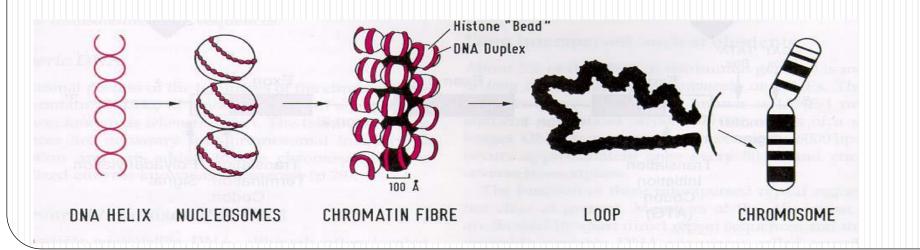
-Then G band


Karyotyping:

Organization of the chromosomes of an individual, lined up using computer image processing according to: Size, the largest to smallest Location of centromere Banding pattern

Karyotyping:

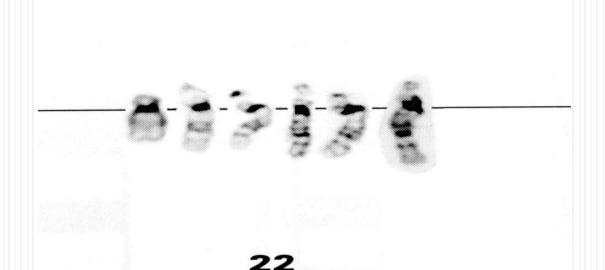
Karyotyping:



Banding pattern:

A 'band' is defined as that part of a chromosome which is clearly distinguishable from its adjacent segments by appearing darker or lighter with one or more banding techniques.

Chromosome condensation:


Various stages in condensation of DNA and Chromatin to form a metaphase chromosome

High resolution banding:

- prometaphase and prophase chromosomes
- treatment of the cultures with chemical agent to produce cell synchrony such as (Methotrexate).
- then adding a release agent to prevent contraction such as (Thymidine).

High resolution banding:

Resolution G-banding: G-banded chromosome 22 at various levels from 400-850 band level. Illustrate how a prophase and prometaphase bands coalesce to form metaphase bands.