Lab 4: Interpolation using Divided Difference and Newton’s Formula

1. As a starting example we will construct the divided difference table as given in lecture slides for the following data points x=[1 1.1 1.2 1.3 1.4] and y=[0.5403 0.45360 0.36236 0.26750 0.16997]. The divided difference table for these data points is given below:

[image:]

2. In order to construct the Newton polynomial in MATLAB, we would want to first construct the divided difference table. We can do this by storing the values in the rows of a 5 x 5 matrix D.
The first column of D, referenced in MATLAB as D(: ,1), will store the function values at the interpolating points. The second column of D -- D(:, 2) -- will store the first divided differences. The third column of D -- D(:, 3) -- will store the second divided differences. The fourth column of D -- D(:, 4) -- will store the third divided differences. The fifth column of D -- D(:, 5) -- will store the fourth divided difference.
The entries in the matrix D will be:
[image:]

 3. Create a 5x5 matrix D initially with all zeros:
>> D = zeros(5,5);

4. Set up the vector X and Y with the x-coordinates of the interpolating values:
>> X=[1 1.1 1.2 1.3 1.4];
>> Y=[0.5403 0.45360 0.36236 0.26750 0.16997];
These entries will be stored as:
For X as:
[image:]
If you run this on Matlab command window
>>X(3)
ans=1.2
>>X(1:3)
ans = 1 1.1 1.2
And for Y as:
[image:]

5. Now start computing the divide differences column by column for the matrix D The first column is just the values of the function at the interpolating points, stored in Y:
» D(:,1) = Y;

6. We next work on the second column of D -- starting in first row (D(1,2)) and working down to fourth row: >> D(1,2) = (D(2,1)-D(1,1))/(X(2)-X(1));
>> D(2,2) = (D(3,1)-D(2,1))/(X(3)-X(2));
>> D(3,2) = (D(4,1)-D(3,1))/(X(4)-X(3));
>> D(4,2) = (D(5,1)-D(4,1))/(X(5)-X(4));

7. Fill the remaining column by using the following commands:
>> D(1,3) = (D(2,2)-D(1,2))/(X(3)-X(1));
>> D(2,3) = (D(3,2)-D(2,2))/(X(4)-X(2));
>> D(3,3) = (D(4,2)-D(3,2))/(X(5)-X(3));
>> D(1,4) = (D(2,3)-D(1,3))/(X(4)-X(1));
>> D(2,4) = (D(3,3)-D(2,3))/(X(5)-X(2));
>> D(1,5) = (D(2,4)-D(1,4))/(X(5)-X(1));
The final matrix D will have the following form:
>>D
D =
0.5403 -0.8670 -0.2270 0.1533 0.0125
0.4536 -0.9124 -0.1810 0.1583 0
0.3624 -0.9486 -0.1335 0 0
0.2675 -0.9753 0 0 0
0.1700 0 0 0 0

8. Once the ‘D’ Matrix has been created, the Newton polynomials of degrees 1 through 4 which are:
[image:]
Can be constructed recursively in Matlab as follows:

>> P1 = [0 D(1,1)] + D(1,2)*poly(X(1))
P1 =
-0.8670 1.4073

[bookmark: _GoBack]Similarly, higher polynomials can be constructed
image1.png
i x y=flx) DFlx) Df(x) D) DF{x)
o 10 054030 0670 02270 015333 o001z

1 11 0.45360 05124 “0.1510 015830 o0

2 12 036236 ~0.5486 01335 o o

5 15 026750 05753 o o o

2 1a 016357 o o o o

image2.png
) (.21 (.31 (21
D(11)=054030 | D(1,2)=-08670 | D(1,31=-02270 | D(12)=0.15333
D(21)=025360 | D(2.2)=-09124 | D(23)=-01810 | D(2.2)=0.15830
D(31)5036236 | D(3,2)0.9486 | D(3,3)=01335 | D(3.4)0
D(41)=026750 | D(4,2)=-09753 | D(23)=0 D(a2)0
(511016957 | D(5,2)=0 (5,310 (5,210

image3.png
[XaF [XGFLl [XGFiZ [XGFLs [XGFiA

image4.png
Ym=035403 [Y(2-045360 | Y(3)=036236 | Y(#)=026750 | Y(50.16997]

image5.png
Py(x)
Py(x)
P3(x)
Py(x)

5403 — .8670 (z — 1)
Pi(x) —.2270 (x — 1) (= — 1.1)
P(x)+.1533(z — 1) (z — 1.1) (¢ — 1.2)
Ps(x)

40125 (2 — 1) (z — 1.1) (z — 1.2) (z — 1.3)

