
Temperature Coefficient of Resistivity

Resistance of any material varies with temperature.. and the relation between them can find in this law:

$$R_{T} = R_{o} [1 + \alpha (T - T_{o})]$$

where R_T and R_o are the values of the resistance at temperature T and T_o , respectively. T_o is often taken to be 0° C. α is the temperature coefficient of resistivity. Pure metals have a small, positive value of α , which means that their resistance increases with increasing temperature. From temperature measurements of R you can find α . To do this you will plot resistance values versus T, and approximate the results with a straight line. The intercept of this line with the resistance axis is R_o , and the slope divided by R is the values of α .

The figure shown below described the relation between resistances of any material with temperature.

