Estimation of Total phenolic content in different plants

BCH445 [Practical]

Free radicals:

- Free radicals are those particles and molecules that cause damage to the body's cells and essential fatty acids by their <u>ready reactivity</u> and <u>oxidizing ability</u>.
- This characteristic is defined by their unpaired electron.

 These free radical molecules are released during the normal metabolic process of oxidation.

Free radicals:

- Free radicals come from a wide variety of sources but <u>mainly our diet.</u>
- The biggest source of ingested free radicals is probably fried foods and heated cooking oils, e.g. potato crisps/chips, french fries, onion rings etc. (fried in vegetable oils which oxidises readily into free radicals).

Oxidative stress:

• Oxidative stress is an **imbalanced state** where excessive quantities of reactive oxygen and/or nitrogen species **over come** endogenous antioxidant capacity, leading to oxidation of a varieties of biomacromolecules, such as enzymes, proteins, DNA and lipids.

• Oxidative stress involve in the development of chronic degenerative diseases including coronary heart disease, cancer and aging.

Antioxidants:

- Antioxidants are defined as compounds that can delay, inhibit, or prevent the oxidation of oxidizable materials by scavenging free radicals and diminishing oxidative stress.
- Fruits and vegetables contain a wide variety of <u>free-radical scavenging</u> molecules, including phenolic compounds, carotenoids, and vitamins.

Phenolic compounds:

- Phenolics are compounds possessing <u>one or more aromatic rings with one or more hydroxyl</u> groups.
- Plant phenolic compounds are extremely heterogeneous and may range from simple monomers to very large polymers.
- Studies have shown that consumption of food rich in phenolics can slow the progression of various debilitating diseases.
- Therefore, mostly, the current focus is on the **anti-oxidant action of phenolics**.

• The antioxidant activity of phenol is mainly related to redox properties.

• **Tea** remains one of the most popular beverages world-wide and contains a variety of phenolic compounds which are potent antioxidants.

Practical Part

Objective:

• Determination of total phenolic content in green tea and black tea.

Principle:

- In this method, we will use a colorimetric method, the Folin-Ciocalteu assay, to quantify the total phenolic content of the samples.
- The oxidation of a phenolate ion from the sample and the reduction of the phosphotungstic-phosphomolybdic reagent_which known as <u>Folin-Ciocalteu</u> result of in the formation of a blue <u>complex</u> that absorb light at 650nm.

Principle cont':

• The reaction must take place under alkaline conditions in order to <u>aid with the uptake of oxygen by the phenol</u>, which occurs most efficiently near the pka (approximately 10) of the phenol, and this is done by the addition of sodium carbonate.

Method:

Tube	Catechol standard 5mg/100ml	Sample (ml)	Dist. H2O (ml)	Folin-Ciocalteu reagent (ml)		Na2CO3 (ml)
1	0.2		3.8			
2	0.4		3.6			
3	0.6		3.4			
4	0.8		3.2		Wait	
5	1		3		0	0 1
6	1.2		2.8		3 min	2 ml
7	1.4		2.6			
Black tea		0.1	3.8			
Green tea		0.1	3.8			
Coffee		0.1	3.8			
Mint		0.1	3.8			

Method:

- Mix thoroughly and measure the absorbance at 650 nm against a reagent blank.
- Prepare a standard curve using different concentrations of catechol.

Results:

Tube	Absorbance	Concentration (mg/dl)
1		
2		
3		
4		
5		
6		
7		
Black tea		
Green tea		
Coffee		
Mint		

Calculations:

- The concentration from the standard curve x dilution factor =A....
- $A \times 1 dl = \dots B \dots$
- \bullet B \rightarrow 2 grams
- ? **→** 100 grams
- Phenol content=.....mg/100 g