NUMERICAL INTEGRATION

Sometimes we face definite integrals that cannot be solved even if the integrands are continuous functions such as $\sqrt{1+x^3}$ and e^{x^2} . In our discussion in this course so far, we are not able to evaluate such integrals. We exploit this to show the reader a new technique to approximate the definite integrals.

1. The Trapezoidal Rule:

It is used to approximate $\int_a^b f(x) dx$ with a regular partition of the interval [a,b], where $\Delta x = \frac{b-a}{n}$, by using the formula $\int_{a}^{b} f(x) \ dx \approx \frac{b-a}{2n} \left[f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n) \right]$

Example : Approximate the integral $\int_0^1 \sqrt{x+x^2} \ dx$ using Trapezoidal rule

Answer: [a,b] = [0,1], $f(x) = \sqrt{x+x^2}$ and $\Delta x = \frac{1-0}{4} = 0.25$

n	x_n	$f(x_n)$	m	$mf(x_n)$
0	0	0	1	0
1	0.25	0.559017	2	1.11803
2	0.5	0.86625	2	1.73205
3	0.75	1.14564	2	2.29129
4	1	1.41421	1	1.41421
				6.55559

$$\int_0^1 \sqrt{x+x^2} \ dx \approx \frac{1-0}{2(4)} \left[f(0) + 2f(0.25) + 2f(0.5) + 2f(0.75) + f(1) \right]$$
$$\int_0^1 \sqrt{x+x^2} \ dx \approx \frac{1}{8} \left[6.55559 \right] \approx 0.819448 \ .$$

Exercise: Approximate the integral $\int_{2}^{2} \frac{1}{x-1} dx$ using Trapezoidal rule with

2. Simpson's Rule:

It is used to approximate $\int_a^b f(x) \ dx$ with a regular partition of the interval [a,b], where $\Delta x = \frac{b-a}{n}$, and n is \underline{even} , by using the formula $\int_a^b f(x) \ dx \approx \frac{b-a}{3n} \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n) \right]$

Example : Approximate the integral $\int_0^{10} \sqrt{10x - x^2} \ dx$ using Simpson's rule with n=4. Answer : [a,b]=[0,10] , $f(x)=\sqrt{10x-x^2}$ and $\Delta x=\frac{10-0}{4}=2.5$

n	x_n	$f(x_n)$	m	$mf(x_n)$
0	0	0	1	0
1	2.5	4.33013	4	17.3204
2	5	5	2	10
3	7.5	4.33013	4	17.3204
4	10	0	1	0
				44.6408

$$\int_0^{10} \sqrt{10x - x^2} \ dx \approx \frac{10 - 0}{3(4)} \left[f(0) + 4f(2.5) + 2f(5) + 4f(7.5) + f(10) \right]$$
$$\int_0^1 \sqrt{10x - x^2} \ dx \approx \frac{10}{12} \left[44.6408 \right] \approx 37.2007 \ .$$

Exercise : Approximate the integral $\int_0^2 \frac{x}{x+1} \ dx$ using Simpson's rule with n=4.