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 Preface 

  This book grew out of my experience as a young mechanical engineer working 
in the research organization of the U.S. subsidiary of SKF, an international ball 
and roller bearing manufacturer. The ball and roller bearing industry adopted 
the use of the Weibull distribution to describe the fatigue life of its products 
back in the 1940s and before the appearance of Weibull ’ s infl uential article in 
1951 that set the stage for its present enormous popularity (Weibull,  1951 ). I 
have tried to write the book that I would wish to have if I were today a young 
engineer asked to become my company ’ s  “ Weibull Guy. ”  

 I began to organize the material in order to teach a number of short courses 
sponsored by the American Society of Mechanical Engineers (ASME), the 
U.S. Navy, and later by the  American Bearing Manufacturers Association  
( ABMA ). The book benefi ted from my experience as an adjunct and, since 
1988, as a full - time Professor of Systems Engineering at Penn State ’ s School 
of Graduate Professional Studies in Malvern, Pennsylvania, where I have 
taught master ’ s level courses in statistics, quality control, and reliability engi-
neering, among others. I have twice used a draft of the book as the text for 
the Reliability Engineering course in the Master of Systems Engineering cur-
riculum. A sabbatical provided the opportunity to put much of the material 
into its present form. 

 The book has also benefi ted immensely from the opportunity I had while 
with SKF to develop techniques for inference on the Weibull distribution 
under the sponsorship of the Aerospace Research Laboratory at Wright Pat-
terson Air Force Base and the Air Force Offi ce of Scientifi c Research. 

 The availability of the digital computer is responsible for much of the prog-
ress in the development of tools for inference for the Weibull distribution that 
has taken place since the pioneering work of Lieblein and Zelen  (1956) . They 
used a computer to determine the variances and covariances of order statistics 
needed in the construction of best linear unbiased estimates of the Weibull 
parameters. Later the computer was essential for making practical the conduct 
of Monte Carlo determinations of quantities needed for inference and for the 

xiii



xiv preface

computation of estimates for individual samples or sets of samples using the 
method of maximum likelihood. 

 The astonishing evolution of personal computing now makes sophisticated 
inferential techniques accessible from the desktop of the engineer or scientist. 
Although available computing power is more than equal to the task, many 
powerful techniques for extracting the most information from expensive data 
have not yet been as widely adopted as they should because appropriate soft-
ware has been unavailable. It is my hope that this book and the software that 
accompanies it will help rectify that situation. 

 The use of software developed by a succession of talented programmers 
who have helped me over the years is illustrated in this book. The software 
may be downloaded for free from my website  http://www.personal.psu.edu/
mpt . It includes a set of disk operating system (DOS) programs that should 
serve until such a time as these capabilities become incorporated into com-
mercial software packages. There is also a set of modules written in Mathcad, 
which both document and perform the calculations associated with parameter 
estimation in various settings and with other quantitative models such as 
optimum age replacement and optimum burn - in. Finally it includes some 
graphical interface software that performs simulations needed for inference 
in single and multiple samples from the two - parameter Weibull, inference on 
the location parameter of the three - parameter Weibull, and for determining 
critical values for a test of goodness of fi t. 

 The reader will fi nd that the exposition is liberally accompanied by numeri-
cal examples. All of the chapters conclude with a set of exercises that may be 
used to test the reader ’ s mastery of the material or as class exercises in a short 
course. 

 The Weibull distribution cannot be discussed in isolation from the rest of 
statistical methodology. A knowledge of elementary probability theory and of 
distributions such as the binomial, Poisson, exponential, normal, and lognor-
mal is essential for its effective application. The book is intended to be self -
 contained in this regard, with the inclusion of two chapters treating the 
fundamentals of probability and statistics needed for what follows. 

 Chapter  1  introduces the ideas of mutual exclusivity, independence, condi-
tional probability, and the Law of Total probability as they impact reliability -
 related calculations. The chapter concludes with the application of probability 
principles to the computation of the reliability of systems in terms of the reli-
ability of its components. Combinations of series, parallel, and crosslinked 
systems are considered. The idea of the reliability importance of a component 
is introduced. 

 Chapter  2  describes singly and jointly distributed discrete and continuous 
random variables and the concepts of the mean, variance, and covariance. The 
binomial, Poisson, and geometric discrete random variables are introduced. 
The binomial distribution is applied to the task of computing the reliability of 
a system that comprises n  identical components and functions as long as at 
least k  ( ≤n ) of the components function successfully. The uniform, normal, and 
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lognormal continuous random variables are discussed and their use is illus-
trated with examples. The hazard function is introduced and its relationship 
to the reliability and density functions is explained. Finally the use of the 
inverse transformation method for simulating samples from a continuous dis-
tribution is described and illustrated by an example. 

 Chapter  3  enumerates the properties of the Weibull distribution. It shows 
the Weibull to be a generalization of the exponential distribution. It gives the 
expressions for the mean, variance, mode, skewness, hazard function, and 
quantiles of the Weibull distribution in terms of its two parameters. The loga-
rithmic transform of a Weibull random variable is shown to follow the distribu-
tion of smallest extremes. The power transformation of a Weibull random 
variable is shown to map it into a different member of the Weibull family. The 
Weibull distribution conditional on exceeding a specifi ed value is derived and 
shown to apply to the interpretation of the practice of burn - in used to improve 
the life of electronic equipment. The computation of the mean residual life is 
discussed as is the simulation of samples from a Weibull population. 

 Chapter  4  describes a number of useful applications of the two - parameter 
Weibull distribution valid when its parameters are known or assumed. This 
includes the distribution of mixtures of Weibull random variables, the compu-
tation of P ( Y     <     X ) when  X  and  Y  are both Weibull distributed with a common 
shape parameter, the Weibull distribution of radial error when the location 
errors in two orthogonal directions are independent and are normally distrib-
uted with a common variance. Three types of warranties are discussed (i) a 
pro rata warranty, (ii) a free replacement warranty, and (iii) a renewing free 
replacement warranty. Two preventive maintenance strategies are considered: 
(i) age replacement and (ii) block replacement. Also discussed are optimum 
bidding in a sealed bid competition and spare parts provisioning when the life 
distribution is exponential. Weibull renewal theory is discussed and applied to 
the analysis of the block replacement warranty. 

 Chapter  5  treats estimation in single samples. The notions of bias and preci-
sion of estimation are illustrated by means of the sampling distributions of two 
competing estimators of the 10 th  percentile of a Weibull population. Graphical 
estimation, which for years was the standard means of estimating the Weibull 
parameters, is explained and various choices of plotting positions are described 
and compared. Hazard plotting and the Kaplan – Meier method for graphical 
plotting of randomly censored data are explained. The method of maximum 
likelihood is introduced and applied to the exponential special case of the 
Weibull. Complete and type II censoring is discussed. Maximum likelihood 
estimation for the exponential is applied for the Weibull when the shape 
parameter is known. Software is illustrated for maximum likelihood estima-
tion of the Weibull parameters in complete and type II censored samples when 
both parameters are unknown. Exact interval estimation of the shape param-
eter and percentiles is considered for complete and type II censored samples. 
Asymptotic results generally applied in the type I censored case are explained 
and a Mathcad module is given for performing those calculations. 
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 Chapter  6  deals with sample size selection, as well as hypothesis testing. The 
question most frequently asked by experimenters of their statistical gurus is 
 “ what sample size do I need? ”  Two approaches are offered in this chapter both 
of which have their parallels in normal distribution theory. One approach is 
to display for each sample size a precision measure that refl ects the tightness 
of confi dence limits on the shape parameter and/or a percentile. The experi-
menter must express a goal or target value for either of these precision mea-
sures, and the needed sample size is determined by a table lookup. The second 
approach is in terms of the operating characteristic function for a hypothesis 
test. The experimenter specifi es a target value of the shape parameter or a 
percentile and the desired large probability that the sample will be accepted 
if the population value equals that target value. The experimenter also must 
specify an undesirable value of the percentile or shape parameter and the 
desired small probability that a population having that value will be accepted. 
Both approaches rely on percentage points of certain pivotal quantities only 
sparsely available in the current literature. Values are available for just a few 
of the Weibull percentiles of interest and for limited combinations of sample 
sizes and numbers of failures. Software described fully in Chapter  7  performs 
the simulations needed to remove these limitations. 

 Chapter  6  concludes with a discussion of how to test the hypothesis that a 
data sample was drawn from a two - parameter Weibull distribution. The discus-
sion distinguishes between the completely specifi ed case in which the Weibull 
parameters are specifi ed and the more usual case in which the parameters are 
estimated by the method of maximum likelihood. The computations for the 
Kolmogorov – Smirnov test are illustrated for an uncensored sample, but the 
discussion mainly focuses on the  Anderson – Darling  ( AD ) test, which has been 
shown in many studies to be among the more powerful methods of testing 
goodness of fi t to the Weibull. Critical values of the AD statistic may be found 
in the literature but are not available for many combinations of sample sizes 
and censoring amounts. A simulation program called ADStat is introduced to 
overcome this problem. It computes 19 percentage points of the distribution 
of the AD statistic. It handles complete and type II censored data and will 
accommodate both the case where the Weibull parameters are completely 
specifi ed and the case where they need to be estimated. The software will also 
compute the AD statistic for the user ’ s data sample if needed. 

 The Weibull and lognormal distribution often compete as models for life 
test data. Two methods are described and illustrated by examples for testing 
whether an uncensored sample follows the lognormal or the two - parameter 
Weibull distribution. 

 Chapter  7  is devoted to an exposition of the features of the simulation 
software program Pivotal.exe. Exact inference, that is, confi dence limits and 
hypothesis tests for the Weibull distribution parameters and percentiles based 
on maximum likelihood estimation in complete or type II censored samples, 
requires the determination via simulation of percentage points of the distribu-
tion of certain pivotal quantities. The program Pivotal.exe described in this 
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chapter performs these calculations for user - selected sample sizes and percen-
tiles. The software is also applicable to inference on series systems of identical 
Weibull - distributed components and for analyzing the results of sudden death 
tests. 

 The software allows the output of 10,000 paired values of the ML estimates 
of the Weibull shape and scale parameters, which can be post - processed using 
spreadsheet - based software to provide: (i) operating characteristic curves for 
hypothesis tests on the Weibull shape parameter or a percentile (ii) confi dence 
intervals on reliability at a specifi ed life and (iii) prediction intervals for a 
future value. 

 Chapter  8  is concerned with inference from multiple samples. It discusses 
how to make best use of the data that result when, not uncommonly, a set of 
tests is performed differing with respect to the level of some factor such as a 
design feature, a material, or a lubricant type. Provided that it can be assumed 
that the shape parameter is the same among the sampled populations, data 
may be pooled to provide tighter confi dence limits for the common shape 
parameter and for the percentiles of interest among the individual populations. 
A hypothesis test is provided for assessing whether the common shape param-
eter assumption is tenable and a simulation software program is described for 
generating the critical values needed for conducting the test among k  sets of 
samples of size n  which are complete or censored at the  r  - th order statistic. A 
test for the equality of the scale parameters among the tests is also given which 
is analogous to the one - way analysis of variance in normal distribution theory 
as is a multiple comparison test for differences among the scale parameters. 
Too often in published work reporting on sets of tests, the analysis goes no 
further than the subjective assessment of a set of Weibull plots. 

 The chapter also contains a method for setting confi dence limits for the 
value of P ( X     <     Y ) when  X  and  Y  are Weibull distributed with a common shape 
parameter based on random samples drawn from the two distributions. 
P ( X     <     Y ) is considered the reliability when  X  represents a random stress and 
Y  a random strength. 

 Chapter  9 , Weibull Regression, refers to the situation where testing is con-
ducted at several levels of a quantitative factor that might be a stress or load. 
The Weibull scale parameter is assumed to vary as a power function of the 
level to which this factor is set, while the shape parameter is assumed not to 
vary with the level of the factor. Such a model fi nds use in the analysis of 
accelerated tests wherein the purpose is to complete testing quickly by running 
the tests at stresses higher than encountered under use conditions. The fi tted 
model is then used to extrapolate to the lower stress values representative 
of  “ use ”  conditions. The factor need not necessarily be one that degrades 
performance. The model can account for the scale parameter either increas-
ing or decreasing as a power of the factor level. It is shown that exact confi -
dence intervals may be computed for the power function exponent, the shape 
parameter, and a percentile of the distribution at any level of the factor. Tables 
of the critical values are given for two and three levels of the factor. The 
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chapter includes a description of a DOS program for performing the calcula-
tions to analyze a set of data, along with a Mathcad module that illustrates the 
solution of the relevant equations. 

 The three - parameter Weibull distribution is covered in Chapter  10 . It gen-
eralizes the two - parameter Weibull to include the location or threshold param-
eter representing an amount by which the probability density function is offset 
to the right. In the context of life testing, this offset represents a guarantee 
time prior to which failure cannot occur. Tables are given for a range of sample 
sizes, whereby one may (i) test whether the location parameter is zero and (ii) 
determine a lower confi dence limit for the location parameter. A DOS program 
for performing the computations on a data set is described and a simulation 
program is given for extending the tabled values to other sample sizes and for 
exploring the power of the test. 

 Chapter  11  is entitled Factorial Experiments with Weibull Response. Tests 
conducted at all combinations of the levels of two or more factors are called 
factorial experiments. Factorial experiments have been shown to be more 
effi cient in exploring the effects of external factors on a response variable than 
nonfactorial arrangements of factor levels. In this chapter we present a meth-
odology for the analysis of Weibull - distributed data obtained at all combina-
tions of the levels of two factors. Item life is assumed to follow the two - parameter 
Weibull distribution with a shape parameter that, although unknown, does not 
vary with the factor levels. The purpose of the analysis is (i) to compute inter-
val estimates of the common shape parameter and (ii) to assess whether either 
factor has a multiplicative effect on the Weibull scale parameter and hence on 
any percentile of the distribution. A DOS program is included for performing 
the analysis. Tables are given for hypothesis testing for various uncensored 
sample sizes for the 2    ×    2, 2    ×    3, and 3    ×    3 designs. 

 I am grateful for support for my work by H.L. Harter, formerly of the Air 
Force Aerospace Research Laboratory at Wright Patterson Air Force Base, 
and by the late I. Shimi of the Air Force Offi ce of Scientifi c Research. I am 
grateful as well for the help of a number of people in developing the software 
and tables included in this volume. Mr. John C. Shoemaker, a colleague at SKF, 
wrote the software used for generating the tables of the distribution of pivotal 
quantities originally published as an Air Force report. Mr. Ted Staub, when a 
Penn State student, developed an early version of the Pivotal.exe software, 
which generates the distribution of pivotal quantities for user - selected sample 
sizes. Another student, Donny Leung, provided the user interface for Pivotal.
exe and extended it produce the Multi - Weibull software. A colleague, Pam 
Vercellone, helped refi ne Pivotal.exe and Multi - Weibull. Student Nimit Mehta 
developed the ADStat software described in Chapter  6 . Student Christopher 
Garrell developed the LocationPivotal software described in Chapter  10 . 

 Finally, I would like to acknowledge the wishes of my grandchildren Jaque-
line and Jake to see their names in a book. 

John I. McCool
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  C H A P T E R 1 

Probability     

     The study of reliability engineering requires an understanding of the funda-
mentals of probability theory. In this chapter these fundamentals are described 
and illustrated by examples. They are applied in Sections  1.8  to  1.13  to the 
computation of the reliability of variously confi gured systems in terms of the 
reliability of the system ’ s components and the way in which the components 
are arranged. 

 Probability is a numerical measure that expresses, as a number between 0 
and 1, the degree of certainty that a specifi c outcome will occur when some 
random experiment is conducted. The term random experiment refers to any 
act whose outcome cannot be predicted. Coin and die tossing are examples. A 
probability of 0 is taken to mean that the outcome will never occur. A probabil-
ity of 1.0 means that the outcome is certain to occur. The relative frequency 
interpretation is that the probability is the limit as the number of trials  N  grows 
large, of the ratio of the number of times that the outcome of interest occurs 
divided by the number of trials, that is,

    p
n
NN

=
→∞

lim     (1.1)   

 where  n  denotes the number of times that the event in question occurs. As will 
be seen, it is sometimes possible to deduce p by making assumptions about 
the relative likelihood of all of the other events that could occur. Often this is 
not possible, however, and an experimental determination must be made. 
Since it is impossible to conduct an infi nite number of trials, the probability 
determined from a fi nite value of  N , however large, is considered an estimate 
of  p  and is distinguished from the unknown true value by an overstrike, most 
usually a caret, that is,   p̂.  
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   1.1    SAMPLE SPACES AND EVENTS 

 The relationship among probabilities is generally discussed in the language of 
set theory. The set of outcomes that can possibly occur when the random 
experiment is conducted is termed the sample space. This set is often referred 
to by the symbol Ω . As an example, when a single die is tossed with the intent 
of observing the number of spots on the upward face, the sample space consists 
of the set of numbers from 1 to 6. This may be noted symbolically as  Ω     =    {1, 
2,    . . .    6}. When a card is drawn from a bridge deck for the purpose of determin-
ing its suit, the sample space may be written:  Ω     =    {diamond, heart, club, spade}. 
On the other hand, if the purpose of the experiment is to determine the value 
and suit of the card, the sample space will contain the 52 possible combinations 
of value and suit. The detail needed in a sample space description thus depends 
on the purpose of the experiment. When a coin is fl ipped and the upward face 
is identifi ed, the sample space is  Ω     =    {Head, Tail}. At a more practical level, 
when a commercial product is put into service and observed for a fi xed amount 
of time such as a predefi ned mission time or a warranty period, and its func-
tioning state is assessed at the end of that period, the sample space is  Ω     =    {func-
tioning, not functioning} or more succinctly,  Ω     =    {S, F} for success and failure. 
This sample space could also be made more elaborate if it were necessary to 
distinguish among failure modes or to describe levels of partial failure. 

 Various outcomes of interest associated with the experiment are called 
Events  and are subsets of the sample space. For example, in the die tossing 
experiment, if we agree that an event named A occurs when the number on 
the upward face of a tossed die is a 1 or a 6, then the corresponding subset is 
A    =    {1, 6}. The individual members of the sample space are known as elemen-
tary events. If the event B is defi ned by the phrase  “ an even number is tossed, ”  
then the set B is {2, 4, 6}. In the card example, an event C defi ned by  “ card suit 
is red ”  would defi ne the subset C    =    {diamond, heart}. Notationally, the prob-
ability that some event  “ E ”  occurs is denoted P(E). Since the sample space 
comprises all of the possible elementary outcomes, one must have P( Ω )    =    1.0.  

   1.2    MUTUALLY EXCLUSIVE EVENTS 

 Two events are mutually exclusive if they do not have any elementary events 
in common. For example, in the die tossing case, the events A    =    {1, 2} and 
B    =    {3, 4} are mutually exclusive. If the event A occurred, it implies that the 
event B did not. On the other hand, the same event A and the event C    =    {2, 
3, 4} are not mutually exclusive since, if the upward face turned out to be a 2, 
both A and C will have occurred. The elementary event  “ 2 ”  belongs to the 
intersection of sets A and C. The set formed by the intersection of sets A and 
C is written as A∩C . The probability that the outcome will be a member of 
sets A and C is written as  P ( A∩C ). 
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 When events are mutually exclusive, the probabilities associated with the 
events are additive. One can then claim that the probability of the mutually 
exclusive sets A and B is the sum of  P ( A ) and  P ( B ). 

 In the notation of set theory, the set that contains the elements of both A 
and B is called the union of A and B and designated  A   ∪   B . Thus, one may 
compute the probability that either of the mutually exclusive events A or B 
occurs as:

    P A B P A P B∪( ) = ( ) + ( )     (1.2)   

 The same result holds for three or more mutually exclusive events; the prob-
ability of the union is the sum of the probabilities of the individual events. 

 The  elementary  events of a sample space are mutually exclusive, so for the 
die example one must have:

    P P P P P P P( ) ( ) ( ) ( ) ( ) ( ) ( ) . .1 2 3 4 5 6 1 0+ + + + + = =Ω     (1.3)   

 Now reasoning from the uniformity of shape of the die and homogeneity of 
the die material, one might make a leap of faith and conclude that the prob-
ability of the elementary events must all be equal and so,

   P P P p( ) ( ) ( ) .1 2 6= = = =…   

 If that is true then the sum in Equation  1.3  will equal 6 p , and, since 6 p     =    1, 
 p     =    1/6. The same kind of reasoning with respect to coin tossing leads to the 
conclusion that the probability of a head is the same as the probability of a 
tail so that P(H)    =    P(T)    =    1/2. Dice and coins whose outcomes are equally 
likely are said to be  “ fair. ”  In the card selection experiment, if we assume that 
the card is randomly selected, by which we mean each of the 52 cards has an 
equal chance of being the one selected, then the probability of selecting a 
specifi c card is 1/52. Since there are 13 cards in each suit, the probability of 
the event  “ card is a diamond ”  is 13/52    =    1/4.  

   1.3    VENN DIAGRAMS 

 Event probabilities and their relationship are most commonly displayed by 
means of a Venn diagram named for the British philosopher and mathemati-
cian John Venn, who introduced the Venn diagram in 1881. In the Venn 
diagram a rectangle symbolically represents the set of outcomes constituting 
the sample space  Ω ; that is, it contains all of the elementary events. Other 
events, comprising subsets of the elementary outcomes, are shown as circles 
within the rectangle. The Venn diagram in Figure  1.1  shows a single event A.   

 The region outside of the circle representing the event contains all of the 
elementary outcomes not encompassed by A. The set outside of A,  Ω  - A, is 
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generally called  “ not - A ”  and is indicated by a bar overstrike   A. Since A and 
  A are mutually exclusive and sum to the whole sample space, we have:

    P A P A P( ) + ( ) = ( ) =Ω 1 0. .     (1.4)   

 Therefore, the probability of the event not - A may be found simply as:

    P A P A( ) = −1 ( ).     (1.5)   

 Thus, if A is the event that a bearing fails within the next 1000 hours, and 
 P ( A )    =    0.2, the probability that it will survive is 1    −    0.2    =    0.8. The  odds  of an 
event occurring is the ratio of the probability that the event occurs to the 
probability that it does not. The odds that the bearing survives are thus 
0.8/0.2    =    4 or 4 to 1. 

 Since mutually exclusive events have no elements in common, they appear 
as nonoverlapping circles on a Venn diagram as shown in Figure  1.2  for the 
two mutually exclusive events A and B:    

   1.4    UNIONS OF EVENTS AND JOINT PROBABILITY 

 The Venn diagram in Figure  1.3  shows two nonmutually exclusive events, A 
and B, depicted by overlapping circles. The region of overlap represents the 
set of elementary events shared by events A and B. The probability associated 
with the region of overlap is sometimes called the joint probability of the two 
events.   

     Figure 1.1     Venn diagram showing a single event A.  
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 In this case, computing the probability of the occurrence of event A or B 
or both as the sum of P(A) and P(B) will add the probability of the shared 
events twice. The correct formula is obtained by subtracting the probability of 
the intersection from the sum of the probabilities to correct for the double 
inclusion:

    P A B P A P B P A B∪ ∩( ) = ( ) + ( ) − ( ).     (1.6)   

 As an example, consider again the toss of a single die with the assumption 
that the elementary events are equally likely and thus each have a probability 

     Figure 1.2     Venn diagram for mutually exclusive events A and B.  

     Figure 1.3     Venn diagram for overlapping events A and B.  
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of occurrence of p    =    1/6. Defi ne the events A    =    {1, 2, 3, 4} and B    =    {3, 4, 5}. 
Then P(A)    =    4/6, P(B)    =    3/6 and since the set ( A   ∩   B )    =    {3, 4}, it follows that 
 P ( A   ∩   B )    =    2/6. The probability that the event A or B occurs may now be 
written:

   P A B P A P B P A B∪ ∩( ) = ( ) + ( ) − ( ) = + − =
4
6

3
6

2
6

5 6/ .   

 The formula above applies even to mutually exclusive events when it is recalled 
that for mutually exclusive events,

   P A B∩( ) = 0.   

 Similar reasoning leads to the following expression for the union of three 
events:

    
P A B C P A P B P C P A B P A C

P B C P A B C

∪ ∪ ∩ ∩
∩ ∩ ∩

( ) = ( ) + ( ) + ( ) − ( ) − ( )
− ( ) + ( ).

    (1.7)   

 The expression consists of the sum of all the individual event probabilities 
minus the joint probabilities of all pairings of the events plus the probability 
of the intersection of all three events. The generalization to more events is 
similar. For four events one would sum the individual probabilities, subtract 
all the probabilities of pairs, add the probability of all triples, and fi nally sub-
tract the probability of the four - way intersection. This calculation is sometimes 
referred to as the inclusion – exclusion principle since successive groupings of 
additional element intersections are added or subtracted in sequence until 
terminating with the inclusion of the intersection of every event under 
consideration.  

   1.5    CONDITIONAL PROBABILITY 

 We know that our assessments of probabilities change as new information 
becomes available. Consider the event that a randomly selected automobile 
survives a trip from coast to coast with no major mechanical problems. What-
ever the probability of this event may be, we know it will be different (smaller) 
if we are told that the automobile is 20 years old. This modifi cation of prob-
abilities upon the receipt of additional information can be accommodated 
within the set theory framework discussed here. Suppose that in the situation 
above involving overlapping events A and B, we were given the information 
that event A had indeed occurred. The question is, having learned this, what 
then is our revised assessment of the probability of the event B? The probabil-
ity of B conditional on A having occurred is written P(B|A). It is read as  “ the 



conditional probability 7

probability of B given A. ”  Clearly, had the specifi ed events been mutually 
exclusive instead of overlapping, the knowledge that A occurred would elimi-
nate the possibility of B occurring and so P(B|A)    =    0. In general, knowing that 
A occurred changes the set of elementary events at issue from those in the set 
 Ω  to those in the set A. The set A has become the new sample space. Within 
that new sample space, the points corresponding to the occurrence of B 
are those contained within the intersection A  ∩   B . The probability of B given 
A is now the proportion of P(A) occupied by the intersection probability 
P( A   ∩   B ). Thus:

    P B A
P A B

P A
|

( )
.( ) =

( )
∩

    (1.8)   

 Similarly, P(A|B) is given by:

    P A B
P A B

P B
|

( )
.( ) =

( )
∩

    (1.9)   

 The numerator is common to these two expressions and therefore by cross 
multiplication we see that:

    P A B P B P A B P A P B A∩( ) = ( ) ( ) = ( )| ( | ).     (1.10)   

 One application of this formula is in sampling from fi nite lots. If a lot of size 
25 contains fi ve defects, and two items are drawn randomly from the lot, what 
is the probability that both are defective? Let A be the event that the fi rst 
item sampled is defective, and let B be the event that the second item is also 
defective. Then since every one of the 25 items is equally likely to be selected, 
P(A)    =    5/25. Given that A occurred, the lot now contains 24 items of which 
four are defective, so P(B|A)    =    4/24. The probability that both are defective is 
then calculated as:

   Prob both defective( ) .|= ( ) = ( ) ( ) = ⋅ =P A B P A P B A∩
5

25
4
24

1
30

  

 A similar problem occurs in determining the probability of picking two cards 
from a deck and fi nding them both to be diamonds. The result would be (13/52)
(12/51)    =    0.0588. 

 When three events are involved, the probability of their intersection could 
be written as

    P A B C P A P B A P C A B∩ ∩ ∩( ) = ( ) ( ) ( )| | .     (1.11)   

 This applies to any ordering of the events A, B, and C. For four or more events 
the probability of the intersection may be expressed analogously.  
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   1.6    INDEPENDENCE 

 Two events A and B are said to be  independent  if the conditional probability 
P(A|B) is equal to P(A). What this says in essence is that knowing that B 
occurred provides no basis for reassessing the probability that A will occur. 
The events are unconnected in any way. An example might be if someone 
tosses a fair coin and the occurrence of a head is termed event A, and perhaps 
someone else in another country, throws a die and the event B is associated 
with 1, 2, or 3 spots appearing on the upward face. Knowing that the event B 
occurred, P(A|B) remains P(A)    =    1/2. When two events are independent, the 
probability of their intersection becomes the product of their individual 
probabilities:

    P A B P B P A B P B P A∩( ) = ( )⋅ ( ) = ⋅| ( ) ( ).     (1.12)   

 This result holds for any number of independent events. The probability of 
their joint occurrence is the product of the individual event probabilities. 
Reconsider the previous example of drawing a sample of size 2 from a lot of 
25 items containing fi ve defective items but now assume that each item is 
replaced after it is drawn. In this case the proportion defective remains con-
stant at 5/25    =    0.2 from draw to draw and the probability of two defects is 
0.2 2     =    0.04. This result would apply approximately if sampling was done without 
replacement and the lot were very large so that the proportion defective 
remained essentially constant as successive items are drawn. 

 When events A and B are independent the probability of either A or B 
occurring reduces to:

    P A B P A P B P A P B∪( ) = ( ) + ( ) − ( ) ( ).     (1.13)   

 Example 
 A system comprises two components and can function as long as at least one 
of the components functions. Such a system is referred to as a parallel system 
and will be discussed further in a later section. Let A be the event that com-
ponent 1 survives a specifi ed life and let B be the event that component 2 
survives that life. If P(A)    =    0.8 and P(B)    =    0.9, then assuming the events are 
independent:

   P at least one survives[ ] = + − ⋅ =0 8 0 9 0 8 0 9 0 98. . . . . .   

 Another useful approach is to compute the probability that both fail. The 
complement of this event is that at least one survives. The failure probabilities 
are 0.2 and 0.1 so the system survival probability is:

   P at least one survives[ ] = − ( )( ) = − =1 0 2 0 1 1 02 0 98. . . .   
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 The terms independence and mutual exclusivity are sometimes confused. Both 
carry a connotation of  “ having nothing to do with each other. ”  However, mutu-
ally exclusive events are not independent. In fact they are strongly dependent 
since  P ( A     ∩     B )    =    0 and not P(A)P(B) as required for independence.     

   1.7    PARTITIONS AND THE LAW OF TOTAL PROBABILITY 

 When a number of events are mutually exclusive and collectively contain all 
the elementary events, they are said to form a partition of the sample space. 
An example would be the three events A    =    {1, 2}, B    =    {3, 4, 5}, and C    =    {6}. The 
probability of their union is thus P( Ω )    =    1.0. The Venn diagram fails us in 
representing a partition since circles cannot exhaust the area of a rectangle. 
Partitions are therefore ordinarily visualized as an irregular division of a rect-
angle without regard to shape or size as shown in Figure  1.4 .   

 Alternate language to describe a partition is to say that the events are dis-
joint (no overlap) and exhaustive (they embody all the elementary events). 
When an event, say D, intersects with a set of events that form a partition, the 
probability of that event may be expressed as the sum of the intersections of 
D with the events forming the partition. The Venn diagram in Figure  1.5  shows 
three events, A, B, C, that form a partition. Superimposed is an event D that 
intersects each of the partitioning events.   

 When the system has more than two components in parallel this latter approach 
has the advantage of simplicity over the method of inclusion and exclusion 
shown earlier. 

     Figure 1.4     Mutually exclusive events A, B, and C forming a partition of the sample space.  
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     Figure 1.5     An event D superimposed on a partition.  
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 The probability of the event D can be expressed as the sum of the probabili-
ties of the intersections of D with A, B, and C:

    P D P A D P B D P C D( ) = ( ) + ( ) +∩ ∩ ∩( ).     (1.14)   

 Using the expression for the joint probability in terms of the probability of D 
conditioned on each of the other three events, this becomes:

    P D P A P D A P B P D B P C P D C( ) = ( ) ( ) + ( ) ( ) + ( )| | ( | ).     (1.15)   

 This formula is commonly called the Law of Total Probability. It is frequently 
the only practical way of computing the probability of certain events of inter-
est. One example of its usefulness is in computing overall product quality in 
terms of the relative amount of product contributed by different suppliers and 
the associated quality performance of those suppliers. 

   

 Example 
 A company has three suppliers, designated A, B, and C. The relative amounts 
of a certain product purchased from each of the suppliers are 50%, 35%, and 
15%, respectively. The proportion defective produced by each supplier are 1%, 
2% and 3%, respectively. If the company selects a product at random from its 
inventory the probability that it will have been supplied by supplier A is 0.5 
and the probability that it is defective given that it was produced by supplier 
A is 0.01. Let A, B, and C denote the event that a randomly selected part drawn 
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 One creative use of the Law of Total Probability is in the analysis of the ran-
domized response questionnaire (cf. Warner  1965 ). This questionnaire is aimed 
at determining the proportion of people who have participated in an activity, 
such as tax evasion, that they might be loathe to admit if directly asked. Instead 
two questions are posed, Q1 and Q2. The participant randomly chooses to 
answer Q1 or Q2 based on a random mechanism such as fl ipping a coin. Let 
us say that if the coin is a head, they answer Q1 and otherwise Q2. If the coin 
is fair, P(Q1)    =    1/2 and P(Q2)    =    1/2. Now Question Q1 is chosen so that the 
fraction of affi rmative responses is known. For example: 

 Q1: Is the last digit of your social security number even? Yes/No. The prob-
ability of a Yes answer given that Q1 is answered is therefore P(Y|Q1)    =    0.5. 

 Question Q2 is the focus of actual interest and could be something like: 
 Q2: Have you ever cheated on your taxes? Yes/No. 
 From the respondent ’ s viewpoint, a Yes answer is not incriminating since it 

would not be apparent whether that answer was given in response to Q1 or 
to Q2. 

 The overall probability of a Yes response may be written as:

   P Yes P Y Q P Q P Y Q P Q / / / Y Q( ) ( | ) ( ) ( | ) ( ) ( )( ) ( | ).= + = +1 1 2 2 1 2 1 2 1 2 2   

 When the survey results are received the proportion of Yes answers are deter-
mined and used as an estimate of P(Yes) in the equation above. For example, 
suppose that out of 1000 people surveyed, 300 answered Yes. P(Yes) may 
therefore be estimated as 300/1000    =    0.30. 

Substituting this estimate gives:
   
0 30 0 25 0 5 2. . . [ | ]= + P Y Q

  

 So that P[Y| Q2] may be estimated as: (0.30−0.25)/0.5   =   0.10.  

randomly from the company ’ s inventory was provided by suppliers A, B, and 
C, we have:

   P A P B and P C( ) . , ( ) . ( ) . .= = =0 5 0 35 0 15   

 The event that an item randomly drawn from inventory is defective is denoted 
as event D. The following conditional probabilities apply:

   P D A P D B and P D C( | ) . , ( | ) . ( | ) . .= = =0 01 0 02 0 03   

 P(D) then represents the overall proportion defective and may be computed 
from the Law of Total Probability.

   P D( ) . . . . . . . .= × + × + × =0 5 0 01 0 35 0 02 0 15 0 03 0 0165   

 The company ’ s inventory is thus 1.65% defective. 
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   1.8    RELIABILITY 

 One source of probability problems that arise in reliability theory is the com-
putation of the reliability of systems in terms of the reliability of the compo-
nents comprising the system. These problems use the very same principles as 
discussed above and are only a context change from the familiar dice, cards, 
and coins problems typically used to illustrate the laws of probability. We use 
the term reliability in the narrow sense defi ned as  “ the probability that an item 
will perform a required function under stated conditions for a stated period 
of time. ”  This defi nition coincides with what Rausand and H ø yland  (2004)  call 
survival probability. They use a much more encompassing defi nition of reli-
ability in compliance with ISO 840 and of which survival probability is only 
one measure. 

 Reliability relationships between systems and their components are readily 
communicated by means of a reliability block diagram. Reliability block dia-
grams are analogous to circuit diagrams used by electrical engineers. The 
reliability block diagram in Figure  1.6  identifi es a type of system known as a 
series system. It has the appearance of a series circuit.    

   1.9    SERIES SYSTEMS 

 In Figure  1.6 ,  R i   represents the probability that the  i  - th component ( i     =    1.   .   .4) 
functions for whatever time and conditions are at issue. A series circuit func-
tions if there is an unbroken path through the components that form the 
system. In the same sense, a series system functions if every one of the com-
ponents displayed also functions. The reliability of the system is the probability 
of the intersection of the events that correspond to the functioning of each 
component:

   R Prob functions functions functions functionssystem = [ ].1 2 3 4∩ ∩ ∩     (1.16)   

 If the components are assumed to be independent in their functioning, then,

    R R R R R Rsystem i

i

= =⋅ ⋅ ⋅
=

∏1 2 3 4

1

4

.     (1.17)   

 It is readily seen that the reliability of a series system is always lower than the 
reliability of the least reliable component. Suppose that R 3  were lower than 

     Figure 1.6     A reliability block diagram.  
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the others, that is, suppose component 3 is the least reliable of the four com-
ponents in the system. Since R 3  is being multiplied by the product R 1 R 2 R 4 , 
which is necessarily less than or equal to 1.0, the system reliability cannot 
exceed R 3 . 

 As an example of a series system calculation, if R 1     =    R 2     =    0.9, R 3     =    0.8, and 
R 4     =    0.95, the system reliability is (0.9) 2 (0.8)(0.95)    =    0.6156. 

 It is clear that a series system comprising a large number of relatively reli-
able components may nevertheless be quite unreliable. For example, a series 
system with 10 components each having  R     =    0.95 has a system reliability of 
only (0.95) 10     =    0.599. One way of improving the system reliability is to provide 
duplicates of some of the components such that the system will function if any 
one of these duplicates functions. The practice of designing with duplicates is 
called redundancy and gives rise to design problems involving optimum trad-
eoffs of complexity, weight, cost, and reliability.  

   1.10    PARALLEL SYSTEMS 

 The reliability of a system that functions as long as at least one of its two 
components functions may be computed using the rule for the union of two 
events where the two events are (i) component 1 functions and (ii) component 
2 functions. Assuming independence the probability that both function is the 
product of the probabilities that each do. Thus, the probability that component 
1 or component 2 or both function is:

    R R R R Rsystem = + − ⋅1 2 1 2.     (1.18)   

 Systems of this type are known as parallel systems since there are as many 
parallel paths through the reliability block diagram as there are components. 

 The reliability block diagram in Figure  1.7  shows a parallel system having 
four components. The direct approach shown above for computing system 
reliability gets more complicated in this case requiring the use of the inclusion –
 exclusion principle. A simpler but less direct approach is based on the recogni-
tion that a parallel system fails only when all of the  n  components fail.   

 Assuming independence, the probability that the system functions is most 
readily computed as 1 - Prob[system fails to function]:

    R Rsystem i

i

n

= − −
=

∏1 1
1

( ).     (1.19)   

 For  n     =    2, this results in:

    R R R R R R Rsystem = − −( ) −( ) = + − ⋅1 1 11 2 1 2 1 2  .  (1.20)   

 In agreement with the direct method given in Equation  1.18 . 
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 For the component reliabilities considered in the series system depicted in 
Figure  1.1 , letting  R  1     =     R  2     =    0.90,  R  3     =    0.8, and  R  4     =    0.95, the reliability of the 
corresponding parallel system is:

   Rsystem = − × × ×( ) =1 0 10 0 10 0 20 0 05 0 9999. . . . . .   

 Note that in the parallel case the system reliability is greater than the reli-
ability of the best component. This is generally true. Without loss of generality 
let R 1  denote the component having the greatest reliability. Subtract R 1  from 
both sides of Equation  1.19 ,

    R R R R Rsystem i

i

n

− = − − − ⋅ −
=

∏1 1 1

2

1 1 1( ) ( )  .  (1.21)   

 Factoring out (1    −     R  1 ), this becomes,

    R R R Rsystem i

i

n

− = − ⋅ − −
⎧
⎨
⎩

⎫
⎬
⎭=

∏1 1

2

1 1 1( ) ( ) .     (1.22)   

 Since the values of  R  i  are all less than or equal to 1.0, the two bracketed terms 
on the right - hand side are positive and hence  R system      ≥     R  1 . 

 We may conclude that the reliability of any system composed of a given set 
of components is always greater than or equal to the reliability of the series 
combination and less than or equal to the reliability of the parallel combina-
tion of those components.  

     Figure 1.7     A parallel system reliability diagram.  
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   1.11    COMPLEX SYSTEMS 

 Systems consisting of combinations of parallel and series arrangements of 
components can be resolved into a purely parallel or a purely series system. 
The system depicted in Figure  1.8  is an example:   

 Replace the series elements on each path by a module whose reliability is 
equal to that of the series combinations. Multiplying the reliabilities of the 
three series branches results in the equivalent system of three modules in 
parallel shown in Figure  1.9 .   

Figure 1.8     Combined series and parallel system reliability block diagram.  

Figure 1.9     System resolved into an equivalent parallel system.  
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 The system reliability may now be computed from the rule for parallel 
systems:

   Rsystem = − −( ) −( ) −( ) =1 1 76 1 0 729 1 7275 0 984. . . . .    

   1.12    CROSSLINKED SYSTEMS 

 The system reliability for more complex systems involving crosslinking can 
sometimes be found by exploiting the Law of Total Probability. Before examin-
ing an example let us consider a simple parallel structure with two components 
having reliabilities  R  1  and  R  2 . Let us consider two mutually exclusive situa-
tions: component 2 functions and component 2 does not function. Figure  1.10  
shows the original parallel system and what it becomes in the two mutually 
exclusive circumstances that (i) component 2 functions and (ii) component 2 
fails.   

 Applying the Law of Total Probability, we have in words:
Prob{system functions}    =    Prob{system functions|Component 2 functions}    ×    
Prob{component 2 functions}    +    Prob{system functions |component 2 does not 
function}    ×    Prob( component 2 does not function). 

 Now, given that component 2 functions, the reliability of component 1 is 
irrelevant and the system reliability is 1.0. Given that component 2 does not 
function, the system reliability is simply  R  1 . Thus:

   R R R R R R R Rsystem = ⋅ + −( ) = + −⋅1 12 1 2 1 2 1 2.   

     Figure 1.10     Decomposition of a parallel system based on the status of component 2.  
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 We see that the resultant expression is in agreement with the expression previ-
ously found for a two - component parallel system. This method of analysis, 
often called the decomposition method, is always valid, but generally not used 
for systems that consist of simple combinations of series and parallel subsys-
tems. The power of the decomposition method arises in the analysis of so -
 called crosslinked systems which cannot be handled by the direct approach 
used to analyze the system shown in Figure  1.10 . Figure  1.11 A is the reliability 
block diagram for such a crosslinked system.   

 The component labeled 3 causes this block diagram to differ from a pure 
series/parallel combination. Therefore, component 3 will be chosen as the pivot 
element in using the decomposition method. Let  R+  denote the system reli-
ability when component 3 functions. The reduced system in this case becomes 
a series combination of two parallel components as shown in Figure  1.11 B. 

Figure 1.11     Decomposition of a complex system based on status of component 3.  
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 The reliability  R   +   is then the product of the reliabilities of the two parallel 
modules:

    R R R R R+ = − − −( ) ⋅ − − −[ ( ) ] [ ( )( )].1 1 1 1 1 11 2 4 5     (1.23)   

 When component 3 is in the failed state the reduced system is the parallel 
combination of two series modules as shown in Figure  1.11 C. 

 The system reliability with component 3 failed is denoted  R   −   and may be 
expressed as:

    R R R R R− = − − −1 1 11 4 2 5( )( ).     (1.24)   

 Using the Law of Total Probability, the system reliability is then expressible 
as:

    R R R R Rsystem = + −+ −
3 31( ) .     (1.25)   

 For example, suppose every component had a reliability of 0.9. In that case:

   
R

R

+

−

= − − =
= − − −

[ ( . ) ][ ( . ) ] .

[ ( . ) ][ ( . )

1 0 01 1 0 01 0 9998

1 1 0 9 1 0 9

2 2

2

and
22 0 9639] . .=

  

 The system reliability is then:

   Rsystem = ∗ + ∗ =0 9 0 9998 0 1 0 9639 0 9962. . . . . .   

 Another type of system which is somewhere between a series and a parallel 
system is known as a  k / n  system. The  k / n  system functions if  k  ( ≤  n ) or more 
of its components function. An example might be a system containing eight 
pumps of which at least fi ve must function for the system to perform satisfac-
torily. A series system could be regarded as the special case of an  n / n  system. 
A parallel system on the other hand is a 1/ n  system. The  k / n  is system is some-
times represented by a reliability block diagram with  n  parallel paths each 
showing k of the elements. For example with a 2/3 system there are 3 parallel 
paths. One shows the elements 1 and 2, another, the elements 1 and 3 and the 
third shows the elements 2 and 3. This might be a useful way to convey the 
situation but it can ’ t be analyzed in the same manner as an ordinary parallel 
system since each element appears on 2 paths and thus the paths are not 
independent. 

 Let us assume that component  i  has reliability  R i   for  i     =    1, 2, and 3. Defi ne 
the following events:

   A: (components 1 and 2 function),  
  B: (components 1 and 3 function), and  
  C: ( components 2 and 3 function).    
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 Using the inclusion – exclusion principle, the system reliability is:

    
R P A B C P A P B P C P A B

P A C P B C P A B
system = ( ) = ( ) + ( ) + ( ) − ( )

− ( ) − +
∪ ∪ ∩

∩ ∩ ∩( ) ( ∩∩C).
    (1.26)   

 Now,

   P A R R( ) = 1 2.   

 Likewise,

   P B R R P C R R( ) = ( ) =1 3 2 3and .   

 The paired terms and the triple term are all equal to the product  R  1  R  2  R  3 . The 
fi nal result is therefore:

    R R R R R R R R R Rsystem = + + −1 2 1 3 2 3 1 2 32 .     (1.27)   

 This calculation grows quite tedious for larger values of  k  and  n . 
 For the case where all components have the same reliability the system 

reliability may easily be computed using the binomial distribution as shown 
in Section  2.5  of Chapter  2 .  

   1.13    RELIABILITY IMPORTANCE 

 It is of interest to assess the relative impact that each component has on the 
reliability of the system in which it is employed, as a basis for allocating effort 
and resources aimed at improving system reliability. A measure of a compo-
nent ’ s reliability importance due to Birnbaum  (1969)  is the partial derivative 
of the system reliability with respect to the reliability of the component under 
consideration. For example, the system reliability for the series system shown 
in Figure  1.6  is:

    R R R R Rs = 1 2 3 4.     (1.28)   

 The importance of component 1 is,

    I
R
R

R R Rs=
∂
∂

=
1

2 3 4     (1.29)  

  and similarly for the other components. Suppose the component reliabilities 
were 0.95, 0.98, 0.9, and 0.85, respectively, for  R  1  to  R  4 . The computed impor-
tance for each component is shown in the table below:
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 We see that the most important component, the one most deserving of 
attention in an attempt to improve system reliability is component 4, the least 
reliable component. 

 An alternate way of computing the importance of a component comes from 
the decomposition method. Suppose we seek the importance of component  i  
in some system. We know that the system reliability can be expressed as:

   R R R R Rs i i= + −+ − ( ).1   

 Differentiating with respect to  R i   shows that the importance of component  I  
may be computed as:

    I R R= −+ −.     (1.30)   

 Thus, the importance is the difference in the system reliabilities computed 
when component  i  functions and when it does not. Referring to the crosslinked 
Figure  1.11  and the associated computations, the importance of component 3 
is the difference:

   I = − =0 9998 0 9639 0 0359. . . .   

 There is an extensive literature on system reliability, and many other methods, 
approximations, and software are available for systems with large numbers of 
components. The book by Rausand and H ø yland  (2004)  contains a good expo-
sition of other computational methods and is a good guide to the published 
literature on systems reliability calculations. Another good source is the recent 
text by Modarres et al.  (2010) .   
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   Component     Reliability     Importance  

  1    0.95     R  2  R  3  R  4     =    0.7056  
  2    0.98     R  1  R  3  R  4     =    0.6840  
  3    0.90     R  1  R  2  R  4     =    0.7448  
  4    0.80     R  1  R  2  R  3     =    0.8379  
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        Political Affi liation  

   Gender     Democrat     Republican     Independent  
  Male    40    50    5  
  Female    18    8    4  

 EXERCISES 

1.   Employees at a particular plant were classifi ed according to gender and 
political party affi liation. The results follow:

    Warner ,  S.    1965 .  Randomized response: a survey technique for eliminating evasive 
answer bias .  Journal of the American Statistical Association   60 ( 309 ):  63  –  69 .   

 If an employee is chosen at random, fi nd the probability that the 
employee is:

a.     Male  
b.     Republican  
c.     A female Democrat  
d.     Republican given that she is a female  
e.     Male given that he is a Republican      

2.   Three components, a, b, and c, have reliabilities 0.9, 0.95, and 0.99, respec-
tively. One of these components is required for a certain system to function. 
Which of the following two options results in a higher system reliability? 

a.     Create two modules with a, b, and c in series. The system then consists 
of a parallel arrangement of two of these modules. This is called high -
 level redundancy.  

b.     The system consists of a parallel combination of two components of type 
a in series with similar parallel combinations of b and c. This is called 
low - level redundancy.  

c.     If in the low - level redundancy arrangement it were possible to add a 
third component of either type a or b or c, which would you choose? 
Why? Show work.      

3.   In the reliability diagram below, the reliability of each component is 
constant and independent. Assuming that each has the same reliability  R , 
compute the system reliability as a function of R  using the following 
methods:

a.     Decomposition using B as the keystone element.  
b.     The reduction method.  
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c.     Compute the importance of each component if  RA     =    0.8,  RB     =    0.9, 
RC     =    0.95, and  RD     =    0.98.    

4.   A message center has three incoming lines designated A, B, and C which 
handle 40%, 35%, and 25% of the traffi c, respectively. The probability of a 
message over 100 characters in length is 5% on line A, 15% on line B, and 
20% on line C. Compute the probability that a message, randomly selected 
at the message center, exceeds 100 characters in length.    



  C H A P T E R 2 

Discrete and Continuous 
Random Variables     

     A random variable is a numerical quantity which is determined in some pre-
scribed way from the outcome of an experiment and which can have in any 
one experiment, any one of a countable or infi nite number of possible values. 
Random variables are classifi ed as discrete or continuous depending upon 
whether the possible values of the random variable are confi ned to designated 
points along the real line or whether they comprise all points within one or 
more intervals along the real line. 

 The number of spots on the upward face of a die is an example of a discrete 
random variable; it can assume the integer values 1 through 6. Another dis-
crete random variable not restricted to integer values is the hat size of a 
randomly selected individual. Most generally, however, discrete random vari-
ables arise from counting something. Some examples are the number of mis-
prints on a page of text, the number of items on life test that fail prior to a life 
of 1000 hours, the number of times a bearing must be replaced during a fi xed 
period of operation, and the number of people waiting at any time in a 
barbershop. 

 Continuous random variables will be our main concern. An example of a 
continuous random variable is the time t  to failure of a ball bearing operating 
under a prescribed set of external conditions. Here  t  assumes any value along 
the positive real line (0,  ∞ ). Another continuous random variable confi ned 
to the positive real line is the breaking strength, that is, the stress at fracture, 
of a ceramic part. Another example might be the departure,  x , of a manufac-
tured part from its specifi ed dimension. Here  x  is confi ned to be on the real 
line ( −∞ ,  ∞ ).  

23
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   2.1    PROBABILITY DISTRIBUTIONS 

 A discrete random variable  x  is described by a list of the values that it may 
assume, for example,  x : {1, 2, 3, 4} and the associated probabilities  p ( x ) with 
which it will assume those values, for example,  p ( x ): {0.15, 0.25, 0.4, 0.2}. Dis-
played as a discrete function  p ( x ) against  x  as shown in Figure  2.1 , it is known 
as a probability distribution function or a probability mass function (pmf). 
Discrete distributions like this must be obtained by observing the random 
variable ’ s value in numerous trials and recording the frequency with which 
each outcome occurs. If the number of trials is large this will converge to the 
true probability distribution. In other cases the probabilities of each outcome 
can be computed based on a simple random mechanism and certain assump-
tions. A case in point is the distribution of the resultant number of heads when 
a fair coin is tossed four times. Here  x  varies from 0 to 4 and the probabilities 
depend on just the probability  p  of a head in a single toss and the assumption 
of independence of outcomes. This is an example of the so - called binomial 
distribution discussed later in this chapter. Another, related random variable 
whose distribution may be deduced based on a set of assumptions is the 
number  X  of coin tosses until the fi rst head occurs. In this example the values 
of  X  range from 1 to  ∞ .   

 The probability that when observed the value of the random variable 
depicted above is 2 is written:

    P X p=[ ] = ( ) =2 2 0 25. .     (2.1)   

     Figure 2.1     A discrete probability distribution function.  
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 The convention is to use an upper case letter to refer to the random variable 
and a numerical value or lowercase letter to denote the value of the random 
variable.  P [ X     =    6] is an example, and  P [ X     =     x ] is the general case. 

 The values that  X  may assume are mutually exclusive so that, in the present 
example, the probability of  X  assuming either the value 2 or 3 is the sum 
of the probabilities  p (2)    +     p (3)    =    0.25    +    0.40    =    0.65. Since, by defi nition, the 
random variable  must  assume at least one of its specifi ed values, it follows that 
the probabilities must sum to unity. That is, if there are  k  values of  X , and 
distinguishing each value using a subscript, for example,  x i  , it follows that:

    p xi

i

k

( ) . .
=
∑ =

1

1 0     (2.2)   

 Here and elsewhere we write, for simplicity,  p ( x i  ) for the more formal 
 P [ X     =     x i  ]. The  cumulative distribution function  ( CDF ) is denoted  F ( x ) and is 
denoted by:

    F x P X x p xi

x

x

i

( ) = ≤[ ] = ∑ ( ).
min

    (2.3)   

 Thus, in the example above,  F (3)    =    0.8. The function  F ( x ) increases stepwise 
at each  x  value and reaches a maximum of 1.0 at the last value as shown in 
the tabulation below for the present example. 

     

    x      1     2     3     4  

   F ( x )    0.15    0.40    0.80    1.00  

 The probability that  X  is either 2 or 3 can be computed by adding the 
associated probabilities as above, or, in terms of the cumulative distribution, 
by subtraction:

   P X P X F F[ ] [ ] ( ) ( ) . . . .≤ − ≤ = − = − =3 1 3 1 0 80 0 15 0 65   

 Correspondingly, the probability that  X  is 3 or more may be expressed:

   P X P X F[ ] [ ] ( ).≥ = − ≤ = −3 1 2 1 2   

 In general,

    P X x F x≥[ ] = − −1 1[ ].     (2.4)   

 If the random variable  X  were to represent the lifetime of a product or an 
organism, rounded to selected discrete values, the function  P [ X     ≥     x ] would be 
referred to as the  reliability function R ( x ), or, in the biomedical literature, as 
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    y     =     x  2      1     4     9     16  

   p ( y )    0.15    0.25    0.40    0.20  

the survivor function  S ( x ). For the example case, the reliability function is 
tabulated below: 

     
    x      1     2     3     4  

   R ( x )    =     P [ X     ≥     x ]    1.0    0.85    0.60    0.2  

 The mean or expected value of a discrete random variable is:

    μ = ( ) =
=
∑E X x p xi i

i

k

( ).
1

    (2.5)   

 where  k  is the number of discrete values that the random variable assumes. If 
 x  is observed an indefi nite number of times, the arithmetic average of those 
observations approaches  E ( X ). For the example above the mean is 1    ×    0.15    
+    2    ×    0.25    +    3    ×    0.4    +    4    ×    0.2    =    2.65. 

 When, as in the present example, the values of the random variable consist 
of consecutive integers starting at  X     =    1, an alternative method of calculating 
the mean consists of summing the reliability function over each value of the 
random variable. For the values tabulated above, this gives:

    μ = ( ) = + + + =
=
∑R xi

i

k

1

1 0 0 85 0 60 0 2 2 65. . . . . .     (2.6)   

 This alternative method of computing the expected value is seldom dis-
cussed in expository writing about discrete random variables. The continu-
ous analog in which the summation is replaced by an integral is extensively 
used in the reliability literature as the preferred way of calculating mean 
lifetimes.  

   2.2    FUNCTIONS OF A RANDOM VARIABLE 

 Sometimes interest is centered on a random variable  Y  functionally related to 
the random variable  X  through an equation of the form  Y     =     g ( X ). It is gener-
ally easy to fi nd the distribution of  Y  in the discrete case, particularly if the 
function is single valued, that is, each  x  value yields only one  y  value. Suppose 
for the example above we are interested in the distribution of  Y     =     X  2 . Since 
there are no negative  x  values in this example, there is a unique  y  for each  x . 
The probability that  Y     =    4 is then the same as the probability that  X     =    2, and 
we may tabulate the distribution  p ( y ) as follows: 
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 Had the distribution of  X  included both  x     =     − 1 and  x     =     + 1, then  P [ Y     =    1] 
would have been computed as the sum of  P [ X     =     − 1] and  P [ X     =     + 1]. Without 
specifi cally enumerating the distribution of  Y , one may fi nd its mean by the 
following:

   E Y g x p xy i i

i

k

( ) ( ).≡ = ( )⋅
=
∑μ

1

  

 For the special case where  Y  is a linear function of  X  of the form  Y     =     a     +     bX , 
the mean is:

    μ μa bx i i

i

k

i

i

k

i i

i

k

xa bx p x a p x b x p x a b+
= = =

= +[ ]⋅ ( ) = ⋅ ( ) + ⋅ ( ) = +∑ ∑ ∑
1 1 1

..     (2.7)   

 For the example, the expected value of 2    +    3 X  would be:

   E X[ ] . . .2 3 2 3 2 65 9 95+ = + ⋅ =   

 The variance  σ  2  characterizes the scatter in the random variable. It is defi ned 
as:

    σ μ2 2

1

= −
=
∑( ) ( ).x p xi i

i

k

    (2.8)   

 When expanded and simplifi ed an equivalent expression is:

    σ μ2 2

1

2 2 2= − = ( ) −
=
∑ x p x E X E Xi i

i

k

( ) ( ).     (2.9)   

 For the example above,  E ( X  2 ) is computed as: 1 2     ×    0.15    +    2 2     ×    0.25    +    3 2     ×   
 0.4    +    4 2     ×    0.2    =    7.95. The variance is then 7.95    −    2.65 2     =    0.9275. If the random 
variable has units of say, hours, the variance is in hours 2 . The extent of the 
variability is more readily grasped if scatter is expressed in the same units as 
the random variable itself, so the square root of the variance, called the stan-
dard deviation, is more frequently used to convey the magnitude of the scatter 
that the random variable exhibits. 

 The variance of a linear function of  x  may be computed as:

   σ μa bx xE a bx a b+ = + − +2 2 2( ) ( ) .   

 Expanding and simplifying leads to the result:

    σ σa bx xb+ =2 2 2.     (2.10)   

 Note that the additive constant does not appear in the result. This is because 
adding a constant to a random variable translates the whole distribution to 
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  Table 2.1     X  and  Y  Values for Each Possible Outcome 

   Sequence      X     =    No. of Heads      Y     =    No. of Runs  

  HHH    3    1  
  THH    2    2  
  HTH    2    3  
  TTH    1    2  
  HHT    2    2  
  THT    1    3  
  HTT    1    2  
  TTT    0    1  

  Table 2.2    Joint and Marginal Distributions of  X  and  Y

y↓   x→      0     1     2     3     Total    =     g ( y )  

  1    0.125    0    0    0.125    0.25  
  2    0    0.25    0.25    0    0.50  
  3    0    0.125    0.125    0    0.25  
  Total    =     f ( x )    0.125    0.375    0.375    0.125      

the left or right, depending on the sign of the additive constant, but does not 
change the scatter. The variance is therefore unaffected. The standard devia-
tion of a     +     bX  is equal to the standard deviation of  X  multiplied by the con-
stant b .  

   2.3    JOINTLY DISTRIBUTED DISCRETE RANDOM VARIABLES 

 Sometimes more than one random outcome is observed in the same random 
experiment. When a manufactured part is inspected, several dimensions 
might be measured such as, length, diameter, and weight. In a clinical trial one 
might measure or record a human subject ’ s weight, age, blood pressure, and 
so on. 

 The following example involving two discrete random variables was given 
by Mosteller et al.  (1961) . 

 A coin is tossed three times and the sequence of Heads (H) and Tails (T) 
is observed. For each toss, one observes two random variables,  X , the number 
of heads, and  Y  the number of runs. A run is the number of sequences of the 
same letter H or T. The sequence HHT has two runs. Assuming the coin is fair 
every sequence has a probability of 1/8 of occurring. The outcomes and the 
associated values of X  and  Y  are given in Table  2.1 .   

 Table  2.2  gives the probability associated with each  x     −     y  pair. For each 
combination of x  and  y  the entry in the table is the joint probability of that 
combination noted P ( X     =     x ,  Y     =     y ) or simply,  p ( x ,  y ) by an obvious extension 
of our notation in the univariate case.   
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 As in the univariate case, the pmf may be shown as a two - dimensional plot 
with the probabilities of each  x ,  y  combination shown as bars drawn in the  z  
direction as in Figure  2.2 .   

 As in the univariate case, the probabilities must sum to 1.0 over all of the 
possible combinations

    p x y
yx

, . .( ) =∑∑ 1 0     (2.11)   

 The row totals in Table  2.2  give  g ( y ), the probability distribution of  Y  that 
would result if  X  was not recorded. Similarly the column totals give  f ( x ), the 
distribution of  x  that would result if  Y  was not recorded. These are called 
the marginal distributions presumably because they are the totals recorded in 
the right and bottom margins of the table. These distributions may be used 
in the usual way to compute the means of  X  and  Y :

   E X( ) = × + × + × + × =0 0 125 1 0 375 2 0 375 3 0 125 1 5. . . . .  

   E Y( ) = × + × + × =1 0 25 2 0 50 3 0 25 2 0. . . . .   

 The expected value of functions h( X ,  Y ) of the two variables are computed 
by analogy to the univariate case by evaluating the function at each combina-
tion of  x  and  y , multiplying by  p ( x ,  y ), and summing over all combinations. The 
sum h( X ,  Y )    =     X     +     Y  is one such function of interest. Its expected value is 
calculated for the example as follows, omitting  x ,  y  combinations for which 
 p ( x ,  y )    =    0:

   1 0 125 3 0 25 4 0 125 4 0 25 5 0 125 4 0 125 3 5× + × + × + × + × + × =. . . . . . . .   

     Figure 2.2     Two - dimensional probability mass function. From Mosteller,  Probability with Statisti-
cal Applications , 1st Edition, copyright 1961. Reprinted by permission of Pearson Education, Inc., 
Upper Saddle River, NJ.  
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 Note that it has turned out that:

    E X Y E X E Y+( ) = ( ) + ( ).     (2.12)   

 This result may be proven to be generally true whether  X  and  Y  are indepen-
dent or not. 

 The expected value of the product  h ( X ,  Y )    =     XY  is:

   0 0 125 2 0 25 3 0 125 4 0 25 6 0 125 3 0 125 3× + × + × + × + × + × =. . . . . . .   

 The covariance of  X  and  Y  is defi ned as the expected value of the product 
[ X     −     E ( X )][ Y     −     E ( Y )]. This is algebraically equivalent to:

    Cov X Y E XY E X E Y, ( ).( ) = ( ) − ( )     (2.13)   

 Note that the covariance of  X  with itself,  cov ( X ,  X ), is simply the variance 
of  X . 

 In the present example,

   Cov X Y, . .( ) = − × =3 2 1 5 0   

 In this case the covariance is zero and  X  and  Y  are said to be uncorrelated. 
They are not, however, independent. If two random variables are independent, 
then  p ( x ,  y ) is the product of the marginal probabilities  p ( x ) p ( y ). This is 
clearly not the case in the present example since  p ( X     =    0,  Y     =    2)    =    0 and not 
0.125    ×    0.50. When two random variables are independent, then one can show 
that  E ( XY )    =     E ( X ) E ( Y ) so that the covariance will be zero. Thus, if  X  and  Y  
are independent, the covariance is 0, but if the covariance is 0,  X  and  Y  are 
not necessarily independent. However, as noted, the expected value of the sum 
is always the sum of the expected values whether or not the variables are 
independent. 

 The covariance has units equal to the product of the units of the two vari-
ables such as, for example, volt - inches. The covariance can be positive or nega-
tive. When it is positive  Y  tends to increase with  X ; when negative  Y  tends to 
decrease with  X . It is diffi cult, however, to assess whether a numerical value 
of the covariance implies a strong relationship because of the mixed units. A 
more useful, dimensionless, measure of association is the correlation coeffi -
cient   ρ  , defi ned as:

    ρ
σ σ

=
⋅

cov X Y

X Y

( , )
.     (2.14)   

 The magnitude of the correlation coeffi cient is always between  ± 1. When it is 
at either extreme there is a perfect linear relationship between the two vari-
ables. So if  Y     =    2X,  ρ     =     + 1, and if  Y     =     − 2 X ,   ρ      =     − 1. 
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 Recall that in the univariate case the variance, defi ned as  E [ X     −     E ( X )] 2 , 
could be calculated as  E ( X  2 )    −     E  2 ( X ). The variance of the sum  X     +     Y  follows 
in the same way, that is,

    
Var X Y E X Y E X Y

E X Y XY E X E Y

+( ) = +( )⎡⎣ ⎤⎦ − +

= + +[ ]− ( ) + ( )

2 2

2 2 22

[ ]

[ ] .
    (2.15)   

 Expanding and collecting terms results in

    Var X Y cov X YX Y+( ) = + +σ σ2 2 2 ( , ).     (2.16)   

 For three or more variables, the variance of the sum is the sum of the vari-
ances plus 2 times all of the pairwise covariance terms. When  X  and  Y  are 
independent the variance of the sum is just the sum of the variances since 
the covariance is zero. The variance of a linear combination  aX     +     bY  is easily 
shown to be:

    Var aX bY a b abcov X YX Y+( ) = + +2 2 2 2 2σ σ ( , ).     (2.17)   

 Random variables which are linear combinations of a number of independent 
random variables  X  1 ,  X  2 ,    . . .     X n   are frequently encountered and have the form:

    Z c X c X c Xn n= + +1 1 2 2 � .     (2.18)   

 The expected value of  Z  is:

    E Z c E X c E X c E Xn n( ) = + +1 1 2 2( ) ( ) ( ).�     (2.19)   

 This equation is true whether or not the variables  X  1  to  X n   are independent. 
The variance of  Z  is:

    var Z c var X c var X c var Xn n( ) = ( ) + ( ) +1
2

1 2
2

2
2� ( ).     (2.20)   

 And holds only if the variables are independent. If any pair of variables  X i   
and  X j   are dependent the term 2 c i c j Cov ( X i  ,  X j  ) should be added to the expres-
sion for  var ( Z ). 

    

 Example 
 Imagine blocks of random height  X  with a mean  E ( X )    =    1 inch and a variance 
of 0.2 in 2 . 

 If we randomly select fi ve such blocks and stack them, the height of the 
stack will be:

   H X X X X X= + + + +1 2 3 4 5.   
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   2.4    CONDITIONAL EXPECTATION 

 The distribution of  X  given a specifi c value of  Y  is easily obtained using the 
laws of conditional probability. So, for example, using the joint distribution 
from Table  2.2 , we have:

   Prob
Prob

X Y
X Y
P Y

= =[ ] = = =
=

= =0 1
0 1

1
0 125
0 250

0 50|
[ ]

( )
.
.

. .
∩

  

 Similarly,

   Prob
Prob

X Y
X Y
P Y

= =[ ] = = =
=

= =3 1
3 1

1
0 125
0 250

0 50|
[ ]

( )
.
.

. .
∩

  

 The distribution of  X  given  Y     =    1 written as   f  ( X | Y     =    1) may be set down in a 
table: 

     

 The expected value of the height is:

   E H E X E X E X E X E X( ) = + + + ( ) + ( ) =( ) ( ) ( ) .1 2 3 4 5 5 in   

 Random selection assures that the block heights are independent so the vari-
ance of H is:

   var H var X var X var X var X var X( ) = ( ) + ( ) + ( ) + ( ) + ( ) =1 2 3 4 5
21 0. .in   

 Now suppose we build another stack but this time we select just one block 
and, using ultra precise equipment, make four exact duplicates and stack them 
on the fi rst randomly selected block. This time the height of the stack will be:

   H X= 5 1.   

 The expected value is:

   E H E X( ) = ( ) = × =5 5 1 51 in.   

 which is the same as the expected value of the sum. The variance however is:

   var H var X( ) = ( ) = × =×5 25 0 2 52
1

2. .in   

 Why are the heights of the stacks less variable in the fi rst case than in the 
second? In the fi rst case larger than average blocks can compensate for smaller 
than average blocks. In the second case a larger than average block results in 
fi ve such larger than average blocks and leads to greater variability from stack 
to stack. It is important not to mistake the sum of n identical random variables 
for the product of n times the random variable. 
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x | Y     =    1    0   3
  f( x | Y     =    1)    0.50   0.50

 The expected value of  X | Y     =    1 is computed in the usual way:

E X Y| . . . .=( ) = × + × =1 0 0 50 3 0 5 1 5

 Table  2.3  gives the distribution of  X | Y  for all three values of  Y  along with the 
expected value of X  given each  Y .

 Example 
 Consider the following joint distribution. Calculate  E ( X ),  E ( Y ),  Var ( X ), 
Var ( Y ),  Cov ( X ,  Y ),  ρ ( X ,  Y ), and  Var ( X     +     Y ), and verify  E ( X ) using the Law 
of Total Expectation. 

y   ↓   x→   0    1  g ( y )

  0   0.1   0.3   0.4
  1   0.4   0.2   0.6
f ( x ) →   0.5   0.5

 From the marginal distributions of  X  and  Y ,

E X( ) = × + × =0 0 5 1 0 5 0 5. . .

E X 2 2 20 5 1 0 5 0 50( ) = + =× ×. . .

Var X E X E X( ) = ( ) − ( ) = − =2 2 20 5 0 5 0 25. . .

E Y E Y Var Y( ) = ( ) = ( ) =0 6 0 6 0 242. ; . .

E XY( ) = × + × + × + × =0 0 1 0 0 3 0 0 4 1 0 2 0 2. . . . .

  Table 2.3    Distribution of  X  Conditional on  Y  and  E ( X | Y ) 

x | y→    0     1     2     3  E ( X | Y )

Y     =    1    0.50    0    0   0.50   1.5
Y     =    2    0   0.50    0.50    0    1.5
Y     =    3    0   0.50    0.50    0    1.5

 The expected value happens to be the same for each  Y  in this example. 
 The Law of Total Expectation, which is comparable to the Law of Total 

Probability, states that the unconditional expectation is the sum of the condi-
tional expectations weighted by the probabilities of each Y  value:

E X E X Y P Y E X Y P Y E X Y P Y( ) = =[ ] =( ) + = =( ) + =[ ] =| [ | ] | ( )1 1 2 2 3 3

E X( ) = × + × + × =1 5 0 25 1 5 0 50 1 5 0 25 1 5. . . . . . . .
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   Cov X Y E XY E X E Y, . . . .( ) = ( ) − ( ) ( ) = − × = −0 2 0 5 0 6 0 10  

   ρ
σ σ

X Y
Cov X Y

X Y

,
( , ) .

. .
.( ) = =

−
⋅

= −
0 10

0 25 0 24
0 4  

   Var X Y+( ) = + − × =0 25 0 24 2 0 10 0 29. . . . .   

 The distribution of  X | Y  is shown below for both  Y  values along with their 
expectation. 

    x | Y  →      0     1      E ( X | Y )  

   Y     =    0    0.25    0.75    0.75  
   Y     =    1    0.667    0.333    0.333  

 Using the Law of Total Expectation:

   E X E X Y P Y E X Y P Y( ) = =( ) =( ) + =( ) =| | ( )0 0 1 1  

   E X( ) = × + × =0 75 0 4 0 333 0 6 0 5. . . . . .   

 The Law of Total Expectation works when a random variable is conditioned 
on any set of mutually exclusive and exhaustive events and not necessarily on 
another random variable. Suppose the expected value of a certain quality 
characteristic of a product depended upon which of three suppliers produced 
it. The table below shows the expected value of that characteristic for each 
vendor and the proportion that each vendor supplies. 

   Vendor      E ( X |Vendor)     Vendor ’ s Share  

  Vendor 1    1000    0.2  
  Vendor 2    1200    0.3  
  Vendor 3    900    0.5  

 The overall expected value of the quality characteristic is:

   E X( ) = × + × + × =1000 0 2 1200 0 3 900 0 5 1010. . . .   

 We make use of the Law of Total Expectation in computing the mean of a 
mixture of Weibull distributions in Chapter  4 .     

   2.5    THE BINOMIAL DISTRIBUTION 

 A discrete random variable of importance in life testing and many other situ-
ations is the one that describes the number of successes  X  in a series of n 
independent trials where the probability of a success on any trial is constant 
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from trial to trial and designated  p . The distribution of this random variable 
is called the binomial distribution. The term  “ success ”  may not coincide with 
its positive connotation in ordinary parlance. In the context of applications of 
the binomial distribution success means only that an event of interest occurred. 
The event could be the appearance of a defective item, in which case the 
production of a good item is regarded as a failure, at odds with a production 
manager ’ s perspective. It could mean that a human member of a cohort in a 
biomedical study has been stricken with a disease. Quite often successes may 
be redefi ned as failures for computational simplicity or convenience. The 
number of failures is always  n     −     x ; the probability of a failure is 1    −     p . 

 The random variable  X  ranges from 0 (no successes) to  n  (every trial a 
success). As an example let the number of trials be  n     =    3 and observe that the 
following sequential outcomes will result in  X     =    1 success: SFF, FSF, or FFS. 
These three mutually exclusive outcomes each have the same probability, of 
occurring, namely,  p (1    −     p ) 2 . Thus the probability that  X     =    1 is 3 p (1    −     p ) 2 . In 
the general case, the probability of a sequence that results in  x  successes and 
 n     −     x  failures is  p x  (1    −     p )  n    −    x  . The number of sequences of the  n  letters S and  F  
that will result in  x  successes is the number of ways of selecting  x  positions 
from a total of  n  positions to which to assign the letter S. The remaining  n     −     x  

positions will then be assigned an  F . Symbolically this number is denoted   
n

x
⎛
⎝⎜
⎞
⎠⎟

, 

and it is evaluated as follows:

    
n

x
n

x n x
⎛
⎝⎜
⎞
⎠⎟
=

−( )
!

! !
.     (2.21)   

 Evaluating this expression for  x     =    1 and  n     =    3 gives   
3

1
3

⎛
⎝⎜
⎞
⎠⎟
= , consistent with 

the example above. Thus, in general, the binomial probability distribution is 
expressible as:

    p x
n

x
p p x nx n x( ) = ⎛

⎝⎜
⎞
⎠⎟

− =−( ) ; , , .1 0 1…     (2.22)   

 In algebra, this same expression occurs as the coeffi cient of  p x   in the binomial 
expansion of ( p     +     q ) n  when q is taken to be 1    −     p . This fact accounts for 

the name of this distribution. The expression   
n

x
⎛
⎝⎜
⎞
⎠⎟
 is often referred to as the 

number of combinations of n things taken  x  at a time. Another more informal 
name is  “  n  choose  x . ”  

 The mean and variance of the binomial distribution may be shown to be 
expressible as:

    μ = ( ) =E X np.     (2.23)  

    σ 2 1= −np p( ).     (2.24)   
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 The expression for the binomial mean is intuitively understood by most 
people. They will correctly answer  “ 50 ”  to the question  “ how many heads will 
I expect to see if I fl ip a fair coin 100 times. ”  The variance of  x  depends on  p . 
For a large  p  or a small  p  the variance is small. The variance is maximum if 
 p     =    0.50. If the probability that a specimen will withstand a certain stress is 
 p     =    0.99 and you subject 10 specimens to that stress, the number of successes, 
that is, specimens surviving, will be 10 or occasionally 9, rarely fewer. On the 
other hand, if the survival probability is  p     =    0.5 the number of survivors in a 
test of  n     =    10 specimens will vary widely, with the same chance that  X     =    2 as 
 X     =    8. 

   

 Example 
 It is known for a certain population of ball bearings that the probability of 
failing prior to 1000 hours is  p     =    0.50. If  n     =    4 identical bearings are randomly 
selected from this population and tested for 1000 hours, fi nd the distribution 
of the number of failures. As an example the probability that  X     =    3 is calcu-
lated below:

   P X =[ ] =
−( )

=−3
4

3 4 3
0 5 0 5 0 253 4 3!

! !
. . . .   

 The results for all the possible values of  X  computed from Equation  2.22  are 
tabled below: 

    x      0     1     2     3     4  

   p ( X     =     x )    0.0625    0.2500    0.3750    0.2500    0.0625  

 Figure  2.3  is a plot of the pmf.   
 The mean and variance may be computed from the tabled probability 

values as before but in this case we may equivalently use the formulae:

   
μ
σ
= = × =
= − = × × − =
np

np p

4 0 50 2

1 4 5 1 0 5 1 02

.

( ) . ( . ) . .
  

 Individual and cumulative binomial probabilities are readily computed using 
Excel or any statistical software package. When  np  and  np (1    −     p ) both exceed 
5 the normal distribution with mean  np  and variance  np (1    −     p ) is a reasonably 
good continuous approximation to the binomial distribution. An example of 
the use of the normal approximation with a correction to compensate for the 
fact that the normal distribution is continuous and the binomial is discrete is 
given in Section  2.11 . For large values of n and correspondingly small values 
of  p  such that  np     <    0.1, the Poisson distribution is considered a good approxi-
mation for the binomial as shown in the next section. 
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 As mentioned in Chapter  1 , the binomial distribution is used to compute 
the reliability of a system known as a  k / n  system when its components are 
identical. A  k / n  or  “  k  out of  n  ”  system contains n independently functioning 
components of which at least k must function satisfactorily for the system to 
survive a given mission. The probability that a component will survive that 
mission is the component ’ s reliability  R . A series system is a special case of 
the  k / n  system in which  k     =     n . A parallel system represents the other extreme 
special case in which k    =    1. 

 If all n components have the same reliability and letting  X  denote the 
number of components that survive the mission, the system reliability is 
 P [ X     ≥     k ]. Using the binomial with  p     =     R , we have:

    R
n

i
R Rsystem

i n i

i k

n

= ⎛
⎝⎜
⎞
⎠⎟

− −

=
∑ ( ) .1     (2.25)   

 As an example, suppose a four - engine plane requires two or more engines to 
function for it to survive. With a mission success probability  R     =    0.95 for each 
engine, the system reliability is:

   Rsystem = + + =0 013538 0 171475 0 814506 0 999519. . . . .   

 A twist on this problem is to impose the condition that at least one engine on 
each wing must function for mission success. In this case each wing becomes 
a separate two - component parallel system and the ordinary reliability calcula-
tion for a parallel system could be used to fi nd the reliability of each wing. If 

     Figure 2.3     Probability mass function (pmf) of the binomial distribution;  n     =    4,  p     =    0.50.  
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   2.5.1    Confi dence Limits for the Binomial Proportion  p  

 Having observed  x  successes in n trials, a statistician is often interested in 
inferring a range of  p  values that could reasonably have given rise to the 
observed proportion. The upper and lower limits on  p  are known as confi dence 
limits and their values depend on the level of confi dence desired. Various 
approximations for these confi dence limits are in common use. Exact limits 
involve percentage points of the incomplete beta distribution. Most commer-
cial statistical software packages are capable of computing exact or approxi-
mate confi dence limits on a binomial proportion. For  x     =    4 successes in n    =    10 
trials Minitab gives the following exact 95% limits for the binomial proportion 
 p : (0.121552, 0.737622). 

 A useful special case occurs when the observed value is  X     =    0. The exact 
100(1    −      α  )% upper limit on  p  may then be computed as:

    p n< −1 1( ) ./α     (2.26)   

 So, for a 95% upper limit ( α     =    0.05) based on  X     =    0 successes in n    =    10 trials, 
we have:

   p n< − =1 0 05 0 25891( . ) . ./   

 This expression has useful application in certain reliability demonstration tests. 
If  p  is the probability that an item will fail under a given set of test conditions 
and  n  items are tested and none fail, a  lower  100(1    −      α  )% confi dence limit on 
the reliability  R     =    1    −     p  is:

    R n> ( ) ./α 1     (2.27)   

 Suppose it must be demonstrated that with 90% confi dence the reliability  R  
under a given set of test conditions must exceed  R  1     =    0.98. How many items 
must all survive such a test to justify that claim? 

there were three engines on each wing and at least one was necessary, one 
would need to use the binomial to compute the wing reliability. We continue 
with the binomial to illustrate the general approach:

   R P X P Xwing = = + = = + =( ) ( ) . . . .1 2 0 0950 0 9025 0 9975   

 Note that this agrees with the two components in parallel formula 2 R     −     R  2     =    
2    ×    0.95    −    (0.95) 2     =    0.9975. 

 Since each wing must have at least one engine functioning, the system reli-
ability is:

   Rsystem = =( . ) . .0 9975 0 99502   

 Thus, the wings are in series and the engines on each wing are in parallel. 
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 Setting   α      =    0.10 and  R  1     =    0.98 and solving for  n  results in:

   n =
( )
( )

= ≈
ln .
ln .

. .
0 10
0 98

113 9 114     

   2.6    THE POISSON DISTRIBUTION 

 Another popular discrete distribution is the Poisson distribution. The Poisson 
distribution has a single non - negative parameter designated   α  . The pmf is 
given below:

    P X x
e

x
x

x

=[ ] = = ∞
−αα

!
; , .0 1�     (2.28)   

 The expected value of  X  may be shown to be equal to   α  . The variance is also 
equal to   α   and so the standard deviation is   α . Poisson random variables 
always represent the number of some kind of occurrences per unit of the 
region of opportunity for those occurrences. Examples include the number of 
arrivals per unit time at a message center, blemishes per unit area of cloth, 
and inclusions per unit volume of steel. Implicit in the applicability of the 
Poisson distribution is that the occurrence takes up a negligible amount of the 
region of opportunity. Thus, the arrivals take a negligible amount of time to 
happen, the blemishes have a negligibly small total area and the inclusions 
occupy a negligible volume. Unlike the binomial distribution, there is no con-
sideration of non - occurrences in applications of the Poisson distribution. The 
parameter  α  adjusts to the units that describe the region of opportunity. Thus, 
if the mean number of arrivals is 2/minute it can equivalently be quoted as 
120/hour. 

    

 Example 
 The most famous application of the Poisson distribution is due to von Bort-
kiewicz, who used it to explain a celebrated set of data on deaths due to kicks 
of a horse in the Prussian Cavalry. Ten army corps were observed over a 20 -
 year period and the number of deaths was recorded for each of the 200 corps -
 years. The number of corps - years with  x  deaths is given in Table  2.4 . The 
maximum number of deaths observed in any one corps - year was 4, although 
there is no theoretical upper limit. The average number of deaths per year 
is computed as [0    ×    109    +    1    ×    65    +    2    ×    22    +    3    ×    3    +    4    ×    1]/200    =    0.61. Using 
  α      =    0.61 (although this is only an estimate of the true value of   α  ) and substi-
tuting in the Poisson formula gives the values of  p ( x ) shown in row three of 
Table  2.4 . Finally multiplying the Poisson probabilities by  n     =    200 gives the 
number of times out of 200 that one would expect each value of  x  to occur 



40 discrete and continuous random variables

  Table 2.4    Observed Number of Deaths and Expected Number 
under the Poisson Model 

   No. of Deaths  x      0     1     2     3     4  

  No. of corps - years    109    65    22    3    1  
   p ( x )    0.54335    0.33145    0.10110    0.02055    0.00315  
   E ( x )    =    200    ×     p ( x )    108.7    66.3    20.2    4.1    0.61  

under the Poisson model. These expected values, shown as row four of the 
table, are seen to be quite close to the observed numbers, indicating that the 
Poisson provides an excellent model for this (unfortunate) phenomenon. 
Formal tests are available to assess whether the expected and observed values 
are in suffi cient agreement to accept the distribution (in this case the Poisson) 
that has been proposed as an explanation. In this case, it is clear even without 
such a test that the Poisson model is quite a good fi t to the data. The same 
goodness - of - fi t test can indicate whether a model fi t is too good, that is, that 
the agreement is better than chance would dictate. Instances of likely data 
 “ fudging ”  have been detected in this way.   

 It is clear in this example that non - occurrences are hard to defi ne, let alone 
record. Would it be a non - occurrence on those occasions when a horse kicked 
but no soldier was nearby, or when a soldier was kicked but only injured 
or when a horse thought about kicking a soldier but decided not to? Fortu-
nately data on non - occurrences are not needed to implement the Poisson 
distribution. 

 As with the binomial, individual and cumulative Poisson probabilities may 
be computed using Excel or a statistical software package. 

 The Poisson is applied in acceptance sampling in quality applications. The 
problem is to fi nd the probability that a lot of a manufactured product will be 
accepted if the proportion of defects in the lot is  p  and the lot is judged accept-
able if the number of defects in a sample of size  n  is less than some prescribed 
acceptance number  c . For large lots, or continuous production, the acceptance 
probability is computed using the binomial distribution. But if  p  is small and 
n is large, the Poisson is a good approximation when the parameter   α   is taken 
equal to the product np. For example, the probability that a sample of size 
 n     =    100 taken from a population that is 1% defective ( p     =    0.01) contains  X     =    1 
defects may be computed using the binomial or the Poisson approximation 
with   α      =    100    ×    0.01    =    1. The results are:

   Binomial: [ . ] [ . ] .P X =( ) = ⎛
⎝⎜

⎞
⎠⎟

=1
100

1
0 01 0 99 0 369731 99  

   Poisson: . .( )
!

P X
e

= = =
−

1
1

1
0 36788

1 1
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   2.7    THE GEOMETRIC DISTRIBUTION 

 The binomial random variable represents the number of successes in  n  inde-
pendent trials when the probability of success remains constant from trial to 
trial. The geometric random variable is related. It is the number of such trials, 
 X , until the fi rst success is achieved. The probability that  X     =    1 is simply  p . The 
outcome  X     =    2 implies that the fi rst trial resulted in a failure and the second 
in a success, so  P { X     =    2]    =    (1    −     p ) p . It follows that  X     =     k  signifi es that the fi rst 
 k     −    1 trials were failures and the  k  - th a success, so that:

    Prob X x p px=[ ] = − ⋅−( ) .1 1     (2.29)   

 As  x  increases each term of the pmf is equal to the preceding term multiplied 
by (1    −     p ). The terms thus decrease as a geometric series giving rise to the 
name. The geometric distribution is known as a waiting time distribution since 
the random variable represents the wait, measured in trials, until the fi rst 
success. 

 The expected value of  X  is:

    E X
p

( ) = 1
.     (2.30)   

 Like the mean of the binomial this result seems to make intuitive sense to 
people. Most will answer  “ 10 ”  when asked how many  “ at bats ”  a 0.100 hitter 
can expect to have until his/her fi rst hit. This result may be found by summing 
the series:

    E X x p px

k

( ) = ⋅ − ⋅−

=

∞

∑ ( ) .1 1

1

    (2.31)   

 The expected value may be found more directly and surprisingly, by invoking 
the Law of Total Expectation and conditioning on the outcome of the fi rst 
trial. The outcomes, probabilities, and expected value are tabled as follows: 

     

 These results are generally considered to be in suffi cient agreement for calcu-
lating the behavior of an inspection sampling plan. 

 A Poisson  process  refers to a random phenomenon that follows a Poisson 
distribution at every specifi c value of some indexing quantity such as time or 
length, and for which the Poisson parameter is proportional to that quantity. 
Under some circumstances, discussed later, the number of times  N ( t ) that an 
item fails and is replaced prior to time  t , is Poisson distributed with   α      =      λ t . The 
mean number of replacements at time  t  will therefore be  E (N( t ))    =      α      =      λ t . The 
proportionality constant   λ   thus has the meaning of failures per unit time, that 
is, the failure rate. 
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 If the fi rst trial is a success the expected number of trials to the fi rst success 
is obviously 1.0. If the fi rst trial is a failure, then the process begins anew, except 
the expected number of trials increases by 1. Thus, the expectation may be 
written:

   E X p E X p( ) = ⋅ + ( ) + ⋅ −1 1 1[ ] ( ).   

 Simplifying and solving for  E ( X ) gives the desired result. 
 The CDF for the geometric distribution may be shown to be:

    F x P X x p x( ) = ≤[ ] = − −1 1( ) .     (2.32)   

 Suppose the probability that an item fails a test of some type is  p     =    0.1. If a 
number of items are tested sequentially what is the probability that the fi rst 
failure occurs after the fi fth test?

   P X F>[ ] = − ( ) = − =5 1 5 1 0 1 0 5905( . ) . .   

 We apply the geometric distribution in Chapter  4  when considering the cost 
of a renewing free replacement warranty.  

   2.8    CONTINUOUS RANDOM VARIABLES 

 It can be argued that all random variables are discrete because measurements 
of any type have a fi nite precision. A reported temperature of 68 ° F might in 
fact represent all of the temperatures in the range 67.5 °  to 68.5 °  if our ability 
to measure temperature has a precision of  ± 0.5 ° . However, rather than use a 
discretized distribution having a very large number of possible values it is 
convenient, and generally not overly inaccurate, to regard measurement data 
as continuous. 

 Just as the pmf contains all of the information available about a discrete 
random variable, all of the information about a continuous random variable 
is embodied in its  probability density function  ( pdf ). The pdf  f ( x ) of a continu-
ous random variable  x  is a positive continuous function defi ned over the range 
of the random variable. The range of the random variable may be fi nite, as it 
is for the uniform random variable discussed further below; it may extend over 
the entire real line from minus to plus infi nity as it does for the normal random 

   First Trial Result     Probability      E ( X |result)  

  Success     p     1.0  
  Failure    1    −     p      E ( X )    +    1  
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variable; or it may extend over just the positive real line (0,  ∞ ) as it does for 
most distributions that represent strength or life length such as the exponen-
tial, lognormal, and Weibull. The pdf has the property that its integral between 
two points, say  x  1  and  x  2 , is the probability that an observed  X  will have a value 
between  x  1  and  x  2 . That is,

    Prob x X x f x dx
x

x

1 2
1

2

< <[ ] = ( )∫ .     (2.33)   

 The shaded area in Figure  2.4  displays for the continuous random variable  X  
defi ned over the range (0,  ∞ ) the probability  P [1.5    <     X     <    2.0]. 

     Figure 2.4     Probability density function  f ( x ) of a continuous random variable.  
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 Again, we follow the convention of using the upper case when referring to 
the random variable and the lower case when referring to a hypothetical 
observed value or values. Unlike the discrete case, the probability that a con-
tinuous random variable is exactly equal to any specifi c value, for example, 
 P [ X     =    2], is zero. For this reason it is unnecessary to write  less than or equal  
in Equation  2.33  since the probability that a continuous random variable 
is  equal  to any specifi c value is zero. If  x  2     −     x  1     ≡     Δ x is small, then as an 
approximation,

   Prob x X x f x dx f x x
x

x

1 2
1

2

< <[ ] = ( ) ≈∫ ( ) .Δ     

 Since, by defi nition,  x must  lie within its stated range, between 0 and  ∞  in this 
case, one has

    Prob X f x dx< ∞[ ] = ( ) =
∞

∫0
1 0. .     (2.34)   
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 The CDF of a positive continuous random variable is defi ned as the probabil-
ity  F ( x ) that the random variable  X  is less than a general value  x . That is,

    F x X x f x dx
x

( ) = <[ ] = ( )∫Prob
0

.     (2.35)   

 The argument  x  is the upper limit of the integral. The  x  in the integrand is a 
dummy variable of integration and could be replaced by another symbol such 
as  x  ′  or  y  as some writers choose to do. 

 In view of Equation  2.34 , one must have  F ( ∞ )    =    1.0. 
 Given the CDF  F ( x ), the area between two values  x  1  and  x  2  may be com-

puted by subtraction as:

    f x dx F x F x
x

x

( ) = −∫
1

2

2 1( ) ( ).     (2.36)   

 Equation  2.35  shows that the pdf is the derivative of the CDF, that is,

    f x
dF x

dx
( ) = ( )

.     (2.37)   

 The complement of  F ( x ) is the probability that the random variable exceeds 
 x . In the case where  x  represents a life length, the complement of  F ( x ) repre-
sents the probability that the life of a randomly selected item will exceed  x . 
This is called the reliability at life  x  and is designated  R ( x ) or, particularly in 
biomedical applications,  S ( x ), where  S  signifi es survival. Since  F ( x )    =    1    −     R ( x ), 
the pdf is related to the reliability function as,

    f x
dR x

dx
( ) = − ( )

.     (2.38)   

 The distribution of a continuous random variable may contain one or more 
constants known as parameters that characterize its appearance. Denoting 
these by the letters   α   1 ,   α   2 ,    . . .    ,   α  n   the density function can be written more 
generally as  f ( x ;   α   1 ,   α   2 ,    . . .    ,   α  n  ). 

 The mean   μ   or expected value,  E ( X ), of a random variable is defi ned as:

    μ α α α= = ⋅
−∞

+∞

∫E X x f x dxn( ) ( ; , , ) .1 2 …     (2.39)   

  E ( X ) will be a function of the parameters   α   1 ,   α   2 ,    . . .    ,   α  n  . As in the discrete 
case the average of a sample of size n approaches  E ( X ) as n increases. (More 
precisely, the probability that the sample mean deviates from  E ( X ) by more 
than a prescribed amount  ε  diminishes with  n .) 
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 Example 
 Find  E ( X ) for the right triangular density:

    f x
x

x( , ) ; .α
α

α= < <
2

0
2

    (2.40)   

 The density of Equation  2.40  is depicted in Figure  2.5 .   
 Equation  2.34  is satisfi ed since:

   2 2
2

1 0
20

2

2
0

x
dx

x
α α

α α

∫ = = . .   

 The expected value  E ( X ) is calculated from Equation  2.39  as follows:

   E X x
x

dx
x( ) = ⋅ = =∫ 2 2

3
2
320

3

2
0α α

αα α

.   

 For this right triangular distribution,  E ( X ) is a linear function of the parameter 
  α  . Physically a line parallel to the ordinate that intersects the  x  axis at the point 
where  x     =     E ( x ) is the centroid of the density function. If a density function 
were cut out of homogeneous sheet metal it could be balanced on a knife edge 
placed perpendicular to the  x  axis at  x     =     E ( X ). 

 When a random variable is positive, for example, life length or strength, the 
mean may alternately be computed as the integral of the reliability function 
 R ( x )    =    1    −     F ( x ) over the range of variation of the random variable, that is,

    μ = ( ) =
∞

∫E X R x dx( ) .
0

    (2.41)   

     Figure 2.5     The triangular density.  
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 This may be shown by integrating Equation  2.39  by parts after substituting the 
negative derivative of  R ( x ) for  f ( x ). This expression for the mean is quite 
convenient for computing the expected value of system life in terms of the 
system reliability function. 

 The expected value of a function  Y     =     g ( X ) of a random variable  X  is, analo-
gously to the discrete case,

    E Y g x f x dx( ) = ( ) ( )
−∞

∞

∫ .     (2.42)   

 In particular the expected value of the linear function  Y     =     g ( X )    =     a     +     bX  
is:

   E Y a bx f x a f x dx b xf x dx( ) = +( ) ( ) = ( ) + ( )
−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫   

 or, by Equations  2.34  and  2.39 ,

    E Y a bE X( ) = + ( ).     (2.43)   

 Thus, as in the discrete case, the expected value of a linear function of  X  is 
that same linear function of the expected value  E ( X ). 

 Example 
 Determine the CDF of the right triangular distribution whose pdf is given by 
Equation  2.40 .

   F x
x

dx
xx

( ) = =∫ 2
20

2

2α α
.   

 If the value of the parameter   α   were   α      =    1, the probability that  X  is between 
0.5 and 0.6 may be computed as:

   Prob 0 50 0 60 0 6 0 5 0 6 0 5 0 112 2. . . . . . . .< <[ ] = ( ) − ( ) = − =X F F   

 This area is highlighted in Figure  2.6 .   
 As noted, since the triangular random variable is positive, the mean is 

alternately given by the integral of the reliability function:

   R x F x
x( ) = − ( ) = −1 1

2

2α
.   
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     Figure 2.6     Graphical depiction of Prob[0.5    <     X     <    0.6].  
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 So  E ( X ) may be computed as:

   μ
α α

αα α

= ( ) = −⎡
⎣⎢

⎤
⎦⎥

= − =∫E X
x

dx x
x

1
3

2
3

2

20

3

2
0

.   

 This agrees with the value previously found directly from the defi nition of the 
expected value. 

 The variance   σ   2  of a random variable is defi ned to be the expected value 
of the square of the difference between the random variable and its mean. As 
in the discrete case it characterizes the spread in the distribution. 

 That is,

    σ μ2 2= −E X( ) .     (2.44)   

 Expanding ( x     −      μ  ) 2  and integrating its product with the density function  f ( x ):

   σ μ μ μ μ2 2 2 2 22 2= − +[ ] ( ) = ( ) − ( ) +
−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫x x f x dx x f x dx xf x dx .   

 Since   ∫ ( ) =−∞
∞

xf x μ, the result is the same as in the discrete case, namely,

    σ μ2 2 2= ( ) −E X .     (2.45)   

 By analogy, the variance of a function  Y     =     g ( X ) of  X  may be expressed as:

    var Y E Y E Y( ) ( ).= ( ) −2 2     (2.46)   
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 for the linear function  Y     =     g ( X )    =     a     +     bX  one has:

   
E Y a abx b x f x dx

a abE X b E X

( )

( ).

2 2 2 2

2 2 2

2

2

= + +[ ] ( )

= + ( ) +
−∞

∞

∫   

 Substituting into Equation  2.46  and using Equation  2.43  gives,

   σ μ μ μ σa bx a ab b E X a b b E X b+ = + + ( ) − + = ( ) −[ ] =2 2 2 2 2 2 2 2 2 22 [ ] .     (2.47)   

 As in the discrete case, the variance is unaffected by the additive constant  a , 
and is proportional to the square of the multiplicative constant. 

 Example 
 Find the variance of the right triangular distribution whose pdf was given in 
Equation  2.40 .

   E X x
x

dx
x2 2

20

4

2

2 2
4

( ) = =∫ α α

α
.   

 Using   μ α
= ( ) =E X

2
3

 in Equation  2.45  results in:

   σ α α α2
2 2 2

2
2
3 18

= − ⎛⎝⎜
⎞
⎠⎟ = .   

 For the same distribution, what is the variance of of 2    +    3 X ?

   σ σ α α
2 3
2 2 2

2 2

3 9
18 2

+ = = =X   .

 The  p  - th quantile of a distribution is the value, designated  x p  , for which

    F x pp( ) = .     (2.48)   

 That is,  x p   is the point on the  x  axis for which the area under the pdf to the 
left of  x p   is  p . The  p  - th quantile is frequently called the 100 p  - th percentile. Thus, 
for example, the value  x  0.10  denotes the 10th percentile of the distribution. The 
50th percentile is called the median. Figure  2.7  shows a pdf having a median 
of 78.3. The area below the median is by defi nition equal to 0.50 and is shown 
shaded.   

 The median of the triangular distribution is the value  x  0.50  found by equating 
 F ( x ) to 0.50 and solving for  x :

   F x
x

x0 50
0 50
2

2 0 500 50 0 707.
.

.. ; . .( ) = = =
α

α   
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   2.8.1    The Hazard Function 

 The hazard function   λ  ( x ) is a concept specifi c to the study of life length. The 
probability of failing in the differential interval ( x ,  x     +     dx ) conditioned on 
having survived up to life  x  is given by   λ  ( x ) dx . The hazard function is also 
known as the instantaneous failure rate, and, in actuarial studies, the force of 
mortality. If   λ  ( x ) increases with  x  it indicates that vulnerability increases with 
age due to wearout. If   λ  ( x ) decreases with  x  it means that specimens that 
survive have diminished vulnerability because weaker specimens fail early. 

 One intuitive method of deriving the expression for the hazard function is 
to consider that if a very large number  N  of items are run to failure the ex-
pected number that will fail in the interval ( x ,  x     +     dx ) is  Nf ( x ) dx . The number 
expected to survive life  x  is  NR ( x ). For large enough  N  the ratio of the ex-
pected number failing in ( x ,  x     +     dx ) to the number that were still functioning 
at time  x  will converge to the probability that a survivor of life  x  will fail in 
that interval. Thus,

   Prob[ | ]
( )

( )
( )

.x X dx X x
Nf x dx

NR x
f x
R x

dxx< < + > = ( ) =   

 The hazard function is thus given by:

    λ x
f x
R x

( ) = ( )
( )

.     (2.49)   

 A more formal derivation follows when the laws of conditional probability are 
applied to events A and B defi ned as follows: 

     Figure 2.7     Probability density function (pdf) highlighting the median  x  0.50 .  

Median = 78.3

0.5

78.30

0.008

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0.000

f(
x)

x

Probability Density Function



50 discrete and continuous random variables

  A     =    { x     <     X     <     x     +     dx } and  B     =    { X     >     x }. The probability of  A | B  is:

   P A B
P A B

P B
f x dx
R x

x dx|
( )

( ) ( )
.( ) = = ( ) = ( )∩ λ   

 The hazard function, the reliability function, the CDF, and the pdf are all 
linked. Knowing one of these functions suffi ces to determine them all. Writing 
the density as the negative derivative of the reliability function, the expression 
for   λ  ( x ) dx  becomes:

   λ x dx
dR x
R x

( ) =
− ( )

( )
.   

 Integrating both sides from 0 to  x  results in:

   − ( ) = ( )[ ] = ( )∫ λ x dx R x R x
x

x

0
0ln ln[ ].   

 Since  R (0)    =    1, ln[ R (0)]    =    0. 
 Exponentiating both sides then expresses  R ( x ) in terms of   λ  ( x ) as:

    R x x dx
x

( ) = − ( )⎡
⎣⎢

⎤
⎦⎥∫exp .λ

0
    (2.50)   

  F ( x ) then follows from 1    −     R ( x ) and   f  ( x ) can be found by differentiating  F ( x ). 
The integral of the hazard function is called the cumulative hazard  Λ ( x ):

    Λ x x dx
x

( ) = ( )∫ λ
0

.     (2.51)   

 The average failure rate over the interval ( x  1 ,  x  2 ) is:

    λ
λ

=
( )

−
= ( ) −

−
∫ x dx

x x
x x
x x

x

x

1

2

2 1

2 1

2 1( )
( )

( )
.

Λ Λ     (2.52)   

 Using Equations  2.50  and  2.51  the average failure rate may alternately be 
written as:

    λ =
( ) − ( )

−
ln[ ] ln[ ]

( )
.

R x R x
x x
1 2

2 1
    (2.53)   
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 As an example of the derivation of a life distribution in terms of a specifi ed 
hazard function, consider the case where the hazard function is constant, that 
is,   λ  ( x )    =      λ  . 

 Then  R ( x ) is:

    R x dx e
x

x( ) = −⎡
⎣⎢

⎤
⎦⎥
=∫ −exp .λ λ

0
    (2.54)   

  F ( x ) is then 1    −     e   −     λ x  , and  f ( x ) is   λ e   −     λ x  . This distribution is known as the expo-
nential distribution. Its mean is equal to 1/  λ  . As we shall see in the next chapter, 
it is a special case of the Weibull distribution. The constant hazard function 
means that failure is not due to wearout since aged specimens are as good as 
new. It is characteristic of a failure mode such as an accident or shock that 
terminates a specimen ’ s life regardless of its present age. We will discuss the 
hazard function further when we begin our exploration of the Weibull 
distribution.   

   2.9    JOINTLY DISTRIBUTED CONTINUOUS 
RANDOM VARIABLES 

 When two continuous random variables are being studied the density function 
is replaced by the joint density function  f ( x ,  y ). The probability that  x  1     <     X     <     x  2  
and simultaneously,  y  1     <     Y     <     y  2  is given by the integral of  f ( x ,  y ) over that 
region:

    Prob x X x y Y y f x y dydx
y

y

x

x

1 2 1 2
1

2

1

2

< < < <[ ] = ( )∫∫∩ , .     (2.55)   

 When  x  and  y  are independent  f ( x ,  y )    =     f ( x ) f ( y ). 
 The other results are as for the discrete case but with summations replaced 

by integration. The marginal distribution of  X  is found by integrating  f ( x ,  y)  
over the range of  y . The marginal distribution of  y  is found correspondingly. 
The covariance is:

    cov X Y E XY E X E Y, ( ).( ) = ( ) − ( )     (2.56)   

 With  E ( XY ) given by:

    E XY xyf x y dxdy( ) = ( )
−∞

∞

−∞

∞

∫∫ , .     (2.57)   

 The correlation coeffi cient and variance of a sum is the same as in the discrete 
case.  
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   2.10    SIMULATING SAMPLES FROM 
CONTINUOUS DISTRIBUTIONS 

 A distribution of interest in conjunction with simulation studies is the uniform 
or rectangular distribution. Figure  2.8  shows a uniform distribution over the 
interval (1.0, 3.0).   

 That a random variable  X  follows the uniform distribution over an interval 
( a ,  b ) is sometimes communicated by the notation  X     ∼     U ( a ,  b ). The area of the 
rectangle representing the probability that  a     <     X     <     b  must be unity so  f ( x ), the 
height of the rectangle must be 1/( b     −     a ). In the pdf depicted in Figure  2.8 , 
the value of  f ( x ) is seen to be  ½     =    0.50. One can see by inspection and confi rm 
by integration that the mean of the uniform distribution is:

    μ = ( ) = +E X a b( ) / .2     (2.58)   

 The variance can be shown to be:

    σ 2
2

12
=

−( )
.

b a     (2.59)   

 The CDF is:

    F x
x

b a
a X b( ) =

−
< <

( )
; .     (2.60)   

 The uniform distribution having  a     =    0 and  b     =    1 is of special interest. Consider 
the transformation of a random variable by means of a function equal to its 
own CDF; that is, let  Y     =     F ( X ). This is a nondecreasing function of  X . The CDF 

     Figure 2.8     Probability density function (pdf) of the uniform distribution over the interval (1, 3).  
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of  Y  is denoted  G ( y )    =    Prob( Y     <     y ). Now  Y     <     y  whenever  X     <     F   − 1 ( y ) where 
 F   − 1 ( y ) denotes the inverse of  F ( x ) evaluated at the value  y . Thus,

   G y Y y X F y F F y y( ) = <( ) = < ( )[ ]( ) = ( )( ) =− −Prob Prob 1 1 .   

 So  G ( y ) is of the form of the uniform CDF with ( b     −     a )    =    1. Since  y     =    1 when 
 x  is at its largest and  y     =    0 when  x  is at its smallest,  a     =    0 and  b     =    1. Thus, 
 y     =     F ( x ) follows the uniform distribution with  a     =    0 and  b     =    1; that is,  F ( x ) is 
 U (0, 1).This fact can be exploited to generate simulated observations from a 
density function whose CDF is expressible in closed form. The method is to 
generate a sample of values from  U (0, 1) and equate them to  F ( x ). The associ-
ated values of  x  may then be found as the inverse  x     =     F   − 1 ( u ). For the right 
triangular pdf given earlier, the CDF is:

   F x
x( ) =

2

2α
.   

 Choosing the parameter   α      =    2 for illustration, equating the CDF to a uniform 
variable  u , and solving for  x  gives:

    x u= 4 .     (2.61)   

 Selecting a random sample of values from the distribution  U (0, 1) and using 
Equation  2.61  will result in a random sample of values of  x . Methods of com-
puting values of  u  that behave as if they were random samples have been 
studied extensively (cf. Marsaglia and McLaren  1965 ). Because they are com-
puted and hence actually deterministic they are referred to as pseudorandom. 
Figure  2.9  is a histogram of 1000 values of  x  computed by substituting 1000 
random values of  u  into Equation  2.61 . The right triangular shape is evident 
in the histogram of the simulated observations.    

     Figure 2.9     Histogram of 1000 simulated observations from triangular distribution.  
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   2.11    THE NORMAL DISTRIBUTION 

 The most important distribution in applied statistics is the normal or gaussian 
distribution. 

 It is a two - parameter distribution having the density function:

    f x
x

( ; , ) exp .α α
πα

α
α1 2

2

1
2

2
2

1

2 2
= ⋅ −

−[ ]⎛
⎝⎜

⎞
⎠⎟

    (2.62)   

 As noted previously, the expected value and standard deviation will be func-
tions of the parameters. For the normal distribution, the expected value 
  μ      =     E ( X ) can be shown to be equal to just   α   1  and the custom is to use   μ   in 
lieu of   α   1  when writing the normal density function. Likewise the standard 
deviation may be shown to equal   α   2  and so   σ   is customarily used in lieu of   α   2  
in the expression for the normal density. 

 The fact that a random variable  X  is normally distributed with expected 
value   μ   and variance   σ   2  is compactly communicated by the following 
notation.

    X N∼ ( , ).μ σ 2     (2.63)   

 The cumulative form of the normal distribution is given by :

    F x x dx
x

( ) = − −[ ]
−∞∫

1

2
22 2

πσ
μ σexp( / ) .     (2.64)   

 One of many useful properties of the normal distribution is that a new variable 
obtained as a linear combination  Y     =     a     +     bX  of a normal variable  X  ∼  N  (  μ  ,  σ   2 ) 
is itself normally distributed. As we have seen, the linearly transformed vari-
able will have a mean of  a     +     b μ   and variance  b  2   σ   2 . Thus, it may be asserted 
that  Y     ∼     N ( a     +     b μ  ,  b  2   σ   2 ). This fact is quite useful when it is necessary to change 
units. Suppose that, expressed in inches,  X     ∼     N (1, 0.001). In millimeters, 
 Y     =    0    +    25.4 X , so  Y     ∼     N (25.4, 0.6452). 

 There is no closed form expression for the integral of Equation  2.64 . For-
tunately it is not necessary to integrate Equation  2.64  numerically for every 
value of   μ   and   σ   of concern. A linear transformation, considered presently, 
permits the evaluation of Equation  2.64  in terms of the CDF for the particular 
normal distribution having   μ      =    0 and   σ      =    1. This specifi c normal distribution 
has been dubbed the standard normal distribution. 

 Let  Z  be the linear transformation of  X  defi ned as follows:

    Z
X

X=
−

= −
μ

σ σ
μ
σ

1
.     (2.65)   
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 Equation  2.65  is of the form  a     +     bX  wherein   a = −
μ
σ

 and   b =
1
σ

. The expected 

value of  Z  is therefore,

   E Z E X( ) = − + ( ) == − + =
μ
σ σ

μ
σ σ

μ1 1
0.   

 and the variance of  Z  is:

   σ
σ

σ
σz var X2

2

2

2

1
1= ( ) = = .   

 Thus   Z
X

=
− μ
σ

 is  N (0, 1). The CDF for the standard normal distribution 

is customarily denoted  Φ ( z ) and is expressed by the integral:

    Φ z
x

dx
z

( ) = −⎡
⎣⎢

⎤
⎦⎥−∞∫

1

2 2

2

π
exp .     (2.66)   

 The standard normal density is generally written as   φ  ( z ). The standard normal 
CDF  Φ ( z ) has been evaluated numerically and is extensively tabulated. A 
short table suffi cient for illustrative purposes is given below. In practice Excel 
or a statistical package can be used to compute normal probabilities directly 
without the use of the standard normal. Since the use of the standard normal 
is entrenched in the literature we cover its use here. The standard normal is 
frequently invoked in applied statistics in conjunction with discussions of 
random variables that are asymptotically normal. 

 Given that  X  is  N (  μ  ,   σ   2 ) one may fi nd the probability that  X  is less than 

some specifi ed value  A , in terms of the distribution of   Z
X

=
− μ
σ

 as follows:

   Prob Prob ProbX A
X A

Z
A A

<[ ] = −
<

−⎡
⎣⎢

⎤
⎦⎥
= <

−⎡
⎣⎢

⎤
⎦⎥
=

−⎛
⎝⎜

⎞
⎠⎟

μ
σ

μ
σ

μ
σ

μ
σ

Φ ..     (2.67)   

   

   

   

    

     Standard Normal CDF   Φ  (  z  )  

    z       Φ ( z )      z       Φ ( z )  

   − 3    0.0013499    0    0.5  
   − 2.9    0.0018658    0.1    0.5398278  
   − 2.8    0.0025551    0.2    0.5792597  
   − 2.7    0.003467    0.3    0.6179114  
   − 2.6    0.0046612    0.4    0.6554217  
   − 2.5    0.0062097    0.5    0.6914625  

(Continued)
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    z       Φ ( z )      z       Φ ( z )  

   − 2.4    0.0081975    0.6    0.725746,9  
   − 2.3    0.0107241    0.7    0.7580363  
   − 2.2    0.0139034    0.8    0.7881446  
   − 2.1    0.0178644    0.9    0.8159399  
   − 2    0.0227501    1    0.8413447  
   − 1.9    0.0287166    1.1    0.8643339  
   − 1.8    0.0359303    1.2    0.8849303  
   − 1.7    0.0445655    1.3    0.9031995  
   − 1.6    0.0547993    1.4    0.9192433  
   − 1.5    0.0668072    1.5    0.9331928  
   − 1.4    0.0807567    1.6    0.9452007  
   − 1.3    0.0968005    1.7    0.9554345  
   − 1.2    0.1150697    1.8    0.9640697  
   − 1.1    0.1356661    1.9    0.9712834  
   − 1    0.1586553    2    0.9772499  
   − 0.9    0.1840601    2.1    0.9821356  
   − 0.8    0.2118554    2.2    0.9860966  
   − 0.7    0.2419637    2.3    0.9892759  
   − 0.6    0.2742531    2.4    0.9918025  
   − 0.5    0.3085375    2.5    0.9937903  
   − 0.4    0.3445783    2.6    0.9953388  
   − 0.3    0.3820886    2.7    0.996533  
   − 0.2    0.4207403    2.8    0.9974449  
   − 0.1    0.4601722    2.9    0.9981342  
          3    0.9986501  

 Example 
 A random variable is distributed as  N (20, 4). Find the probability that an 
observed value of this random variable has a value less than 23.

   Prob ProbX Z<[ ] = <
−⎡

⎣⎢
⎤
⎦⎥
= =23

23 20
2

1 5 0 9332Φ( . ) .   

 For the same random variable fi nd the probability that 19    <     X     <    22.

   Prob Prob Prob19 22 22 19< <[ ] = <[ ]− <[ ]X X X  

   
Prob ProbZ Z<

−⎡
⎣⎢

⎤
⎦⎥
− <

−⎡
⎣⎢

⎤
⎦⎥

= − = −

22 20
2

19 20
2

1 0 5 0 8413 0Φ Φ( ) ( . ) . .. . .3085 0 5328=
  

 Example 
 If X is  N (  μ  ,   σ   2 ) fi nd the probability that  X  is within  a     =     ± 1   σ   interval surround-
ing its mean:
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 Example 
 Find the 90th percentile for the standard normal variable  z     ∼     N (0, 1). By 
defi nition:

   Φ z z dz
z

0 90
0

0 90
0 90

. . .
.( ) = = ( )∫ ϕ   

 The preceding table is insuffi ciently detailed to determine a precise value of 
 z  for which  Φ ( z )    =    0.90. It suffi ces only to show that  z  0.90  is less than 1.3 and 
greater than 1.2. The actual value to three signifi cant fi gures is  z  0.90     =    1.28. The 

     Figure 2.10     A one   σ   interval about the mean of a standard normal distribution.  

Standard Normal Density Function

Prob[−1 < Z < = 1]

−1 0
z

1

0.6830.4

0.3

0.2

0.1

0.0

ph
i(z

)
   
Prob Prob Prob

Prob

[ ]μ σ μ σ μ σ μ
σ

μ σ μ
σ

− < < + = <
+ −⎡

⎣⎢
⎤
⎦⎥
− <

− −⎡
⎣⎢

⎤
⎦⎥

=

X Z Z

[[ ] [ ]Z Z< − < −1 1Prob
 

   Φ Φ( ) ( ) . . . .1 1 0 8413 0 1587 0 6826− − = − =   

 Repeating this computation for a  ± 2  σ   interval establishes the well - known fact 
that a two - sigma interval contains roughly 95% of the area under the density 
function. If exactness is preferred to simplicity, a  ± 1.96  σ   interval will be closer 
to the 95% coverage. Figure  2.10  shows the standard normal density with the 
area between  ± 1.0 shown shaded.   
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area to the left of 1.28 is shown shaded on the standard normal pdf in Figure 
 2.11 .   

 The values of  zp  for some  p  values of common interest are shown in the 
following table. Because the standard normal is symmetrical around 0, the 
values of z1−p     =     −zp . Thus,  z0.10     =     − 1.28155. 

p   0.50    0.80    0.90    0.95    0.975    0.99    0.995  
  z p     0.0    0.84162    1.28155    1.644485    1.95996    2.32635    2.57583  

Figure 2.11     90th percentile of the standard normal distribution function.  

Standard Normal Density Function

Prob[z < 1.28] = 0.90

0
z

1.28

0.9

0.4

0.3

0.2

0.1

0.0

ph
i(z

)

 Example 
 Find the 90th percentile of the random variable distributed as  N (25, 9):

0 90
25

3
0 90

0 90. ..
.= <[ ] = <
−⎡

⎣⎢
⎤
⎦⎥

Prob ProbX x Z
x

 But by the last example,

Prob[ ] . ,.Z z< =0 90 0 90

 so that

x
z0 90

0 90
25

3
1 282.

. . .
−

= =

 and hence  x0.90     =    1.282    ×    3    +    25    =    28.84. 
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 In general,

    x zp p= +σ μ.     (2.68)   

 The normal is only occasionally used as a model for life length. Its reliability 
function is:

    R x F x
x( ) = − ( ) = −
−⎛

⎝⎜
⎞
⎠⎟1 1 Φ

( )
.

μ
σ

    (2.69)   

 The hazard function is:

    λ
ϕ μ

σ
σ

μ σx
f x
R x

x

x( ) = =

−⎡
⎣⎢

⎤
⎦⎥ − −[ ]{ }−( )

( )
( ) / .1 1Φ     (2.70)   

 Figure  2.12  is a plot of   σ  λ  ( x ) and shows that a normal model for life length 
implies an increasing hazard function.   

     Figure 2.12     The normal hazard function.    
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 It was stated in Section  2.5  that, provided,  np  and  n (1    −     p ) both exceed 5, 
the normal distribution with mean  np  and variance  np (1    −     p ) may be used to 
approximate the binomial. As an example, let  n     =    20 and  p     =    0.4 and suppose 
we wish to compute  P [ X     =    10]. The mean is  E ( X )    =    20    ×    0.4    =    8 and the vari-
ance is  var ( X )    =    20    ×    0.4    ×    0.6    =    4.8. Now the probability that a continuous 
random variable is exactly equal to any specifi c value is 0. To compute  P [ X     =    10] 
we must determine the area under the approximating normal distribution 
between 9.5 and 10.5. Thus,
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   2.12    DISTRIBUTION OF THE SAMPLE MEAN 

 Let  n  observations be made on the random variable following the distribution 
 N (  μ  ,   σ   2 ). Denote these observations by  X  1 ,  X  2 ,  X  3     . . .     X  n . The subscript on each 
observation denotes the order in which the observation is taken. Sampling is 
assumed to be random so that the values obtained in successive observations 
do not depend on the order number. We may say that the observations  X i   and 
 X j   are normally and independently distributed with mean   μ   and variance   σ   2  
for all  i  and  j . This is written symbolically as  X i      ∼     NID (  μ  ,   σ   2 ). The sample mean 
  X  is defi ned:

    X
n

Xi

i

n

=
=
∑1

1

.     (2.71)   

 The sample mean is seen to be a linear combination of the form 
 Y     =     c  1  X  1     +     c  2  X  2     +     ·  ·  ·   c n X n  , where  c  1     =     c  2     =     ·  ·  ·   c n      =    1/ n  and   Y X= . 

 As we have seen the expected value of a linear combination of a sequence 
of random variables is the same linear combination of the expected values of 
the random variables so that,

   E X
n

E X
n

E X
n

E Xn( ) ( ) ( ) ( ).= + +
1 1 1

1 2 �   

 but  E ( X i  )    =      μ   for all  i  and so,

    E X
n n n

( ) .= + + =
1 1 1μ μ μ μ�     (2.72)   

 It is important to realize that the sample mean is a random variable just as  X  
itself is. By taking repeated samples of, say, size 5 and calculating successive 
values of the sample mean   X( )5  one is sampling from the distribution of the 
random variable   X( )5 . 

   P X =[ ] = −⎛
⎝⎜

⎞
⎠⎟ −

−⎛
⎝⎜

⎞
⎠⎟ =8

10 5 8

4 8

9 5 8

4 8
0 119863Φ Φ

( . )

.

.

.
. .   

 The exact value of  P [ X     =    10] is 0.117142. 
 To compute a value of the cumulative binomial using the normal, a continu-

ity correction of 0.5 should be added to the upper limit. In the present example 

  P X ≤[ ] ≈ −⎛
⎝⎜

⎞
⎠⎟ =10

10 5 8

4 8
0 873083Φ

.

.
. . The exact value using the binomial 

distribution is 0.872479. 
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 Intuitively we would expect that this distribution would have the same 
expected value as the parent distribution, that is, that   E X E X[ ] ( )( )5 = = μ . We 
would expect it to scatter less about its expected value however. Moreover, if 
we were considering the mean   X( )10  of samples of size 10 we would expect still 
less scatter about   μ  . The variance of   X  must therefore be a decreasing function 
of sample size  n . 

 It can be proved that   X  tends to normality when  n  is large irrespective of 
the distribution of  X . The mathematical support for this behavior is called the 
Central Limit Theorem. How large  n  must be for this to occur depends on how 
nearly normal the original distribution is. 

 Since   X  is normally distributed, one need only fi nd its mean and variance 
to describe its distribution completely. 

 The variance of a linear combination of random variables is, when the 
variables are independent, given by:

    σ σ σ σY n nc c c2
1
2

1
2

2
2

2
2 2 2= + +� .     (2.73)  

   For Y X c c c
n

n n n= = = = = = = =( ), , .σ σ σ σ1
2

2
2 2 2

1 2
1

�   

 Hence

    σ σ σ σ σ
X n n n n
2

2
2

2
2

2
2

21 1 1
= + + =� .     (2.74)   

 We may summarize as follows: If  X  is distributed as  N  (  μ  ,   σ   2 ), then the mean 

  X  of a sample of size  n  is distributed as   N
n

μ σ
,

2⎛
⎝⎜

⎞
⎠⎟
. This result is the basis for 

confi dence intervals for the normal parameter   μ  . Since a normal variable 
minus its population mean and divided by its standard deviation is distributed 
as  N (0, 1) we may write the probability statement:

   Prob z
X

n
z0 025 0 975 0 95. .

/
. .<

−
<⎡

⎣⎢
⎤
⎦⎥
=

μ
σ

  

 Converting the two sides of the inequality into two inequalities on the unknown 
parameter   μ   and using  z  0.025     =     −  z  0.975  and  z  0.975     =    1.96 leads to:

    X
n

X
n

− < < +
1 96 1 96. .

.
σ μ σ

    (2.75)   

   X  denotes the observed value of the sample mean. Equation  2.75  represents 
a 95% confi dence interval on the unknown parameter   μ   valid when the stan-
dard deviation is known. Using appropriate percentage points of the standard 
normal variable the confi dence level of the statement may be changed as 
desired. The general expression may be written as:
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    X z
n

± −1 2α
σ

/     (2.76)  

  and is called a 100(1    −      α  )% two - sided confi dence interval. As an example, if 
an 80% confi dence interval is desired,   α      =    0.20 and the appropriate  z  value is 
 z  0.90     =    1.28. 

 Sometimes only a one - sided confi dence interval is needed. For example, 
one might wish only to have a lower bound for the average strength of a 
manufactured part. In that case the value of   α   is not divided between the two 
tails. So a lower 95% confi dence limit would be written as:

   μ σ
> −X

n
1 645. .   

   

   

   

 Example 
 A normally distributed random variable has a standard deviation of   σ      =    2. A 
sample of 25 values drawn randomly from this distribution had a sample mean 
of   X = 20 0. . Compute a 90% confi dence interval for the population mean   μ  . 
As already noted, there is a 90% probability that  z  will fall between  − 1.645 
and  + 1.645. Analogous to the statement given above, we may calculate:

   19 34 20 1 645
2

25
20 1 645

2

25
20 66. . . . .= − < < + =μ   

 An  upper  90% confi dence interval for   μ   is:

   μ < + =20 1 28
2

25
20 51. . .   

 Example 
 The resistance  X  of a certain type of connector follows the normal distribution 
with a mean of 1000 ohms and a variance of 90 ohms 2 . An inspection procedure 
requires that a sample of 10 resistors be taken and that the shipment be 
accepted if the average of these 10 values is between 995 and 1005. Find the 
probability that the shipment will be accepted:

   Pa Prob= < <[ ]( )995 100510X  

   where /X N( ) ( , )10 1000 90 10∼  

   

Pa Prob Prob

Prob

= < − <

= <
−⎡

⎣⎢
⎤
⎦⎥

[ ] [ ]( ) ( )X X

Z

10 101005 995

1005 1000
3

−− <
−⎡

⎣⎢
⎤
⎦⎥

= − −

Prob

/ /

Z
995 1000

3
5 3 5 3Φ Φ( ) ( )
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Pa = − =0 9525 0 0475 0 9050. . . .

 Just as the sample mean   x is an unbiased estimate of the population mean μ , 
so the sample variance, defi ned as,

s x x ni

i

n
2 2

1

1= − −
=
∑[ ] / ( ).  (2.77)

 is an unbiased estimate of  σ2 . Loosely speaking, when an infi nite number of 
samples of size n  is considered and  s2  is computed for each sample, the average 
will be σ2 . In other words, for the sampling distribution of s 2 , it is true that,

E s( ) .2 2= σ

 It was seen above that confi dence limits for  μ  can be found when  σ  is known 

by using the known distribution of the random variable   z
x

n
=

− μ
σ /

. When  σ

is unknown it must be estimated by s, the sample standard deviation. 
 The random variable

t
x

s n
=

− μ
/

 (2.78)

 is identical in form to  z  except that the sample standard deviation s replaces 
σ . It can be shown that this quantity varies from sample to sample in accor-
dance with the one - parameter distribution having the following pdf:

f t
t

; .ν
πν

ν

ν ν

ν

( ) = ⋅

+⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⋅ +⎛
⎝⎜

⎞
⎠⎟
− +⎛
⎝⎜

⎞
⎠⎟1

1
2

2

1
2

1
2

Γ

Γ
 (2.79)

 The distribution of Equation  2.79  is called Student ’ s  t  distribution. It is sym-
metrical about t    =    0.0. Its parameter,  ν , is called the  “ degrees of freedom ”  of 
the distribution, and for  t  as defi ned in terms of the mean and standard devia-
tion in Equation  2.78 ,  ν     =    n    −    1. Percentage points of the t distribution may 
be found using Excel or any statistical software package. 

 Analogous to the case where  σ  is unknown, the construction of two - sided 
100 (1    −     α )% confi dence limits for  μ , proceeds from the probability 
statement:

Prob t
x

s

n

tα α
μ α

2
1

2

1<
−

<

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −

−
.
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 By solving the inequalities for   μ   one fi nds

    x
st

n
x

st

n
− < < −− −1 2 1 2α αμ/ / .     (2.80)   

 Since  t  1    −        α       =     −  t  α    /2 , the upper and lower ends of the confi dence interval may be 
expressed succinctly as   x st n± −1 2α /  and wherein it is understood that  t  has 
 n     −    1 degrees of freedom. Excel or a statistical software package may be used 
to fi nd any desired percentage point of  t  with any prescribed degrees of 
freedom. 

 Example 
 Calculate two - sided 80% confi dence limits for   μ   given that a random sample 
of size  n     =    25 led to a calculated mean   x = 42 0.  and standard deviation of 
 s     =    4.1. From tables of the  t  distribution or using software it is found that  t  0.90  
with 24 degrees of freedom is 1.32. 

 The upper and lower 80% confi dence limits are thus,

   40 92 42
1 32 4 1

5
42

1 32 4 1
5

43 08.
. . . .

. .= −
⋅

< < +
⋅

=μ   

 Notice that had   σ   been known, the interval would have been shorter since 
 z  0.90     =    1.28    <    1.32. The greater width in this case is ascribed to the uncertainty 
in  s  due to sampling error. As the sample size increases the percentiles of  t  
approach the corresponding percentiles of the standard normal distribution. 
When using simulation to determine the distribution of some random function, 
generally the sample size will be large ( > 1000) so one may safely set confi dence 
limits on the population mean value of the simulated function using the com-
puted mean and standard deviation and relevant percentage points of the  z  
distribution. This is justifi ed by the central limit theorem and the approach of 
the  t  distribution to the standard normal. In Chapter  5  the life of a parallel 
system is simulated 10,000 times and confi dence limits are set on the system 
mean life using the sample mean and standard deviation. These limits are 
shown to include the true value obtained by numerical integration. 

 Confi dence limits for   σ   2  may be computed when the data are normally 
distributed and they follow from the fact that

    Y
n s

=
−( )1 2

2σ
    (2.81)   

 follows a chi - square distribution. The density function of the chi - square distri-
bution is:

    f y y
y

y; exp ; ,
/

ν νν

ν

( ) =
⎛
⎝

⎞
⎠

−⎛⎝⎜
⎞
⎠⎟ < < ∞

−⎛
⎝⎜

⎞
⎠⎟1

2
2

2
0

2

2
1

Γ
    (2.82)   
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 where the parameter   υ   is known as the degrees of freedom. The random vari-
able defi ned by Equation  2.81  follows the chi - square distribution with   υ      =     n     −    1. 
Percentage points of the chi - square distribution may be found using Excel or 
a statistical software package. 

 Confi dence limits for   σ   2  derived from the chi - square distribution are heavily 
dependent of the underlying data being normally distributed, that is, they are 
not robust against departures from normality and so will not be of much use 
to us. We will encounter the chi - square distribution again when we discuss 
inference on the exponential distribution in Chapter  5 . We note here that in 
the special case that   υ      =    2 degrees of freedom the chi - square density function 
reduces to:

    f y
y( ) = −⎛⎝⎜
⎞
⎠⎟

1
2 2

exp .     (2.83)   

 This is the density function of an exponential distribution having a mean 
of 2. 

   2.12.1     P [ X      <      Y ] for Normal Variables 

 We take up this topic in Chapter  4  when both  X  and  Y  are Weibull distributed. 
If  X  represents the stress that a component will be subject to in service and 
 Y  is the strength of the population of components, then a component will 
survive if its  X  value is less than its  Y  value. If  X  is normally distributed with 
mean   μ  x   and variance   σ x

2 and likewise  Y  is normal with mean and variance   μ  y   
and   σ y

2, then  P [ X     <     Y ] can be expressed as  P [ X     −     Y     <    0]. Defi ne  D  as 
 X     −     Y     =     X     +    ( − 1) Y . 

  D  is thus of the form:

   D c X c Y= +1 2 .  

  with  c  1     =    1 and  c  2     =     − 1. As a linear combination of two normal variables, D 
will itself be normally distributed. Its mean will be the same linear combina-
tion of the means of  X  and  Y  and its variance will be the sum of the squares 
of the coeffi cients multiplied by the variances of  X  and  Y  as shown in Equa-
tion 2.73: 

 Thus,

    D N x y x y∼ ( , ).μ μ σ σ− +2 2     (2.84)   

     

 Example 
 The stress  X  on aircraft rivets vary with location and geometrical factors as 
 N (3000, 900). Their strength varies because of manufacturing tolerances and 
variability in material properties as  N (3100, 1200). The probability that  X     <     Y  
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   2.13    THE LOGNORMAL DISTRIBUTION 

 The random variable  X , whose natural logarithm is normally distributed, is 
called the lognormal distribution and is a popular life model. Since ln    x     ∼     N (  μ  , 
  σ   2 ), the CDF can be written as:

    F x X x X x
x( ) = <[ ] = <[ ] = −⎛

⎝⎜
⎞
⎠⎟Prob Prob ln ln

ln
.Φ

μ
σ

    (2.85)   

 In this equation,   μ   and   σ   are, respectively, the mean and variance of the loga-
rithm of  X .  X  is a positive random variable since ln    x  is undefi ned for  x     <    0, 
and it is unlimited on the right. As for any normally distributed variable, the 
 p  - th quantile of ln    X  is   μ      +     z p  σ  . The  p  - th quantile of  X  is therefore:

    x zp p= +exp( ).μ σ     (2.86)   

 The density function  f ( x ) can be found by differentiating  F ( x ):

    f x
x

x( ) = −⎛
⎝⎜

⎞
⎠⎟

1
σ

ϕ μ
σ

(ln )
.     (2.87)   

 The expected value of  X  is:

    E X( ) = +( )exp . .μ σ0 5 2     (2.88)   

 The variance is:

    var X( ) = +( ) ⋅ ( ) −exp [exp ].2 12 2μ σ σ     (2.89)   

 The hazard function is readily found by dividing  f ( x ) by  R ( x )    =    1    −     F ( x ). The 
hazard function is not monotonic. It increases from 0 at  x     =    0, reaches a 
maximum, and then decreases monotonically to 0 as  x  increases.. 

    

may be thought of as the reliability since it represents probability that a 
random rivet will survive.

   R P D= <[ ] = − −
+

⎛
⎝⎜

⎞
⎠⎟ = ( ) =0

0 3000 3100

900 1200
2 182 0 984Φ Φ

( )
. . .   

 Example 
 Consider a lognormal random variable having   μ      =    6.908 and   σ      =    0.317. The 
median value of  x  is:

   x0 50 6 908 0 1000. exp . .= +( ) =   
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   2.14    SIMPLE LINEAR REGRESSION 

 Consider a random variable  Y  that has a distribution whose mean varies lin-
early with the value of a nonrandom independent variable  X . The mean is 
often written   μ  Y   |   X   to denote this dependence and may be written as:

    μ β βY X X| .= +0 1     (2.90)   

 The quantity   β   0  is the intercept and   β   1  the slope of the linear relationship 
between the mean of  Y  and  X . The variable  X  is sometimes called the inde-
pendent or explanatory variable. For a fi xed value of the nonrandom variable 
 X ,  Y  will vary randomly about   μ  Y   |   X  . The random departure of an observed 
value of  Y  from its mean is denoted  ε . A random value of  Y  may therefore be 
written as:

    Y X= + +β β ε0 1 .     (2.91)   

 Given  n  pairs of values of  X  and the associated observed values of  Y , a statisti-
cal problem is to use these data to estimate the values of the slope and inter-
cept of the linear relationship between the value of  X  and the mean of the 

 The 90th percentile is:

   x0 90 6 908 1 28 0 317 1500. exp . . .= + ⋅( ) =   

 As the reader no doubt guessed, the values of  μ  and  σ  were  “ reverse engi-
neered ”  to give these nice round numbers for the median and the 90th 
percentile. 

 The expected value for this example is:

   E X( ) = + ( )( ) =exp . . . . .6 908 0 5 0 371 1071 52   

 The variance is:

   var X E( ) = ⋅ + ( )( )⋅ − =exp . . [exp( . ) ] . .2 6 908 0 317 0 317 1 1 17 52 2   

 The probability that  X  is less than 1300 may be computed from:

   Prob X F<[ ] = ( ) = −⎛
⎝⎜

⎞
⎠⎟ = ( ) =1300 1300

1300 6 908
0 317

0 827 0Φ Φ
ln( ) .

.
. .. .796   

 In practice, data drawn from a lognormal population can be diffi cult to 
distinguish from Weibull distributed data. Some formal tests for deciding 
which of the two distributions gave rise to a given sample are described in 
Chapter  6 . 
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distribution of  Y . The usual estimation method is the method of least squares. 
The estimated slope and intercept are denoted  b  0  and  b  1 , respectively, and are 
the values that make the following sum a minimum:

    S Y b b Xi i

i

n

= − −
=
∑( ) .0 1

2

1

    (2.92)   

 The solutions are linear functions of the  Y  values:

    b a Yi i

i

n

0

1

=
=
∑ .     (2.93)   

 and

    b c Yi i

i

n

1

1

=
=
∑ .     (2.94)   

 The coeffi cients are given by:

    a n
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    (2.96)   

 If the errors  ε   i   at each  X i   value have an expected value of zero and are uncor-
related, then the Gauss – Markov theorem asserts that these linear estimates 
are unbiased and have the smallest possible variance among the class of linear 
estimators. There is no explicit assumption of the nature of the distribution of 
 Y  about its mean (cf.Draper and Smith  1998 ). Excel and all statistical software 
can perform the calculations to compute the least squares estimates of the 
slope and intercept in terms of a set of pairs of values of  Y  and  X . Linear 
regression is often used in fi tting probability distributions using transformed 
scales in which the CDF plots as a straight line against the value of the random 
variable. The conditions for the Gauss – Markov theorem to hold are not met 
in this application of regression, but the method nevertheless provides a non-
subjective way of fi tting a straight line. 

 When  Y  varies about its mean in accordance with a normal distribution it 
is possible to compute confi dence limits and test hypotheses about the true 
slope and intercept.   
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 EXERCISES 

1.   A test consists of 100 multiple - choice questions each with four possible 
answers. A passing grade is 70 or more correct. If a person guesses at each 
question, randomly choosing a response, compute the probability that:

a.     the person passes the test.  
b.     the fi rst correct answer occurred on question No. 4.      

2.   An oil drilling company drills at a large number of locations in search of 
oil. The probability of success at any location is 0.25 and the locations may 
be regarded as independent.

a.     What is the probability that the driller will experience 1 success if 10 
locations are drilled?  

b.     The driller feels that she will go bankrupt if she drills 10 times before 
experiencing her fi rst success.(fi rst success occurs on trial 10). What is 
the probability that she will go bankrupt?      

3.   A double sampling plan used in incoming acceptance sampling consists of 
numbers,  n1 ,  n2 ,  c1 , and  c2  and functions as follows: A random sample of 
size n1  is drawn from the lot. If the sample contains  c1  or fewer defective 
items, the lot is accepted. If the sample contains more than  c2  defectives, 
the lot is rejected. If the sample contains more than  c1  but less than c 2
defectives, an additional sample of size  n2  is taken. If the combined sample 
contains c 2  or fewer defectives, the lot is accepted. If it contains more than 
c2  defectives, the lot is rejected. For the plan  n1     =    50,  n2     =    100,  c1     =    2, and 
c2     =    6 compute the following assuming that the samples are drawn from a 
large lot that contains 4% defectives.

a.     The probability of acceptance on the fi rst sample  
b.     The probability of rejection on the fi rst sample  
c.     The total probability of acceptance.      

4.   How large a sample must survive without failure to demonstrate that the 
reliability of a component exceeds 0.997 with 80% confi dence.   
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5.   A distribution defi ned over the interval (0, 3) has pdf: f ( x )    =     cx2 ; 0    <     x     <    3 

a.     Find the value of  c .  
b.     Compute the mean and variance of  x .  
c.     Determine the CDF of  x .  
d.     Compute the median and the 75th percentile of  x .      

6.   The Fit - Is - Us Spa guarantees  that after a month of their special diet and 
exercise program a client will lose at least 10 pounds. Their experience 
shows that X , the actual number of pounds that their clients will lose, is a 
discrete random variable ranging from 10 to 14 pounds with the probabil-
ity distribution tabled below. 

X   10    11    12    13    14  
P ( x )    0.35    0.25    0.20    0.15    0.05  

a.     Compute the mean and variance of a client ’ s weight loss.  
b.     What is the distribution of  L , the percentage weight loss in a week for 

a 200 - pound client. Compute the mean and variance of  L  directly from 
the distribution of L .  

c.     Compute the mean and variance of  L  using the results from (a) above 
and the fact that L  is a linear function of  X .      

7.   The travel time experienced by a driver going from City A to City B along 
U.S. Highway 95 can be viewed as a normally distributed random variable 
with a mean of 3.50 hours and a standard deviation of 0.45 hours.

a.     Calculate the probability that a randomly selected driver experiences 
a travel time in excess of 4.0 hours.  

b.     Consider an experiment involving the measurement of the travel time 
of 50 different randomly and independently selected drivers going from 
City A to City B.  

i     Calculate the probability that the  average  travel time (taken over 
the 50 observations) is between 3.4 and 3.65 hours.  

ii     What is the expected number of drivers in this sample who will have 
experienced a travel time in excess of 4.0 hours? What is the stan-
dard deviation of the number of drivers in the sample who experi-
enced a travel time in excess of 4.0 hours?  

iii     Some drivers, after arriving at City B, may decide to continue on to 
City C. We can assume that the travel time from City B to City C is 
normally distributed with a mean of 1.25 hours and a standard devia-
tion of 0.75 hours. We can further assume that the travel time 
between City B and City C is independent of that between City A 
and City B. For a randomly selected driver going from A to B and 
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then continuing on to C, calculate the probability that the total travel 
time (assuming no stops along the way) is in excess of 5 hours but 
less than 6 hours.        

8.   I have three items of business to transact in an adjacent building. Let  Xi

be the amount of time in minutes required for each transaction ( i     =    1, 2, 
3) and let X4  denote the total time to walk over and back including my 
travel time from one transaction to the other. Suppose the  Xi  ’ s are inde-
pendent and normally distributed with the following means and standard 
deviations:  μ1     =    15,  μ2     =    5,  μ3     =    8,  σ1     =    4,  σ2     =    1,  σ3     =    2. I plan to leave my 
offi ce precisely at 10:00 a.m. and wish to put a note on my door that says 
I will return by t  a.m., What time t should I write down if I want the prob-
ability that I return after t  to be less than 0.01?   

9.   A sample of 25 pieces of laminate used in the manufacture of circuit 
boards was selected and the amount of warpage in inches was determined 
for each piece, resulting in a mean of 0.0635 and a sample standard devia-
tion of 0.0065. Assuming normality, calculate an 80% confi dence interval 
for the mean of the population from which the sample was taken.   

10.   The quality department of a candy manufacturer uses a demerit system in 
the inspection of boxes of candy. Each defective piece of candy counts as 
fi ve demerits and each blemish in the wrapping counts as three. Thus, for 
each inspected candy box the inspector determines a value Q     =    5 X     +    3 Y . 
Y  follows a Poisson distribution with mean of 1.5 blemishes. Consider 
boxes containing 25 pieces of candy and assume the probability of a defec-
tive piece of candy is 0.1 independently for every piece in the box.

a.     Compute the theoretical mean and variance of  Q .  
b.     Using Excel (or other appropriate software) simulate 1000 boxes of 

candy by sampling from the distribution of X  and  Y  and computing  Q .  
c.     Compute the mean and variance of the 1000 values and compare with 

the theoretical values.  
d.     Sort the 1000  Q  values and determine what proportion of them are less 

than 15.  
e.     Now approximate the distribution of  Q  as a normal distribution with 

the same theoretical mean and variance and compute P [ Q     <    15].      

11.   Consider a disease whose presence can be detected by means of a blood 
test. A potentially economical way to conduct such tests is to take a 
portion of a blood sample from each of n  people and combine them. If a 
test on the combined sample proves negative, all  n  patients are free of the 
disease and no further testing is performed. If the test on the combined 
sample is positive, then the test is conducted on the  n  individual samples. 
(This group testing method was introduced by the army during World War 
II to test for syphilis in inductees.) For  n     =    3 and prevalence  p     =    0.10, 
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compute the expected number of tests to be performed on each group of 
three people.   

12.   The reliability of each of 10 identical components is 0.95. If these compo-
nents are part of a system for which at least six components must function 
for the system to function, compute the system reliability. If this system 
could be replaced by a parallel combination of fi ve identical components, 
what would the reliability of those components have to be to give the same 
system reliability as the 6 out of 10 system?   

13.   The life of a product follows a lognormal distribution. The median life is 
1000 hours. The probability that the product will survive a life of 2000 
hours is 10%. Compute the expected life.   

14.   The hazard function for a certain product is a linear function of the prod-
uct ’ s age  x , that is,  λ ( x )    =     kx . Compute the reliability function  R ( x ).     



  C H A P T E R 3 

Properties of the  W eibull 
Distribution     

    3.1    THE  W EIBULL CUMULATIVE DISTRIBUTION FUNCTION 
( CDF ), PERCENTILES, MOMENTS, AND HAZARD FUNCTION 

 There are two forms of the Weibull distribution distinguished by the presence 
of either two or three parameters. Unlike the normal distribution, the Weibull 
CDF is expressible in closed form. The CDF of the three parameter version 
of the Weibull distribution may be written as:

    F x
x

x( ) = − − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ >1 exp ; .

γ β

η
γ     (3.1)   

  γ , the location parameter, is also known as the threshold parameter, or, in life 
testing applications, as the guarantee time, since failure cannot occur until  x  
exceeds   γ  . When   γ   is zero the three - parameter Weibull distribution specializes 
to the much more widely employed two - parameter version.   η  , the scale param-
eter, is known as the characteristic value or, in life testing applications, as the 
characteristic life, for a reason explained further below.   β   is called the shape 
parameter and for   β      =    1 the two - parameter Weibull distribution specializes to 
the exponential distribution. The parameters   η   and   β   are positive.   γ    is generally 
taken to be positive although there is no mathematical reason that this is 
necessary. In this chapter we will deal, except where noted, with the two -
 parameter Weibull model. Other parameterizations of the Weibull are possi-
ble. For example, some writers replace 1/  η   β    by   λ   for the typographical benefi t 
of writing the CDF on a single line. The version we have adopted has the useful 
advantage that the parameter   η   is expressed in the same units as the random 
variable itself. 
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 The reliability function  R ( x ), known more usually as the survivorship func-
tion in biomedical applications, expresses the probability that the life of a 
device or subject will exceed a given value. For the two - parameter Weibull 
distribution this function has the form:

    R x X x exp
x

x( ) = >[ ] = −⎛
⎝⎜

⎞
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⎡

⎣
⎢

⎤

⎦
⎥ >Prob

η

β

; .0     (3.2)   

 Taking logarithms twice gives

    ln ln ln ln .
1

R x
x

( )
⎛
⎝⎜

⎞
⎠⎟
= −β β η     (3.3)   

 On graph paper with a vertical scale ruled proportionally to the values of 
lnln(1/ R ( x )) and with a logarithmic horizontal scale, the Weibull CDF plots 
against  x  as a straight line. Graph paper so constructed is often called Weibull 
paper. Figure  3.1  shows the line corresponding to the Weibull distribution 
having   β      =    1.5 and   η      =    100. This plot can be used to determine  F ( x ) to within 
graphical accuracy for  x  values of interest. The principal use of Weibull paper, 
however, is in the graphical estimation of the Weibull parameters, a topic that 
we will take up in Chapter  5 . With one choice of the scales used in the con-
struction of Weibull paper, the slope of the straight line representation becomes 

     Figure 3.1     A Weibull probability plot for the population  W (100, 15).  
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numerically equal to the Weibull shape parameter. In some engineering litera-
ture   β   is therefore known as the Weibull slope. In some other graph paper 
designs in popular use, an auxiliary scale is provided to set the shape param-
eter appropriately. See for example Nelson  (1967)  and Nelson and Thompson 
 (1971) .   

 The probability density function (pdf) of the two parameter Weibull distri-
bution is:

    f x
dF x

dx
x
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    (3.4)   

 Figure  3.2  is a plot of  f ( x ) for   η      =    1 and several values of   β  . It illustrates the 
powerful role of   β   in determining the shape of the Weibull density and suggests 
visually why the Weibull distribution can be fi t to widely diverse kinds of 
random phenomena.   

   3.1.1    Hazard Function 

 From Equation  2.49  in Chapter  2  the hazard function for the two - parameter 
Weibull distribution is:

    λ
β
η

β

βx
f x
R x

x( ) = =
−( )

( )
.

1

    (3.5)   

     Figure 3.2     Weibull pdf for various values of the shape parameter   β  .  
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 When   β      =    1, the hazard function is constant signifying that the likelihood of 
failure is unaffected by age. In this case the Weibull reduces to the exponential 
distribution. The constant failure rate is   λ      =    1/  η  . For   β      >    1 the hazard increases 
with age, while for   β      <    1, the hazard decreases with age. The ability to account 
for increasing, decreasing, and constant failure rate behavior underscores the 
great fl exibility of the Weibull distribution. 

 As indicated by Equation  2.50 , the reliability function is related to the 
hazard rate by:

    R x x dx x
x

( ) = − ( )⎡
⎣⎢

⎤
⎦⎥
= − ( )[ ]∫exp exp .λ

0
Λ     (3.6)   

  Λ ( x ) is the integral of the hazard function from 0 to  x , and is known as the 
cumulative hazard function. Integrating Equation  3.5  gives:

    Λ x
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 Using Equation  2.52 , one may express the average failure rate over an interval 
from  x  1  to  x  2  as:
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 Example 
 The life of a product follows a Weibull distribution with a shape parameter of 
1.5 and a scale parameter of 1000 hours. Compute the instantaneous failure 
rate at 500 hours and the average failure rate over the time interval from 500 
to 1500 hours:

   λ( )
. ( )
( )

. . / .
.

.
500

1 5 500
1000

1 061 10 1 061 1000
1 5 1

1 5
3= ⋅ = × =

−
− hours   

 The average failure rate from 500 to 1500 hours is:

   λ = −
−

=( ) ( )
. / .

. .1500 500
1500 1000

1 484 1000
1 5 1 5

hours   

 If a limited mission life is at issue one could consider the approximation of 
replacing a Weibull model by an exponential model having a constant failure 
rate equal to the Weibull average failure rate over the mission life. This 
approximation could facilitate further calculations and is reasonable if the 
failure rates at the beginning and end of the interval in question are not greatly 
different. 



   3.1.2    The Mode 

 The mode of a distribution is the value of  x  at which the probability density 
function is largest. For a   β   value of 1.0 or less, the mode of the Weibull distri-
bution occurs at  x     =    0. For   β      ≥    1.0 the mode occurs at:

    xm = −⎛
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η β
β

β
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    (3.9)   

 For large values of the shape parameter the mode approaches the scale param-
eter   η  .  

   3.1.3    Quantiles 

 The  p  - th quantile of the two - parameter Weibull distribution, found as the 
solution of  F ( x p  )    =     p , is:
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 It is convenient to defi ne
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 so that the  p  - th quantile may be written,

    x kp p= η β1/ .     (3.12)   

 To graphical accuracy one may read quantiles from a Weibull plot by setting 
 F ( x )    =    100 p  on the ordinate and reading the corresponding abscissa. 

 Using Equation  3.12  in Equation  3.2 , one may express the CDF in terms of 
  β   and a general quantile, that is,

    F x exp k
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 This parameterization is convenient when a product is rated by the value of a 
specifi c quantile. The bearing industry, for example, rates its products by the 
tenth quantile  x  0.10  and manufacturers ’  catalogs contain factors whereby  x  0.10  
may be computed for a given loading. It is therefore convenient for bearing 
engineers to calculate reliabilities directly in terms of  x  0.10  rather than having. 
to fi rst convert  x  010  to   η  . 

 An equivalent alternative form is:

    
F x p

x
xp( ) = − −

⎛
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⎞
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    (3.14)   
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 For  p     =    1    −    1/ e     =    0.632,  x p      =      η  , regardless of the value of   β  . Since all other 
percentiles depend on both   η   and   β  ,  x  0.632  or   η   is called the characteristic value 
or, in life testing applications, the characteristic life. 

 The ratio of two quantiles, say  x p   and  x q  , may be found using Equation  3.10  
as:
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    (3.15)    

   3.1.4    Moments 

 The expected value of  x  raised to an integer power,  k , is conveniently express-
ible as:

    E X x dF x
k
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 where,

    B
k

k = +⎛
⎝⎜

⎞
⎠⎟

Γ
β

1 .     (3.17)   

 And  Γ ( · ) is the gamma function of applied mathematics defi ned as:

    Γ z t e dtz t( ) = − −
∞

∫ 1

0
.     (3.18)   

 The gamma function is widely tabulated and otherwise available in computing 
software. Excel contains a function that computes the logarithm of the gamma 
function.  E ( X k  ) is called the  k  - th raw moment. The terminology  raw moment  
distinguishes it from the  k  - th  central moment  defi ned as  E(x      −       μ   )   k  . 

 The mean   μ      =     E ( x ) may therefore be written,

    μ η= B1.     (3.19)   

 In life testing applications the mean is often designated MTTF for mean time 
to failure. It is sometimes called MTBF for mean time between failures, 
although most writers reserve this term for repairable systems. Bearing appli-
cation engineers, knowing the computed value of  x  0.10  for their product may, 
on occasion, encounter requests from reliability analysts of a client company 
to provide the MTTF for their bearings. They may use Equation  3.19  after fi rst 
computing   η   in terms of  x  0.10  using Equation  3.10 :

    η β=
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x0 10
10 90

.
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.     (3.20)   

 The second raw moment is,

    E X B2 2
2( ) = η .     (3.21)   



 The variance  σ2  is thus expressible as:

σ μ η2 2 2 2
2 1

2= ( ) − = −E X B B[ ].  (3.22)

 Values of   B1
1

1≡ +⎛
⎝⎜

⎞
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Γ
β

 and   B B2 1
2 22 1 1 1− = + − +Γ Γ( / ) ( / )β β  taken from 

Abramowitz and Stegun  (1964)  are listed in Table  3.1 . It is seen from Table 
 3.1  that for a fi xed value of  η ,  σ2  decreases with increasing  β .  β  itself is therefore 
often used directly to characterize the dispersion of the Weibull distribution. 
As β     →     ∞  the variance approaches 0 and the mean approaches  η . Thus, the 
Weibull distribution with a very large shape parameter value acts like a con-
stant equal to its scale parameter. Referring to the Weibull plot in Figure  3.1  
as β  increases, the line pivots about the point  F ( x )    =    0.632,  x     =     η , as it 
approaches the vertical.   

 For  β     =    1 the Weibull distribution becomes the single - parameter exponen-
tial distribution and its mean is the scale parameter η  while its variance is  η2 . 
As already noted its failure rate becomes a constant equal to 1/ η . 

 The coeffi cient of variation is:

cv B B B= = −σ
μ

[ ] / ..
2 1

2 0 5
1  (3.23)

 The coeffi cient of variation depends only upon the shape parameter  β . Once 
β  is specifi ed the standard deviation is set as a fi xed fraction of the mean. The 
coeffi cient of variation for the exponential distribution is 1.0. 

  Table 3.1    Values of B 1     =     Γ (1/ β     +    1)    =    and 
B B = (2 / + 1) (1 / + 1)2 1

2 2- G - Gb b  as a 
Function of the Shape Parameter  β

β B1 B B2 1
2−

  1.0   1.0000   1.0000
  1.1   0.9649   0.7714
  1.2   0.9407   0.6197
  1.3   0.9336   0.5133
  1.4   0.9114   0.4351
  1.5   0.9027   0.3757
  1.6   0.8966   0.3292
  1.7   0.8922   0.2919
  1.8   0.8893   0.2614
  1.9   0.8874   0.2360
  2.0   0.8862   0.2146
  2.5   0.8873   0.1441
  3.0   0.8930   0.1053
  3.5   0.8997   0.0811
  4.0   0.9064   0.0647
  5.0   0.9182   0.0442
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 The skewness, sk is defi ned as,

    sk = μ
σ

3
3

    (3.24)   

   μ   3  is the third moment about the mean  E ( x     −      μ  ) 3 . Expressing all terms in the 
numerator and denominator in terms of B i  gives:

    sk
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.
/     (3.25)   

 Skewness decreases with   β  , becoming zero at about   β      =    3.6, at which value the 
Weibull distribution is a reasonable approximation to the normal. This does 
not mean that the Weibull can approximate any normal distribution. Once   β   
is specifi ed to be 3.6 in order to achieve zero skewness, the standard deviation 
becomes a fi xed fraction of the mean as shown by the coeffi cient of variation 
expression in Equation  3.23 , that is,   σ      =    (0.308) μ . Only normal distributions 
for which the standard deviation and the mean are in this proportion will be 
well approximated by the Weibull. Dubey  (1967)  has studied the comparative 
behavior of Weibull and, normal distributions in some detail. 

     
 Examples 

    1.     An item is randomly drawn from a two - parameter Weibull population 
having a shape parameter   β      =    1.5 and a scale parameter   η      =    100.0 hours. 
What is the probability that the item fails before achieving a life of  x     =    25 
hours? 

 From Equation 3.2,  

   Prob[ . ]

. .

.

.
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e

< = −
= − =
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 This result may be confi rmed to graphical accuracy from the Weibull plot 
in Figure  3.1 . Figure  3.3  shows the pdf with the calculated probability 
shown shaded.  

  2.     Compute the tenth percentile  x  0.10  for this distribution. From Equation 
 3.10 ,  

   x0 10

1
1 50 10536 100 0 22 31.
.[ . ] . . .= ⋅ =

⎛
⎝⎜

⎞
⎠⎟   

 Entering the ordinate of Figure  3.1  at  F ( x )    =    10% will confi rm this com-
putation to within graphical accuracy.  

  3.     Compute the ratio of the 10th and 50th percentiles for this distribution. 
Taking  p     =    0.50 and  q     =    0.10 in Equation  3.14 , the ratio is:  



   x
x
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1
1 51 0 50

1 0 10
3 51.

.
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⎛
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⎞
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=   

 The value of the median, or  x  0.50  is therefore 3.51    ×    22.31    =    78.3. The 
median is shown on the pdf in Figure  3.4 . 

 Note that, like the coeffi cient of variation, the ratio of the 50th and 
the 10th percentiles depends only on the shape parameter   β  . Bearing 

     Figure 3.3     Weibull density showing  P [ X     <    25].  
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     Figure 3.4     The Weibull median  x  0.50 .  
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engineers sometimes state that  x  0.50  is about 5 times  x  0.10 . This claim is 
literally true only if   β      =    1.17, which is fairly typical of the shape pa-
rameter values commonly reported for ball bearings. For   β      =    10,  x  0.50     =    
1.2  x  0.10 .  

  4.     Calculate the MTTF and the variance for the Weibull population of 
example 1. 

 From Table  3.1  for   β      =    1.5,  B  1     =    0.9027 and   B B2 1
2 0 3757− = . . 

 From Equation 3.19,  

   μ = = = × =E X   MTTF  ( ) . . . .100 0 0 9027 90 27   

 From Equation  3.22 ,  

   σ 2 2100 0 3757 3757 0= × =( ) . . .        

   3.2    THE MINIMA OF  W EIBULL SAMPLES 

 We denote the fact that  X  follows the two - parameter Weibull distribution by 
the notation  X     ∼     W (  η  ,   β  ). Given a random sample of size  n  drawn randomly 
from  W (  η  ,   β  ), the random variable,

    Y x x xn= …min( , , ).1 2     (3.26)  

  follows  W (  η /n 1/ β   ,   β  ). Suppose for example you had 10,000 samples of size 5 
drawn from  W (100, 2) and you sorted each sample and found the 10,000 small-
est values in each sample. The distribution of those 10,000 minima would act 
like a large sample drawn from   W( , )100 5 2/ . The scale parameter would be 
reduced to 44.72 but the shape parameter would be the same,   β      =    2. The two 
populations would appear as parallel lines on a Weibull plot with the distribu-
tion corresponding to the minima appearing above the original or parent 
distribution. 

 It is readily shown that the distribution of  Y  is as claimed. If the smallest 
value in a sample exceeds some value  y , then  every  member of the sample 
must exceed  y . The probability that a Weibull random variable exceeds  y  is 
1    −     F ( y ), where  F ( y ) is the Weibull CDF. Assuming independence of the obser-
vations in a sample, the probability that every sample observation exceeds  y  
is then [1    −     F ( y )] n . 

 Let  Y  denote the random variable representing the minimum of a sample 
of size  n  and having CDF  G ( y ), then,

    P Y y G y F y exp
yn
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 Thus, the CDF of the distribution of minima is:

    G y exp
y
n

( ) = − −⎛
⎝⎜

⎞
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⎡

⎣
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⎤

⎦
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/
.

/
    (3.28)   

 That the Weibull is preserved under minimization refl ects the role of the 
Weibull distribution as a limiting distribution of smallest extremes. This fact is 
often used to justify the Weibull model as appropriate to failure mechanisms 
governed by a  “ weakest link ”  behavior. This property will be discussed later 
in this chapter. The distribution of Weibull minima is the basis for a testing 
strategy called sudden death testing espoused by Johnson  (1964)  and discussed 
further in Section  7.6 . It is also related to the life of series systems made of  n  
identical Weibull elements and discussed in conjunction with system reliability 
in Chapter  7 . 

 The mean, variance, and percentiles for the distribution of the minimum 
are computed in the same way as for any Weibull distribution after using   η  / n  1/    β    
in lieu of   η  .  

   3.3    TRANSFORMATIONS 

   3.3.1    The Power Transformation 

 If a random variable is Weibull distributed, that is,  X     ∼     W (  η  ,   β  ), we now show 
that the transformed variable  Y     =     aX c  , where  a  and  c  are positive constants, is 
also Weibull distributed. Let  G ( y ) denote the CDF of  Y .
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    (3.29)   

 Thus,  Y     ∼     W ( a η  c  ,   β  / c ). 
 This transformation for the Weibull is reminiscent of the linear transforma-

tion  Y     =     a     +     bX  for the normal. In both cases the distribution of the trans-
formed variable is in the same family as the untransformed variable, but with 
modifi ed parameters. For the normal if  b     =    1,  Y  has the same variance as  X  
but the mean is modifi ed by an additive amount  “  a . ”  In the Weibull case for 
 c     =    1, the Weibull distribution of  Y  has the same shape parameter as  X  but the 
scale parameter   η   is modifi ed by the multiplicative factor  a . 

 Choosing  a     =    1 and  c     =      β   transforms any Weibull distribution to the expo-
nential (  β      =    1) with mean value   η  . Suitably choosing  a  and  c , one can transform 
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one Weibull variable to any other, different, Weibull distribution having a 
more  “ convenient ”  shape parameter. Nelson  (1994)  made use of this fact to 
transform an exponential random variable (Weibull with   β      =    1.0) to a Weibull 
distribution having a shape parameter of   β      =    3.6 and for which the skewness 
is zero, using  a     =    1 and  c     =    1/3.6    =    0.277. As noted previously when the shape 
parameter is 3.6 the Weibull distribution is roughly symmetrical about its 
mean, and in a control chart of a Weibull variable thus transformed, one may 
reasonably employ auxiliary tests such as runs above and below the mean in 
assessing whether the process is in a state of control. 

 A purely multiplicative transformation,  Y     =     aX ,( c     =    1), does not affect the 
shape parameter and multiplies the scale parameter by the same factor. The 
practical benefi t is that one may freely change units provided the change is 
purely multiplicative. If  X  in inches is  W (1, 3), then  Y  in millimeters will be 
 W (25.4, 3). If, however, temperature in centigrade follows the two - parameter 
Weibull, the temperature in Fahrenheit will not follow the two - parameter 
Weibull distribution since the transformation between the two scales is not 
purely multiplicative. 

 In the design and analysis of experiments with normally distributed response, 
it is customary to hypothesize that the effect of experimental factors is to 
change the mean by an additive amount while leaving the variance unchanged. 
With a Weibull response variable, the analogous assumption would be that 
external factors such as stress produce a multiplicative effect on the Weibull 
scale parameter while leaving the shape parameter unchanged. Such a model 
has been substantiated for bearing endurance life by Lieblein and Zelen 
 (1956) . In view of Equation  3.22 , this implies heteroscedasticity; that is, the 
variance will increase with the mean response although   β   remains the same. 
The analysis of a one - way layout under the assumption of a constant shape 
parameter and multiplicative effects on the scale parameter was considered 
by McCool  (1979)  and extended to a two - way layout in McCool  (1993) . This 
topic is discussed further in Chapters  8  and  11 .  

   3.3.2    The Logarithmic Transformation 

 The natural logarithm of a Weibull variable follows the type I distribution of 
smallest extremes, (cf. Gumbel  1958 ). There are many advantages of working 
with the logarithmically transformed Weibull variable as we shall discover. 
Under the logarithmic transformation

    Z X= ln( )     (3.30)   

  Z  will be less than an arbitrary value  z , as long as  X  is less than  e z  . Therefore, 
the CDF  G ( z ) may be found as:

    G z Z z F e exp
ez
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 Introducing the new parameters   δ      =    ln     η   and   ξ      =    1/  β  ,  G ( z ) may be written in 
the following form:

    G z exp exp
z( ) = − − −⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

1
δ

ξ
.     (3.32)   

 In this form the distribution has a location parameter   δ   and scale parameter 
  ξ   analogous to the two parameters of the normal distribution. It is clear from 
Equation  3.32  why this distribution is sometimes called the doubly exponential 
distribution. As with the normal, it is useful to defi ne a standardized variable 
 Y  as:

    Y
Z= −( )

.
δ

ξ
    (3.33)   

  Y  follows the extreme value distribution with location parameter 0 and scale 
parameter 1. The  p  - th quantile of  Y  is:

    y
p
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⎫
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=ln ln

( )
ln( ).

1
1

    (3.34)   

 The corresponding quantile for  Z  is

    z yp p= +δ ξ .     (3.35)   

 The same quantile for the Weibull variate is computed by retransforming:

    x zp p= exp( ).     (3.36)   

 The mean of the standardized variate is the negative of Euler ’ s constant 
 γ     =    0.57721, so in terms of the Weibull parameters,

    E Z( ) = −ln .η γ
β

    (3.37)   

 The variance of the standardized variable  Y  is   π   2 /6 so that

    σ
σ
ξ

π
y
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2

2

2

6
= =     (3.38)   

 and thus the variance of  Z     =    ln X  is

    σ
π
βz

2
2

26
= .     (3.39)   

 Equations  3.37  and  3.39  show that a multiplicative factor applied to the scale 
parameter, that is, replacing   η   by  a   η   has no effect on the variance of  Z     =    ln    X  
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and adds an amount ln( a ) to its expected value. Thus, a multiplicative Weibull 
model for the effects of one or more factors, combined with the assumption 
of a constant shape parameter, will result in data which when logarithmically 
transformed will follow an additive model with homogeneous variance. Except 
for normality, such data obey the principal assumptions of the analysis of vari-
ance. A reasonable approximate analysis of multifactor Weibull data appli-
cable if censoring is absent would be to apply the analysis of variance to the 
logarithms of the observations. An exact approach for multifactor Weibull data 
is discussed in Chapter  11 . 

 Menon  (1963)  recommends estimating the Weibull parameters by the 
method of moments applied to the logarithms of the data. Menon ’ s approach 
and recent extensions to it are discussed in Section  5.3.1 .   

   3.4    THE CONDITIONAL  W EIBULL DISTRIBUTION 

 The distribution of a Weibull variate conditional on  X     ≥     x  0  has been termed 
the conditional Weibull distribution by Aroian  (1965) . It is termed the trun-
cated Weibull distribution by Harlow  (1989) . It is of particular use when the 
Weibull is used as a lifetime model although other applications are possible. 

 Let  A     =    { x  0     <     X     <     x } and  B     =    { X     >     x  0 }. Then  P  [ A|B ] is the CDF of  X  con-
ditional on  X     >     x  0 :
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 It is useful to defi ne  y  as life lived beyond  x  0 , that is,  y     =     x     −     x  0  is the residual 
life after having run for a period of  x  0 . This is the life as measured by a cus-
tomer who has received a product that was  “ burned in ”  for a period of time 
 x  0 . To do so we replace  x  by  y     +     x  0  in Equation  3.40 .
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 This expression shows that when   β      =    1.0 the conditional exponential is the 
same as the unconditional exponential. The run - in or burn - in period has had 
no effect. This is a manifestation of the so - called memorylessness property of 
the exponential distribution. For   β      ≠    1 the conditional Weibull does not have 
the Weibull form. 

 A run - in time that is too short increases the risk of failure under warranty 
when the burned - in product is delivered to the customer. An overly long run - in 
time increases the cost due to the loss of product failing during run - in and the 
running costs. Determining the optimum run - in duration to minimize the total 
cost is considered in Section  4.9 . 
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 A simpler, equivalent way of expressing Equation  3.41  is in terms of the 
reliability function, namely:
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 For  x  0     =    0 this reduces to the ordinary, unconditional, reliability function. 
 The  p  - th quantile of the conditional distribution  y p   may be found by setting 

 F ( y | x  0 ) equal to  p  and solving for  y . It is expressible in terms of the  p  quantile 
of the original, unconditional, distribution as,

    y x
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 When equipment is  “ burned in, ”  that is, subject to a period of operation of 
length  x  0  to eliminate early failures (infant mortality), the customer ’ s shipment 
is drawn from the population of survivors. Equation  3.43  gives the 100 p  - th 
percentile as measured from when the customer puts the item into service. 

 When   β      =    1.0,  y p      =     x p  , signifying that no deleterious effect of aging has 
occurred. For   β      >    1.0,  y p      <     x p  ; that is, aging occurs. For   β      <    1,  y p      >     x p  , indicating 
that the survivors of the run - in period are superior to the population as a 
whole. 

 The mean remaining life, also called the mean residual life, is obtained by 
integrating the conditional reliability function. It is a function of the run - in 
time  x  0 :

    MRL x R y x dy0 0
0

( ) =
∞

∫ ( ) .|     (3.44)   

 Since the reliability function for  x  0     =    0 is the unconditional reliability function, 
MRL(0)    =    MTTF. 

 MRL( x  0 ) may be computed in terms of the incomplete gamma function (cf.
Leemis,  1995 )
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 where  Γ ( a ,  x ) denotes the incomplete gamma function defi ned as:

    Γ a x t e dta t

x
, .( ) = − −

∞

∫ 1     (3.46)   

 The mean residual life increases with  x  0  for   β      <    1 and decreases with  x  0  for 
  β      >    1. Figure  3.5  is a plot of the mean residual life divided by MTTF versus  x  0  
for two cases:   β      =    0.5 and   β      =    1.5. In both cases   η      =    1000. The fi gure shows that 
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     Figure 3.5     Mean residual life versus run - in time for two values of   β  .  
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when   β      <    1 the MRL increases with burn - in, while for   β      >    1.0 the MRL 
decreases with burn - in.   

    
 Examples 
 1. A product ’ s life in hours follows the distribution  W (30E6, 1.5). Compute the 
fi rst percentile. If the product is run for 2E6 hours and the survivors are sold, 
what is the fi rst percentile of the surviving population from the point of view 
of the new owner? 

 From Equation  3.10  the 0.01 quantile,  x  0.01  is:

   x E E0 01
1 1 530 6 1 0 01 6 51 4.

/ .[ ln . ] . .= ⋅ − −( ) = hours   

 From Equation  3.43  the 0.01 quantile post run - in,  y  0.01 , is:
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 2. Consider an item that fails in accordance with a Weibull distribution with 
scale parameter   η      =    240 months and shape parameter   β      =    0.6. (Recall that the 
Weibull has a decreasing failure rate when   β      <    1.) The reliability at  t     =    2 
months without burn - in is given by:

   R( ) exp . .
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 Now calculate the reliability at 2 months in the population of survivors of a 
burn - in period of 3 months. Using Equation  3.42  results in:

   R( | ) exp exp
.
.

.
. .

2 3
2 3
240

3
240

0 9066
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0 974
0 6 0 6

= − +⎛
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⎞
⎠ = = 55.   

 Thus the customer would see a sample from a population having reliability of 
97.45% rather than 94.5% which would be the reliability without burn - in. 

 What fraction of the population would fail to survive the burn - in period?

   Prob ( ) ( ) exp . . %.
.

life months F or< = = − − ⎛⎝⎜
⎞
⎠⎟ =3 2 1

3
240

0 0696 6 96
0 6

  

 The MTTF and MRL(3) are:

   MTTF = 361 1.  

   MRL( ) . .3 385 0=   

   3.5    QUANTILES FOR ORDER STATISTICS OF A 
 W EIBULL SAMPLE 

 Order statistics are the individual values in a random sample, after they are 
sorted in ascending sequence; for example, the fi rst order statistic is the small-
est value in the sample, the second order statistic is the second smallest value, 
and so on. We have already seen that the fi rst order statistic in Weibull samples 
varies from sample to sample in accordance with a Weibull distribution having 
a reduced scale parameter. 

 Order statistics are random variables varying from sample to sample in 
accordance with a probability distribution that depends on the underlying 
parent distribution, the sample size, and the order number under consider-
ation. Consider a large number of samples of size  n  randomly drawn from a 
distribution whose CDF is  F ( x ). The  r  - th order statistic  x  r,n  will vary from 
sample to sample. Now transform the values of  x  r,n , the  r  - th ordered member 
of each sample by computing  F ( x  r,n ) where  F ( x ) is the CDF of the distribution 
from which the samples were drawn.  F ( x  r,n ) will now vary from sample to 
sample since  x  r,n  varies from sample to sample. Amazingly the distribution of 
 F ( x  r,n ) in repeated samples is the same regardless of the population from which 
the samples were taken, and it is known as the beta distribution. The beta 
distribution has two parameters customarily denoted  a  and  b .  F ( x  r,n ) follows 
the beta distribution with  a     =     r  and  b     =     n     −     r     +    1. Let  X ( p ,  a ,  b ) denote the 
 p  - th quantile of the beta distribution having parameters  a ,  b . In this notation 
a 90% probability interval for  F ( x  r,n ) may be expressed as :

    X r n r F x X r n rr n0 05 1 0 95 1. , , ( . , , )..− +( ) < ( ) < − +     (3.47)   
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 Values of  X ( p ,  a ,  b ) are tabled for various values of  p ,  a , and  b  by Harter 
 (1964) . Commercial statistical software such as Minitab can provide percent-
age points of the beta distribution. Some values of these percentage points 
applicable for a sample size  n     =    5 and  r     =    1(1)5 are listed in Table  3.2 . In the 
literature dealing with probability plotting, these values are known as the 5% 
and 95% ranks. The median value of  F ( x  r,n ) is called the median rank and is 
denoted as  X (0.50,  r ,  n     −     r     +    1) in our notation. More extensive tables of the 
5%, 50%, and 95% ranks are given in tables provided by Kapur and Lamber-
son  (1977)  and others. In plotting life data for the purpose of estimating the 
Weibull parameters, some software includes the plotting of the 5% and 95% 
ranks as the basis for approximate confi dence limits. This is discussed further 
in Chapter  5 .   

 The median ranks are often recommended as plotting positions for graphi-
cal estimation of the Weibull parameters. The following approximation to the 
median ranks was proposed by Benard and Bos - Levenbach  (1953)  and is in 
wide use:

    X r n r
r
n

0 50 1
0 3
0 4

. , ,
.
.

.− +( ) ≈ −
+

    (3.48)   

 Values of this approximation for  n     =    5 are shown in column 5 of Table  3.2 . It 
is clear that they are indistinguishable from the exact values to within graphi-
cal accuracy. 

 It is sometimes useful to be able to calculate an interval in which a given 
order statistic will fall with high probability. For example, if one wished to 
obtain fi ve failed specimens for metallurgical investigation, and put 10 speci-
mens on test, the waiting time to completion of the test is the fi fth order sta-
tistic in the sample of size 10, designated  x  5,10 . 

 A 90% probability interval for the  r  - th order statistic in a sample of size  n  
from any distribution may be calculated by taking the inverse of  F ( x ) in Equa-
tion  3.47  as follows,

    F X r n r x F X r n rr n
− −− +( )[ ] < < − +( )[ ]1 10 05 1 0 95 1. , , . , , .,     (3.49)  

  where  F   − 1  ( · ) is the inverse of the parent distribution function. 

  Table 3.2    Values of  X (0.05,  r , 6    −     r ) and  X (0.95,  r , 6    −     r ) for  n     =    5 

    r       X (0.05,  r , 6    −     r )      X (0.95,  r , 6    −     r )      X (0.50,  r , 6    −     r)   
     
r
n
−
+

0 3
0 4
.
.

  

  1    0.01021    0.45072    0.12945    0.1296  
  2    0.07644    0.65741    0.31381    0.3148  
  3    0.18926    0.81074    0.50000    0.50  
  4    0.34259    0.92356    0.68619    0.6852  
  5    0.54928    0.98979    0.87055    0.8704  
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 Calculation of the above interval may be carried out graphically on a prob-
ability plot by entering the values of  X ( p ,  a ,  b ) on the probability ordinate and 
reading the interval values as the associated abscissa values (cf. McCool  1969 ). 

 It may also be performed analytically by using the mathematical expression 
for the inverse of the distribution function. For the two - parameter Weibull 
distribution this yields,

   η η
β

ln
( . , , )

ln
( . , ,

/

,
1

1 0 05 1
1

1 0 95

1

− − +
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

< <
−X r n r

x
X r n

r n −− +
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥r 1

1

)
.

/β

  

  (3.50)   

   
 Example 
 Calculate a 90% interval for the third - order statistic in a sample of size 5 
drawn from the two - parameter Weibull population having   β      =    1.5 and   η      =    100. 

 Using Equation  3.50  and the 5th and 95th percentiles  X (0.05, 3, 3)    =    0.18926 
and  X (0.95, 3, 3)    =    0.81074 gives the following interval:

   35 1403 5< <x , .   

 These calculations may be roughly corroborated by entering the ordinate of 
the Weibull plot of the population at these two percentile values (after multi-
plying by 100) and reading the corresponding abscissae. See Figure  3.6 :   

     Figure 3.6     Graphical determination of probability limits for  x  3,5 .  
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   3.5.1    The Weakest Link Phenomenon 

 Let X be an arbitrary positive random variable describing the strength of a 
population of chain links. Randomly assemble chains each consisting of n of 
these links. The strength of a chain will now be equal to the strength of its 
weakest link. If in the vicinity of  X     =    0, the CDF of the link strength distribu-
tion behaves like a function of the form F ( x )    =    c xβ , then for a suffi ciently large 
number of links, the chain strength will vary from chain to chain in accordance 
with a Weibull distribution with shape parameter  β . This is shown in a some-
what general form by Epstein  (1960)  in a very readable survey of extreme 
value theory. 

 We will demonstrate the truth of this assertion by a simulation exercise. Let 
link strength X  be uniformly distributed  U (0, 1000). We know from Equation 
 2.60  in Section  2.10  that the CDF is  F ( x )    =     x /1000, so that  β , the exponent of 
x  is 1.0. We will randomly sample 1000 sets of 50 observations of  U (0, 1000) 
to represent 1000 chains of 50 links per chain. We will then determine the 
minimum of each set of 50 to represent the strength of each of the 1000 chains. 
The 1000 values of chain strength should follow at least an approximate 
straight line on a Weibull grid. The values of link strength, arbitrarily repre-
sented by the 1000 values of the fi rst link in each chain, should not. Figure  3.7  
shows the two plots:   

 It is clear that except for some outliers at the lowest percentiles, the chain 
strength follows the Weibull distribution while the link strength does not. The 
weakest link argument is often used to justify the adoption of the Weibull to 
model strength or lifetime. If an item can fail at a large number of potential 
weak spots such as voids or inclusions the weakest of these will dominate and 
failure time or strength will vary from item to item in accordance with a 
Weibull distribution.   

   3.6    SIMULATING  W EIBULL SAMPLES 

 It is useful to be able to generate small samples from a known Weibull popula-
tion to use for training purposes or for exploring ideas related to data analysis. 
Large - scale simulations on the order of 10,000 samples are used to develop 
the distribution of functions needed for confi dence intervals and hypothesis 
tests on the Weibull parameters as discussed in Chapters  5  and  6 . 

 Calculations of this type may be useful for rough estimation of the uncer-
tainty in the time needed to complete a life test. To perform the calculation it 
is necessary to guess at what the life test results will reveal regarding the 
parameter values. The evident contradiction is that if the parameters were 
known there would be no need to conduct the life test. 
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     Figure 3.7     Weibull plots of chain and link strength.  
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 The method described in Section  2.10  works quite well for the Weibull. The 
CDF  F ( x ) is equated to a value  u  randomly taken from the distribution which 
is uniformly distributed over the interval (0, 1). The equation is then solved 
for  x  in terms of  u  and yields:

    x u= − +η γβ( ln[ ]) ./1     (3.51)   

 This expression uses the fact that the complement 1    −     u  of a uniform random 
variable is also uniform. Taking a series of  n  values of the uniform random 
variable  u  and applying Equation  3.51  to each produces a sample of size  n  
from the Weibull population with a given set of parameters. As noted in 
Section  2.10 , techniques for generating values that act like samples from a 
uniform distribution have been widely studied. The values generated are called 
pseudorandom since a deterministic set of calculations is used to compute 
them and hence they are not truly random. Excel may be used to generate a 
set of uniform random values and Equation  3.51  applied to yield Weibull 
observations. The disk operating system (DOS) program Weibsam may be 
used to generate small samples from a two - parameter Weibull (  γ      =    0). Figure 
 3.8  shows the input screen with the input needed to generate a single Weibull 
sample of size 10 from the distribution  W (100, 1.5).   

 The random values thus generated are shown in Figure  3.9 .     
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 EXERCISES 

1.   Let  η     =    100.0,  β     =    1.5. Find, graphically and/or by computation,

a.     Prob[ X     <    34]  
b.     The value of  x0.10

c.     The value of  x0.50

d.     Prob[80    <     X     <    120]  
e.     Compute the average failure rate over the interval (80, 120).      
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2.   For what  β  value is it true that  x0.50     =    4.5  x0.10 ?   

3.   Compute the median of the distribution  W (100, 2). Use Weibsam or Excel 
to generate a sample of 20 values from this distribution. How many are 
below the population median? How many did you expect to be below the 
median?   

4.   The strength in pounds of a population of chain links is  W (200, 2). Chains 
assembled from 20 links randomly selected from this population will break 
under a load equal to the strength of its weakest link. Compute the mean 
and median of the chain strength distribution.   

5.   The radius  r  in inches of a population of tree trunks is distributed as  W (30, 
4). Find the mean of the cross - sectional area A    =     π r2  of this population.   

6.   Under a prescribed set of conditions the life of a product in hours follows 
W (1000, 1.5). If a random sample of 5 such items are put on test under those 
conditions, compute a 90% probability interval for the life of the fourth 
failure in this sample.   

7.   Compute the median life of the product in problem 6. If the product is 
run - in for 500 hours what is the median of the population of survivors?   

8.   A sample of ball bearings is drawn from a Weibull population having  β     =    1.3 
and a tenth percentile of x0.10     =    10.0 million revolutions The survivors after 
running for x0     =    5.0 million revolutions will now have what value of the 
10th percentile?   

9.   Using Equations  3.10  and  3.13  verify Equation  3.14 .    



  C H A P T E R   4 

Weibull Probability Models     

     This chapter contains a number of models involving Weibull random variables 
with the assumption that the parameters are known or assumed for the pur-
poses of  what - if  speculation. The parameters are not known of course and are 
never known with complete certainty. Estimating Weibull parameters from a 
data sample is considered in Chapter  5 .  

   4.1    SYSTEM RELIABILITY 

 In Chapter  1  we considered component reliability to be a fi xed constant value 
since the mission time was considered to be fi xed. If the component reliabili-
ties are regarded as functions of time, then the system reliability will likewise 
be a time function. 

   4.1.1    Series Systems 

 As we have seen, a system is called a series system when the system functions 
only if every one of its components functions. If the failure times of the 
components are statistically independent, then the system reliability is the 
product of the reliabilities of each of the components that comprise the system, 
that is,

    R R R R Rsystem n i

i

n

= ⋅ =
=
∏1 2

1

�� .     (4.1)   

 The system life is expressible as:

    t t t tsystem n= …min( , , ).1 2     (4.2)   

 Where  t  i  denotes the time of the  i  - th component failure. 
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 If the life of the  i  - th component follows a Weibull distribution with scale 
parameter   η  i   and the shape parameter   β   is the same for each component, the 
system reliability at time  t  becomes

    R t
t t

system
ii

n

e

( ) = −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
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⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
∏exp exp ,

η η

β β

1

    (4.3)  

  in which the equivalent scale parameter value is:

    η
ηβ

β

e
ii

n
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⎧
⎨
⎩

⎫
⎬
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−

∑ 1

1

1/

.     (4.4)   

 The life distribution of a series system of Weibull components is seen to have 
a Weibull distribution provided that the component shape parameters are 
identical. If the components have identical scale parameters as well, the equiv-
alent scale parameter reduces to:

    η ηβ
e n= ⋅−1/ .     (4.5)   

 It is easy to show that Equations  4.4  and  4.5  apply to any quantile and not 
just to   η      =     x  0.632 . The mean life of a series system for which all of the compo-
nents lives are Weibull distributed with the same shape parameter is express-
ible using the expression for the mean of a Weibull distribution (cf. Equation 
 3.19 ):

    E t Bsystem e( ) = η 1.     (4.6)   

 Equation  4.4  shows that the worst component will have the biggest effect on 
the system life. This is confi rmed numerically in the following example.    

    
 Example 1 
 A system consists of a rotating shaft supported by three bearings. Failure of 
any one of the bearings is equivalent to failure of the system. The life of each 
bearing is assumed to follow the Weibull distribution with shape parameter 
  β      =    2.0 and scale parameter values of   η   1     =    1000,   η   2     =    500, and   η   3     =    100. 

 The system scale parameter is:

   ηe = + +⎡
⎣⎢

⎤
⎦⎥

=
−1

1000
1

500
1

100
97 6

2 2 2

1 2/

. .hours   

 The mean life of this series system is:

   E t Bsystem e e( ) = = +⎛
⎝⎜

⎞
⎠⎟
= ⋅ +⎛

⎝⎜
⎞
⎠⎟ =η η

β1 1
1

97 6 1
1
2

86 5Γ Γ. . .   
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   4.1.2    Parallel Systems 

 As discussed in Chapter  1 , if a system contains  n  components but can function 
as long as only one of its components is functioning, the system is said to be 
a parallel system. The probability that the system fails is then the probability 
that all of its components fail. The failure probability is the complement of the 
reliability so, assuming the component failure times are statistically indepen-
dent, the probability that the system fails may be expressed as:

   1 1
1

− ( ) = − ( )
=
∏R t R tsystem i

i

n

[ ].   

 So that,

    R t R tsystem i

i

n

( ) = − − ( )
=
∏1 1

1

[ ].     (4.7)   

 Suppose we are able to double the life of the longest lived bearing. The system 
scale parameter value becomes:

   ηe = + +⎡
⎣⎢

⎤
⎦⎥

=
−1
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2 2 2
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 On the other hand doubling the life of the shortest lived bearing results in:

   ηe = + +⎡
⎣⎢

⎤
⎦⎥

=
−1
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1

500
1
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182 6

2 2 2

1 2/

. .hours   

 The message is clear. For the greatest improvement in system life, devote 
resources and effort to improving the life of the component with the smallest 
scale parameter value. 

 Example 2 
 Find the mean time to failure of a series system consisting of  n     =    5 components 
drawn from a population having a Weibull life distribution with a shape 
parameter of 2.0 and a scale parameter of 100 hours. 

 The scale parameter of the system is:

   ηe = ⋅ =−5 100 44 71 2 0/ . . .hours   

 The mean time to system failure is:

   E tsystem( ) = +⎛
⎝⎜

⎞
⎠⎟ =44 7 1

1
2 0

39 6.
.

. .Γ hours  
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 The reliability of a parallel system exceeds the reliability of the most reliable 
component. For parallel combinations of Weibull distributed components the 
system reliability function will  not  be of the Weibull form except in the trivial 
case where  n     =    1. 

 When all the components follow the same distribution with reliability func-
tion  R ( t ), Equation  4.7  becomes:

    R t R tsystem
n( ) = − −( )1 1 ( ) .     (4.8)   

 Using the binomial expansion Equation  4.8  may be expressed as:

    R t
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 is the binomial coeffi cient and represents the number 

of combinations of  n  things taken  k  at a time. 
 For the Weibull
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 The  k  - th term of the expansion is of the Weibull form but with scale parameter 
 k   − 1/    β   η  . 

 The mean time to failure of a parallel system with  n  identical Weibull com-
ponents may be obtained by integrating  R system  ( t ) from 0 to infi nity. Using 
Equations  4.9  and  4.10  and integrating term for term results in:

    MTTF n B
n
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kk
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( ) ( ) ./= ⋅ ⎛
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⎞
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− + −
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1
1 1

1

1     (4.11)   

 Where   η B  1  is the MTTF for a single component. 

    
 Example 
 For  n     =    2 parallel components with time to failure distributed as  W (100, 1.5)

   MTTF MTTF MTTF( ) ( )[ ] . ( )./ . / .2 1 2 1 2 1 37 11 1 5 1 1 5= × − =− −    

 Thus, the MTTF for two components in parallel is 37% higher than the MTTF 
for a single component. 
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 With three components the result is:

   MTTF MTTF MTTF( ) ( ) [ ] . ( )./ . / . / .3 1 3 1 3 2 3 1 59 11 1 5 1 1 5 1 1 5= × − × + =− − −   

 With four components,

   MTTF MTTF MTTF( ) ( )[ ] . ( )/ . / . / .4 1 4 6 2 4 3 4 1 74 11 1 5 1 1 5 1 1 5= − × + × − =− − − ..   

 For  n     =    5 the factor is 1.87, for  n     =    6, 1.96, and for  n     =    7 it is 2.04. The marginal 
return on each additional component decreases as the number of components 
increases. 

 If the components in the previous series system example (Example 1) were 
instead used in a parallel system, the system reliability function would become:
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    (4.12)   

 This is  not  a Weibull reliability function and there is no closed form expression 
for the mean system life. One can, however, integrate the system reliability 
function numerically to fi nd the system mean life, that is,

    E t R t dtsystem system( ) =
∞

∫ ( ) .
0

    (4.13)   

 Alternately one can use simulation via a spreadsheet to determine the system 
life distribution and its mean. For a parallel system, the system life  t  system  is the 
life of the longest lived component:

    t t t tsystem n= …max( , , ).1 2     (4.14)   

 To simulate system life, one may enter simulated lives for each component 
into separate columns of a spreadsheet and then fi nd the maximum row by 
row to simulate the corresponding parallel system life. Figure  4.1  is a Weibull 
plot of the simulated life of the longest lived component and for comparison 
the life of the component which has a scale parameter of 1000. The system life 
is clearly not Weibull distributed. The mean system life calculated as the 
average of the 10,000 simulated values is 935.7. The standard deviation of the 
system life is 423. Using Equation  2.75  with  n     =    10,000 a 95% confi dence 
interval for the mean is computed to be (927.4, 944.1). Using numerical inte-
gration of the reliability function of Equation  4.12 , the exact value of the 
system mean life is computed to be 933.0 and falls within the confi dence inter-
val obtained from the simulation results.   
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   4.1.3    Standby Parallel 

 Standby Parallel refers to the case where only a single component is employed 
at any time. Upon failure of that component another is switched into service. 
Thus, rather than having  n  components functioning simultaneously as in ordi-
nary parallel redundancy, only one component is in service and the other  n     −    1 
components are standing by ready to be employed. Automobile spare tires are 
an example, or were, before the  “ doughnut ”  became standard. In some applica-
tions such as when the components under discussion are engines, a distinction 
is made between hot, warm, and cold standby. In hot standby the units standing 
by are running and under load. In warm standby they are running but not fully 
loaded. In cold standby the standby units are not running. Some models 
include a fi nite probability that the switching from a failed unit to the replace-
ment unit will cause system failure. The switching failure probability is gener-
ally assumed to be greatest for cold and least for hot standby. 

 Neglecting the possibility of switching failures, the time to system failure is 
the sum of the lives of the  n  components, that is,

    t tsystem i

i

n

=
=
∑

1

.     (4.15)   

 The expected value of the system life is the sum of the expected lives of each 
component. For identical Weibull components the result is:
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     Figure 4.1     Simulated component and system life for a parallel arrangement of three components 
distributed as  W (100, 2),  W (500, 2), and  W (1000, 2).  
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    E t nsystem( ) = +⎛
⎝⎜

⎞
⎠⎟

η
β

Γ 1
1

.     (4.16)   

 The variance of the system life is the sum of the variances of the components 
or

    var t n B Bsystem( ) = −[ ]η2
2 1

2 .     (4.17)   

 By the central limit theorem, the system life will be approximately normally 
distributed with these values of the mean and variance if  n  is suffi ciently large. 
How large is  suffi ciently large  will vary with the shape parameter   β   since the 
shape parameter governs how different the distribution is from the normal to 
begin with. For   β      =    3.6 one could expect the normal approximation to be valid 
at a smaller value of  n  than if   β      =    1. One could, of course, use simulation to 
verify the adequacy of the normal approximation. 

     
 Example 
  N     =    5 components are in standby parallel, that is, one is running and four are 
standing by as replacements. The component life distribution is Weibull with 
a scale parameter of 1000 hours and a shape parameter of 2.0. Using the 
normal approximation, compute the system reliability at a life of 3500 hours. 

 The mean system life is 5    ×    1000    ×     B  1     =    5000    ×    0.8862    =    4431. 
 The variance of the system life is 5    ×    1000 2  [0.2146]    =    1.073E6. 
 The reliability is the probability that the system life exceeds 3500. Using 

the normal approximation and probability calculations summarized in Section 
 2.11  gives:

   R tsystem( )
.

( .3500 3500 1
3500 4431

1035 9
1= >[ ] = − −⎡

⎣⎢
⎤
⎦⎥
= − −Prob Φ Φ 008992 0 816) . .=   

 In a simulation of 10,000 values of the sum of fi ve observations from 
 W (1000, 2) 1849 sums were 3500 or less. The estimated value of  R (3500) is 
thus 1    −    1849/10,000    =    0.815, in very good agreement with the normal 
approximation. 

   4.2     W EIBULL MIXTURES 

 When distributions are mixed in known proportions, the cumulative distribu-
tive function (CDF) of the mixture is readily obtained by applying the Law of 
Total Probability. So, for example, let us say a product is produced by three 
different vendors and the strength distribution is different for each vendor. 
Denote the CDFs of the three distributions by  F  1 ( x ),  F  2 ( x ), and  F  3 ( x ). Let us 
say that the proportions purchased from each vendor are 20%, 30%, and 50% 
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respectively. To compute the probability that the strength of an item randomly 
selected from the mixture is less than  x , we write:

   
Prob Prob | ProbX x X x vendor P vendor X x vendor

P

<[ ] = <[ ]⋅ ( ) + <
⋅

1 1 2{ | ]

vvendor X x vendor P vendor2 3 3( ) + < ⋅Prob |[ ] ( ).
  

 More compactly,

   F x F x F x F x( ) = ( ) + ( ) +0 20 0 30 0 501 2 3. . . ( ).   

 The generalization to a greater number of vendors is apparent. The result 
applies for any distributions and they need not be of the same form. The mean 
of the mixture may also be computed in terms of the means for each popula-
tion using the Law of Total Expectation:

   E X E X vendor E X vendor E X vendor( ) = ( ) + ( ) +0 20 1 0 30 2 0 50 3. . . ( ).| | |   

 This also generalizes in an obvious way to a greater number of mixture 
components. 

 If the distributions are Weibull whether with the same shape parameter or 
not, the overall distribution will not be Weibull. However, the distribution is 
readily simulated. In the present example, one could generate 2000 values 
from  F  1 , 3000 values from  F  2 , and 5000 values from  F  3 . Combining these would 
result in 10,000 random values of the mixture. 

 Let the three distributions be Weibull with the shape and scale parameters 
tabled below. Also shown in the table are the expected values and  F (100) for 
each distribution. 

     

   Distribution  
   Shape 

Parameter  
   Scale 

Parameter     Proportion      F (100)      E ( X |vendor)  

  Vendor 1    0.7    100    0.20    0.632    126.6  
  Vendor 2    1.2    50    0.30    0.899    47.03  
  Vendor 3    2.5    200    0.50    0.162    177.45  

 The simulated distribution displayed on a Weibull grid is shown in Figure 
 4.2  and confi rms that the mixture is  not  Weibull distributed.   

 Graphically it appears that  F (100) for the mixture is about 50%. Applying 
the Law of Total Probability to compute the exact value of  F (100) in terms of 
the values of  F (100) tabled for each distribution above gives:

   F 100 0 20 0 632 0 30 0 899 0 50 0 162 0 48( ) = × + × + × =. . . . . . . .   

 The mean of the simulated values of the mixture was 126.99 with a 95% con-
fi dence interval of (124.65, 129.34). The true value of the mean of the mixture 
may be computed using the Law of Total Expectation:

   E X( ) = × + × + × =0 20 126 58 0 30 47 03 0 50 177 45 128 15. . . . . . . .   
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 The actual expected value is within the confi dence interval computed from the 
simulated mixture.  

   4.3     P ( Y     <     X ) 

 One probability problem that appears in a number of contexts is determining 
the probability that a value randomly drawn from one probability distribution 
and denoted X  exceeds the value randomly and independently drawn from 
another distribution and denoted Y . If  Y  is the diameter of a shaft and  X
is the diameter of a housing into which the shaft must fi t,  P ( Y     <     X ) is the 
probability that the shaft will fi t without interference. If  X  is the strength of 
a component for example, a rivet, and  Y  is the random stress that the com-
ponent will be subjected to in service, then  P ( Y     <     X ) is the reliability in the 
sense that it is the proportion of the population of rivets that will survive 
the application of the stress to which they are subjected. The idea of stress 
and strength generalize beyond their meanings in the realm of applied mechan-
ics and would include physical quantities such as temperature and voltage 
for example. 

 The probability that  Y  is less than a specifi c value of  x  is  Fy  ( x ). The subscript 
is used to denote that it is the CDF of the distribution of Y  that is being evalu-
ated at a value x . The total probability that  Y  is less than  X  comes from inte-
grating this probability over the entire domain of x .

Figure 4.2     Simulated distribution of a mixture of Weibull distributions.  
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    P Y X f x F x dxx y{ ] .< = ( ) ( )
∞

∫0
    (4.18)   

 If  X  and  Y  are Weibull distributed with different scale and shape parameter 
values, the expression must be evaluated numerically. When the shape param-
eters are equal, the expression may be found in closed form to be:

    
P Y X

y

x

<[ ] =
+ ⎛
⎝⎜

⎞
⎠⎟

1

1
η
η

β .
    (4.19)   

 If the scale parameters are also equal this expression confi rms that there is a 
50% chance that  X  will exceed  Y . As the scale parameter of  Y  increases 
beyond the scale parameter of  X  the probability that  X  exceeds  Y  diminishes. 
Correspondingly if the scale parameter of  X  is much greater than the scale 
parameter of  Y , then  P ( Y     <     X ) approaches a certainty. When the parameters 
are not known but must be estimated from data,  P [ Y     <     X ] becomes a random 
variable. The problem of setting confi dence limits on  P [ Y     <     X ] based on 
Weibull parameters estimated from data samples is discussed in Chapter  8 . 

   

 Example 
 The strength of a population of rivets follows a Weibull distribution with a 
scale parameter of 1000   psi and a shape parameter of 3.0. When deployed, 
each rivet will experience a different constant stress which varies randomly 
from rivet to rivet in accordance with a Weibull distribution with the same 
shape parameter but with a scale parameter of 750   psi. Compute the propor-
tion of rivets that will endure the stress applied to them. The stress and 
strength density functions are shown plotted in Figure  4.3 :   

 Using Equation  4.19 :

   
P stress strength<[ ] =

+ ⎛
⎝

⎞
⎠

=1

1
750

1000

0 7033 . .
  

 The idea here is readily extended to additional populations. Let  X ,  Y , and  Z  
be Weibull distributed random variables with a common shape parameter 
 β  and scale parameters   η   1 ,  η  2  and  η  3  respectively. We wish to compute 
the probability that Y is smaller than either  X  or  Z . The question may be 
restated as:

    P Y X Z[ min , ].< ( )     (4.20)   

 We know from Equation  4.4  of Section  4.1  that min( X ,  Z ) is Weibull distrib-
uted with shape parameter   β   and scale parameter:



     Figure 4.3     Weibull stress and strength distributions.  
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 Example 
 A ball bearing consists of an inner ring, an outer ring, and a set of rolling ele-
ments. The life of the rolling elements, taken as a set, is Weibull distributed 
with a shape parameter of 1.5 and a scale parameter of 1000 hours. The inner 
ring and outer ring are both Weibull distributed with the same shape param-
eter and with scale parameters of 300 and 600 hours, respectively. Compute 
the probability that a bearing fails by means of a ball set failure.

   
P ball set life ring lives<[ ] =

+ ⎛
⎝

⎞
⎠ + ⎛

⎝
⎞
⎠

=1

1
1000
300

1000
600

1 5 1 5. . 00 1083. .
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   η
η ηβ β

β

e
x z

= +⎛
⎝⎜

⎞
⎠⎟
−

1 1
1/

.   

 Thus, reapplying Equation  4.19  we have:

    
P Y X Z

y

e

y

x

y

z

[ min , ] .< ( ) =
+ ⎛
⎝⎜

⎞
⎠⎟

=
+ ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

1

1

1

1
η
η

η
η

η
η

β β β     (4.21)   

 This result can be extended to any number of Weibull random variables if they 
have a common shape parameter.     
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   4.4    RADIAL ERROR 

 Radial error, or eccentricity, has been studied fairly extensively because of its 
relevance in military applications. The total distance from a targeted location 
to the actual location where a bullet or bomb strikes is a matter of great 
concern to the military and weapons manufacturers. All misses that fall on a 
circle centered at the target are considered equal with respect to the accuracy 
of the strike. The magnitudes of the error with respect to the vertical and 
horizontal components of the distance from the target center are of less inter-
est than the distance measured radially. Figure  4.4  clarifi es the geometry.   

 Radial error is also of concern in industrial processes involving the drilling 
of holes or the placement of components on a circuit board at a targeted site. 
Eccentricity of the outer diameter and the inner diameter of a bearing ring is 
known as radial runout and is carefully controlled. It is of obvious interest to 
a manufacturer that radial error be held within a specifi ed tolerance. 

 In Figure  4.4  the targeted center is indicated by the origin of coordinates 
 O , and because of errors in placement in the horizontal and vertical directions, 
the actual center is displaced by random distances  X  and  Y , respectively, result-
ing in a radial error  ε  computed by the Pythagorean theorem as the square 
root of the sum of the squares of the two orthogonal components of the error. 

 In applications such as the hole drilling example cited above, the holes will 
generally be drilled by a robotic device which moves to the assigned  x  coor-
dinate (say) and then moves in an orthogonal direction to the assigned y 

     Figure 4.4     Radial error. From  Quality Technology and Quantitative Management , Vol. 3, No.3, 
Copyright 2006 by NCTU Publication Press.  Reprinted by permission of NCTU Publication Press.   
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 In testing bearings from these component populations one would anticipate 
that roughly 11% of the failures would be ball set failures given the parameter 
values assumed in this example. 
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coordinate. It is reasonable to assume that the variability in locating the two 
coordinates is the same and that the deviations in the two directions are 
independent. 

 The case where the means are not offset and the variances are equal 
appears in Cramer  (1946)  for the general case of  p     ≥    2 dimensions. For  p     =    2 
with   σ  x      =      σ  y      =      σ  , the radial error follows a Rayleigh distribution. The Rayleigh 
distribution is a special case of the Weibull distribution for which the shape 
parameter equals 2.0. The Weibull or Rayleigh distribution of radial error has 
a scale parameter of   σ 2. The cumulative distribution of radial error is thus:

    F P radial error expε ε ε
σ

( ) = <[ ] = − −⎛
⎝⎜

⎞
⎠⎟

1
2

2

2
.     (4.22)   

 The expected value of the radial error is therefore:

    E ε μ η
βε( ) = = +⎛

⎝⎜
⎞
⎠⎟

Γ 1
1

  .  (4.23)   

 Using   β      =    2 and   η      =    1.414  σ  , the mean radial error is expressible in terms of 
  σ   as:

    μ σε = 1 253. .     (4.24)   

 Thus the mean of the radial error distribution depends linearly upon  σ . 
 The standard deviation of the radial error is:

    σ η
βε = +⎛

⎝⎜
⎞
⎠⎟
− +⎛

⎝⎜
⎞
⎠⎟

Γ Γ1
2

1
12

β
.     (4.25)   

 With   β      =    2 and   η      =    1.414  σ   the standard deviation of the radial error  ε  
becomes:

    σ σε = 0 655. .     (4.26)   

 These expressions are useful if one wishes to keep control charts for radial 
error. For example, using the average eccentricity measured in subgroups 
of size  n  and assuming  n  is suffi ciently large that the central limit theorem 
holds, the center line of a control chart for radial error can be set at 1.253  σ  . 
The upper and lower control limits would then be located at distances 
  ± =3 1 965σ σε / . /n n  from the center line. 

   

    
 Example 1 
 In a production process, a robot arm moves in the horizontal and then vertical 
direction to the desired location and then drills a hole at that location. The 
error in locating the  x  coordinate of the desired center location is independent 
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   4.5    PRO RATA WARRANTY 

 Consider a purchased item that is sold with a warranty that specifi es that the 
user will be reimbursed for the unused portion of a warranted amount  W  if 
failure should occur prior to the customer receiving  W  units of satisfactory 
use. What fraction of the purchase price can a customer expect to recover 
under such a warranty? A tire is an example and  W  might represent, say, 80,000 
miles of usage. Assume the usage rate  U  is known; for example, in the tire 
example perhaps the purchaser drives  U     =    15,000 miles per year. Let  X , the 
amount of usage until failure occurs, be a two - parameter Weibull distributed 
random variable. If failure occurs at  X  units of usage, the time since purchase 
will be  X / U . The value at that point has diminished to (1    −     X / W ) of the original 
amount or to (1    −     X / W ) C  0  if  C  0  is the purchase price. A further question to a 
user considering the purchase of such a warranty is  what is the present value 
to me of the amount  C  0      ×     (1     −    X / W ) received at a time  X / U  in the future since 
a lower amount invested now will become  C  0      ×     (1     −    X / W ) at time  X / U  at some 
interest rate   α ? 

 Using continual compounding for convenience, the present value of a cash 
amount  C  paid at  t  units in the future may be computed as  Ce   −     α t  . Thus, for item 
failure after  X  units of usage, the present value is:

    C X C
X
W

e X U( ) = −⎛
⎝⎜

⎞
⎠⎟

−
0 1 α / .     (4.27)   

of the error in locating the  y  coordinate. The errors in the two directions are 
both normally distributed with a mean of zero and a standard deviation of 
0.001 inch. Compute the probability that the radial error of a given hole loca-
tion does not exceed 0.002 inch.

   P ε <[ ] = − −
⋅

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟
=0 002 1

0 002

2 0 001
0 865

2

. exp
.

.
. .   

 Example 2 
 For the same case, compute the center line and upper and lower three sigma 
limits for a control chart for eccentricity based on the means of samples of 
size  n     =    5. The center line is 0.655    ×    0.001    =    0.000655 inch. The upper control 
limit is   0 000655 1 965 0 001 5 0 0015338. . . / .+ × = . The lower control limit is zero 
since eccentricity cannot be less than zero. 

 Using control charts to distinguish a change in the standard deviation   σ   
from a change in the coordinates of the center is discussed in McCool  (2006a) . 
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 Denoting by  R ( X ) the ratio of the present value to the original cost gives:

    R X
C X

C
X
W

e X U( ) = = −⎛
⎝⎜

⎞
⎠⎟

−( )
./

0

1 α     (4.28)   

  R ( X ) is a decreasing function of  X  ranging from 1.0 at  X     =    0 to 0.0 at  X     =     W . 
 The Weibull model should be able to account, at least broadly, for the failure 

life experience of most products. The exponential special case corresponds to 
a constant failure rate and thus accounts for a failure mode that does not vary 
with the amount of usage. Failure due to a random accident or shock would 
give rise to a constant failure rate mode. For   β      >    1 the model accounts for 
increased vulnerability with usage, that is, wearout - related failure. 

 The expected value of the present value fraction may be computed by 
integrating the product of  R ( x ) and  f ( x ), the Weibull density, over the range 
from 0 to  W :

    R E R R x f x dx
x

W
e x e dx

W x
U

xW

= ( ) = ( ) ( ) = −⎛
⎝⎜

⎞
⎠⎟∫

− −
−⎛
⎝⎜

⎞
⎠⎟

0

1

0
1

β
ηβ

α
β η

β

∫∫ .     (4.29)   

 A Mathcad module named rbarwarranty.xmcd will perform this integration. 
With   β      =    2,   η      =    100,000,  W     =    80,000,  U     =    15,000, and   α      =    0.06, the average 
value of the  R  ratio is 0.153. Introduce the transformation  Y     =     X /  η  .  Y  is a then 
a Weibull random variable with unit scale parameter and shape parameter   β  . 

 The distribution of  R  has fi nite mass at  r     =    0 since there is no payout when 
 X     >     W . The probability that  R     =    0 may be computed as:

    P R P X W e
W

=[ ] = >[ ] =
−⎛
⎝⎜

⎞
⎠⎟0 η

β

.     (4.30)   

 Percentage points of the distribution of  R  are readily found. Since  R  is a 
monotonically decreasing function of  X , then when  X  is less than some value 
 x  0 ,  R  will be greater than  R ( x  0 ). 

 Using the 100 p  - th percentile of  X  one may write:

    Prob ProbX x p R r xp p<[ ] = = > ( )[ ].     (4.31)   

 Therefore,

    Prob R R x pp< ( )[ ] = −1 .     (4.32)   

 Hence, the 100(1    −     p )th percentage point of  R  is  R ( x  p ). So, for example, to fi nd 
the 70th percentile of  R , one substitutes the 30th percentile of  x  into the func-
tion  R ( x ). 
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 For the example discussed above the probability of no payoff is:

   Prob X W
W>[ ] = −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤
exp exp

,
,η

β
80 000

100 000

2

⎦⎦
⎥ = 0 52. .   

 The distribution of  R  has a discrete mass of 0.52 at  R     =    0. The median value 
of  R  is therefore 0. To fi nd  R  0.6  calculate  x  0.40  using the formula:

    x pp = − −( )η β[ ln ] ./1 1     (4.33)   

 The result is:

   x0 40
1 2100000 1 4 71 472.
/( ln . ) , .= × − −( ) =   

 The 60th percentile of  R  is now calculated by substituting this value in the 
 R ( x ) function.

   
R R x

x
W

e
x
U

0 60 0 40
0 401 1

71 472
80 000

0 40

. .
.

. ,
,

= ( ) = −⎛
⎝

⎞
⎠ = −⎛

⎝⎜
⎞
⎠⎟ ×

−α

eexp
. ,

,
.

.

− ×⎡
⎣⎢

⎤
⎦⎥

=

0 06 71 472
15 000

0 080
  

 There is a 60% chance that the purchaser will receive less than 8% of the 
purchase price as a return under the warranty. Further discussion and tables 
may be found in McCool  (2006b) .  

   4.6    OPTIMUM AGE REPLACEMENT 

 We have seen that when the Weibull shape parameter exceeds 1.0 the hazard 
function increases with time. In this circumstance, depending on the relative 
cost of a planned replacement and a failure, it may pay to replace the item 
preemptively prior to failure since new items are less prone to failure than 
used ones. It is easy to visualize situations wherein a failure can be extremely 
costly, resulting, for example, in lost production or damage to machinery or 
goods. Let  c  1  be the cost of a failure and  c  2  the cost of a planned replacement. 
This problem seems to have been fi rst considered by Barlow and Hunter 
 (1960) . Assume an item is replaced at age  t  unless failure occurs prior to  t . 
A cycle is considered to be the time between consecutive replacements 
due either to failure or to replacement. The expected cost of a cycle is 
 c  1     ×     F ( t )    +     c  2     ×    (1    −     F ( t )). The duration  T  of a cycle is a random variable. Its 
expected value is computable using the Law of Total Expectation:

    E T E T failure F t E T replaced R t( ) = ( ) × ( ) + ×| ( | ) ( ).     (4.34)   
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 Given that failure occurs at some time   τ   prior to replacement time  t , the pdf 
of   τ   conditional on   τ      <     t  is  f (  τ  )/ F ( t ). Equation  4.34  thus becomes:

    E T f d t R t
t

( ) = ( ) + ⋅ ( )∫ τ τ τ
0

.     (4.35)   

 This is equivalent to, as may be verifi ed by integrating by parts,

    E T R d
t

( ) = ( )∫ τ τ
0

.     (4.36)   

 Thus, the expected cost per unit expected time, denoted  c ( t ) is given by:

    c t
c F t c F t

R d
t( ) = ( ) + − ( )

( )∫
1 2

0

1( )
.

τ τ
    (4.37)   

 One benchmark for assessing savings due to preventive maintenance is the 
cost per unit time of not doing any planned replacement. This is equivalent to 
letting the age at replacement approach infi nity in the expression for  c ( t ). For 
large values of  t , F( t ) approaches 1.0 and so the numerator approaches  c  1  and 
the denominator approaches the mean   μ      =    MTTF. Therefore:

   c
c∞( ) = 1

μ
.   

 The optimum scheduled replacement time,  t  * , that is, the time that minimizes 
 c ( t ) is found as the value for which the derivative of  c ( t ) with respect to  t  is 
zero. Differentiating and simplifying gives:

    λ τ τ( *) .
*

t R d R t
c

c c

t

( ) + ( ) =
−∫ *

0

1

1 2

    (4.38)  

  where   λ  ( t  * ) is the hazard function evaluated at  t     =     t  * . This expression is valid 
for any failure time distribution. 

 For the Weibull failure model the expression for  c ( t ) becomes:

    c t

c exp
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c exp
t
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.     (4.39)   

 This function is shown plotted in Figure  4.5  for  c  1     =    200,  c  2     =    40,   β      =    2, and 
  η      =    100.   
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 The solution for the optimum replacement time  t  *  may be found by solving:

    β
η η

β
η η

β β

t
e dt e

c
c c

t tt*⎛
⎝⎜

⎞
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+ =
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1 20
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.     (4.40)   

 It is convenient to introduce the change of variable  w     =     t/ η  i nto this expression 
and use W to represent the upper limit when  t     =     t  * . The result is:

    e W e dw
c

c c
W w

W
− − −+ =

−∫β ββ β 1 1

1 20
.     (4.41)   

 In this form it is clear that the optimum time  t  *  expressed as a fraction  W  of 
the scale parameter depends only on the shape parameter. For fi xed   β  , but 
various values of   η  , it is only necessary to solve Equation  4.41  once. Moreover, 
the numerator and denominator on the right - hand side may be divided by  c  2  
(or  c  1 ) which shows that the solution depends on the two costs only through 
their ratio. The units in which the costs are expressed (dollars, Euro) therefore 
do not matter, as long as both costs are expressed in the same units. Having 
solved Equation  4.41  for  W , the cost per unit time may be computed by 

substituting   W
t= ⎛

⎝⎜
⎞
⎠⎟

*
η

 and   w = ⎛
⎝⎜

⎞
⎠⎟

τ
η

 into Equation  4.39 . The result may be 

expressed as,

     Figure 4.5     The function  c ( t ) for  c  1     =    200,  c  2     =    40,   β      =    2, and   η      =    100.  
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−∫

    (4.42)  

  where  c     ≡     c  2 / c  1 . 

 Tadikamalla  (1980)  tabulates  W  and   
ηc t

c
( *)

1

 for various values of the Weibull 

shape parameter   β   and the cost ratio  c . 
 For the example we are considering with  c     =    40/200    =    0.2,   η      =    100, and 

  β      =    2, the solution is  t  *     =    51.07. Substituting  t  *     =    51.1 in Equation  4.39  shows 
that the minimum cost per unit time is $1.634. Lewis  (1987)  shows that when 
 c  1  is much greater than  c  2 , necessitating very early replacement ( t  *  <<   η  ), the 
solution may be approximated by:

    t
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c
*
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1

1

1
    (4.43)   

 For the example we are considering, the approximation gives  t  *     =    44.721. This 
corresponds to a cost per unit time of $1.646. This is not substantially different 
from the optimum because the cost function has a broad minimum as seen in 
Figure  4.5 . 

 For comparison, the cost per unit time with no planned replacement is:

   
c

c c∞( ) = =
+⎛

⎝⎜
⎞
⎠⎟
=

⋅
=1 1

1
1

200
100 0 886

2 25
μ η

β
Γ .

$ . .
  

 The Mathcad worksheet below is titled agereplace.xmcd and may be down-
loaded from the author ’ s website. 

   4.6.1    Age Replacement 

  c  1  is the cost of an unscheduled replacement and  c  2  is the cost of a planned 
replacement.   η   is the Weibull scale parameter and   β   is the Weibull shape 
parameter. 

 Set values for example:

   β η= = = =2 100 200 401 2, , ,c c   

 The expected cost of a replacement given scheduled replacement at time   t   is 
denoted  c ( t ):

   c t c c
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 The average length of time between replacements for any reason as a function 
of the planned replacement time is denoted  RP ( t ):

   RP t
t

( ) =
−⎛
⎝⎜

⎞
⎠⎟∫ e d

τ
η

β

τ
0

.   

 The cost per unit time is denoted  cc ( t ):

   cc t
c t

RP t
( ) = ( )

( )   

 One may use trial and error to fi nd the  t  value for which  cc ( t ) is smallest. 
Alternatively one may solve the equation that results from setting the deriva-
tive of  cc ( t ) to zero. This is done below in dimensionless form.  W  is the 
optimum time  t  *  divided by   η  . 

 Defi ne  c :

   c
c
c

= =2
1

2β  

   F W W d e W
W

β β ωβ ωβ β
,( ) = × +− − −∫1

0
e  

   W = 1 Initial guess at the solution  

   W F W
c
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root β, , .
1

1
  

 The optimum is:

   W = 0 511.  

   t W* = = × =η 0 511 100 51 1. .   

 Compare to Lewis ’  Approximation of  T  denoted  TT 

   TT
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   TT = 44 721.   

 Calculate the optimum cost per unit time. 
  c  opt  is equal to   η      ×     cc ( t  * )/ c  1 :

   c
c

d

W W

Wopt

e e

e
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−( ) +− −
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1

0

β β

βω ω
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   copt = 0 817.  

   So * optcc t c
c( ) = × =1 1 634
η

. .   

 Substitute Lewis ’  Approximation into  cc ( t ): 
  cc (44.721)    =    1.646      Only slightly higher than the minimum.  

   4.6.2    MTTF for a Maintained System 

 If under preventive maintenance a unit is replaced every  T  time units, thereby 
restoring it to its original condition, it is shown by Lewis that the MTTF 
becomes (Lewis,  1987 ):

    MTTF
R dt

R T

T

=
( )

−
∫ t

0

1 ( )
.     (4.44)   

 The verifi cation of Equation  4.44  follows. The reliability of the maintained 
system  R M  ( t ) at some time  KT     <     t     <    ( K     +    1) T  for some integer value  K  is 
expressible as:

    R t R T R t KTM
K( ) = ⋅ −( ) ( ).     (4.45)   

 This is the product of the probability of surviving  K  intervals of length  T  and 
the additional time interval of length  t     −     KT . 

 The ratio of  R M  ( t ) to the unmaintained reliability  R ( t ) evaluated for simplic-
ity at  t     =     KT  is
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  R M   will exceed  R  if  K  β    exceeds  K  or if

    Kβ− >1 1.     (4.47)   

 For  K     >    1 implying that maintenance has occurred  R M   will exceed  R  provided 
  β      >    1. For   β      =    1,  R M      =     R , that is, maintenance has no effect. For   β      <    1 the main-
tained system is less reliable than the unmaintained system. 

 The MTTF is the integral of  R M  ( t ) as  t  ranges from 0 to  ∞ .This integral 
breaks into an infi nite sum of integrals over the range [ KT , ( K     +     1 ) T ] as 
follows:

    MTTF R T R t KT dtK

K
KT

K T

= −( )
=

∞ +

∑ ∫( ) .
( )

0

1

    (4.48)   
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 Introducing the change of variable   τ      =     t     −     KT , we have:

    MTTF R d R T
T

K

K

= ⋅∫ ∑
=

∞

( ) ( ) .τ τ
0

0

    (4.49)   

 Since  R ( T )    <    1, the geometric series on the right may be summed to 
1/(1    −     R ( T )), thus giving the result shown earlier as Equation  4.44 . 

 For the Weibull distribution   ∫0
T R d( )τ τ  may be expressed in terms of the 

lower incomplete gamma function   γ  ( a ,  x ) defi ned as:

    γ a x t e dta t
x

,( ) = − −∫ 1

0
    (4.50)   

 The result is:
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 When   β      =    1, that is, the Weibull reduces to the exponential, the MTTF of the 
maintained system becomes simply   η  , indicating that periodic replacement 
does not increase the mean time to failure when the time to failure is expo-
nentially distributed. 

 Figure  4.6  is a plot of MTTF as a multiple of   η   versus the replacement 
interval also scaled by   η   for   β      =    0.5, 1, 2, and 3.   

     Figure 4.6      MTTF /  η   versus the dimensionless replacement interval  T /  η   for   β      =    0.5, 1, 2, and 3.  
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 Figure  4.6  confi rms that when   β      =    1 the MTTF remains equal to   η   regard-
less of how often replacements take place. The larger the value of   β   when it 
exceeds 1.0, the greater the MTTF. Also the shorter the replacement interval, 
the larger the MTTF. For   β      <    1 frequent replacements (small  T ) decrease the 
MTTF because fewer infant mortals are then removed. This may be thought 
of as insuffi cient burn - in. The scale in the fi gure does not refl ect adequately 
the extent to which the MTTF is decreased for small  T  when   β      <    1. 

 Figure  4.7  shows the logarithm of  MTTF /  η   plotted against  T /  η   for   β      =    0.2 
and 3.0, which highlights the extent to which   β      <    1 impacts the MTTF.     

   4.7    RENEWAL THEORY 

 Consider a component whose life distribution under constant environmental 
conditions such as load, humidity, and stress is the two - parameter Weibull. 
Assume this component is observed until it fails, whereupon it is replaced in 
negligible time by a new item from the same population. This sequence of 
failure and replacement is considered to continue indefi nitely. At time  t  the 
number of failures and hence the number of renewals,  N ( t ), is a discrete 
random variable. For large  t  the average number of renewals  M ( t )    =     E ( N ( t )) 
approaches  t /  μ  . For very small  t ( t  <<   μ  ) the number of failures is either 0 or 1 
so its approximate expected value for small  t  is:

    M t F t F t F t( ) = ⋅ ( ) + ⋅ − ( ) =1 0 1[ ] ( ).     (4.52)   

     Figure 4.7     ln[ MTTF /  η  ] versus dimensionless replacement interval  T /  η   for   β      =    0.5 and 2.0.  
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 For intermediate values of  t , the mean  M ( t ) must be found as the solution 
of the equation:

    M t F t M t x f x dx
t

( ) = ( ) + −( ) ( )∫0
.     (4.53)   

 The numerical solution for  M ( t ) in the Weibull case is mathematically chal-
lenging. White  (1964)  has computed tables of  M ( t )    =     E ( N ( t )) and the stan-
dard deviation of  N ( t ) for the Weibull distribution with shape parameters 
  β      =    0.5(0.5)3, 4, 5, 7, and 10. Baxter et al.  (1981)  have published tables of the 
renewal function for the Weibull and four other distributions. An article by 
Baxter et al.  (1982)  details other published sources of renewal tables. A portion 
of the Baxter tables are reprinted in the text on warranty costs by Blischke 
and Murthy  (1994) . An approximation developed for the increasing failure 
rate case was given more recently by Jiang  (2010) . Jiang proposed approximat-
ing  M ( t ) as a linear combination of the cumulative distribution function and 
the cumulative hazard function:

    M t pF t q t( ) ≈ ( ) + Λ( )  .  (4.54)   

 Where  p     +     q     =    1 and  p  depends on the Weibull shape parameter and may be 
computed from the equation:
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 Using the Weibull CDF and cumulative hazard function from Equation  3.7 , 
Jiang ’ s approximation of the Weibull renewal function becomes:
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    (4.56)   

 Jiang ’ s approximation should apply to the Weibull when   β      >    1. In the special 
case where the shape parameter is 1.0 and the Weibull reduces to the expo-
nential distribution, the number of replacements  N ( t ) at time  t  follows a 
Poisson Process:

    Prob N t k
e t

k
k

t k

( ) =( ) = ( ) =
−λ λ

!
; , ..0 1     (4.57)   

   λ   is the constant failure rate and is equal to the reciprocal of the scale param-
eter, that is,   λ      =    1/  η  . 

 The expected value is:

    E N t M t t( ) .( ) = ( ) = λ     (4.58)   

 Renewal theory has obvious application to spare parts provisioning and in the 
evaluation of free replacement warranties. In Section  4.10  we illustrate the use 
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of Equation  4.57  for computing the number of spare parts required for achiev-
ing a specifi ed level of reliability when component failure lives are exponen-
tially distributed. Another application of renewal theory discussed in the next 
section is in the analysis of a preventive maintenance policy known as block 
replacement. The simple exponential distribution result is of no value for 
preventive maintenance calculations since, as we have seen, with   β      =    1.0 there 
is no aging and hence no advantage to preventive maintenance. 

   4.7.1    Block Replacement 

 Block replacement is the name of a preventive replacement policy that is more 
costly but administratively simpler than age replacement. It is more costly with 
respect to the number of replacements per unit time but may ultimately be 
less expensive when the cost of recordkeeping is considered. Under the block 
replacement policy, items are replaced at some constant time interval  t , regard-
less of whether a failure replacement had just recently occurred. Under block 
replacement there is no need to keep track of the age of each item in service; 
they are all replaced at the same time. Thus, the age of the item being replaced 
does not matter, although most replaced items will not have failed and there-
fore will be  t  units old when they are removed from service. 

 Again let  c  1  be the cost of replacing a failed part and  c  2  ( <  c  1 ) the cost of a 
planned replacement. If  t  is the time between replacements,  M ( t ) will be the 
expected number of failures replaced during that time and there will be one 
unfailed replacement at the end of that time. The average replacement cost is 
therefore  c  1  M ( t )    +     c  2  and will be incurred every  t  time units. The cost per unit 
time is therefore:

    c t
c M t c

t
( ) = ( ) +1 2 .     (4.59)   

 Dividing both sides by  c  1  and introducing  c     =     c  2 / c  1  gives:

    
c t
c

M t c
t

( )
.

1

= ( ) +
    (4.60)   

 The next step is to use tabled values of  M ( t ) to compute  c ( t )/ c  1  as a function 
of  t  to fi nd the value of  t     =    T that makes it a minimum. To illustrate, we will 
use the same parameters as used in the age replacement example namely, 
  β      =    2,   η      =    100, and  c     =     c  2 / c  1     =    0.2. Table  4.1  gives several values of  M ( t ) for 
  β      =    2, taken from White ’ s tables. Jiang ’ s approximation is also shown for 
comparison. The last column shows the computed value of  c ( t )/ c  1  for each 
value of  t .   

 To the accuracy allowed by White ’ s tables, in which t/ η  is incremented in 
steps of 0.05, the minimum occurs at  T     =    50. Multiplying by  c  1     =    200, the cost 
per unit time is $1.72. This is somewhat more than the $1.634 minimum found 
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in the age replacement optimization. If  F (t) is used as an approximation to 
 M ( t ), the optimum  t  may be found by setting the derivative of  C ( t ) with respect 
to  t  equal to 0. The optimum  w     =     t /  η   may then be computed as the root of the 
following equation:

    β β β β
w e e cw w− −− −( ) =1 .     (4.61)   

 Solving this equation for the example case gave  T     =    60 rather than 50. Using 
the value of ( M (60)    +    0.2)/60 from the above table shows that the cost would 
have been $1.74 per unit time rather than $1.72 had the maintenance interval 
been taken to be 60. Jiang ’ s approximation is seen to be quite adequate in this 
example over the range examined.  

   4.7.2    Free Replacement Warranty 

 Under a free replacement warranty the manufacturer agrees to replace free 
of charge any item that fails with a new one until, ultimately, the customer has 
the use of a functioning item for the full length of a warranty period of length 
 W . The expected number of times that replacement will be necessary is there-
fore  M ( W ). The cost to the manufacturer is the production cost  c  times 
(1    +     M ( W )). Suppose a product has a lifetime that follows the two - parameter 
Weibull distribution with   β      =    2 and   η      =    2 years, and a free replacement war-
ranty of length  W     =    1 year is offered. The warranty period expressed as a 
fraction of   η   is 1/2    =    0.5. From the previous tabulation for   β      =    2,  M ( W )    =    0.231, 
so the manufacturer ’ s cost is now 1.231 c . Thus, offering a free replacement 
warranty increases the manufacturer ’ s costs by 23%.  

   4.7.3    A Renewing Free Replacement Warranty 

 Under a renewing warranty, a failure during the 11th month of a one - year 
warranty is replaced by a new item which itself then enjoys a full year of war-

  Table 4.1    Computation of the Optimum Block Replacement Interval and 
Comparison of Approximations to the Weibull Renewal Function 

    t /  η        t       M ( t )     Jiang ’ s Approx.     [ M ( t )    +     c ]/ t   

  0.3    30    0.087379    0.087    9.579E - 3  
  0.4    40    0.151903    0.152    8.798E - 3  
  0.45    45    0.189707    0.189    8.660E - 3  
  0.50    50    0.230794    0.230    8.616E - 3  
  0.55    55    0.274843    0.274    8.634E - 3  
  0.6    60    0.321526    0.321    8.692E - 3  
  0.7    70    0.421508    0.420    8.879E - 3  
  0.8    80    0.528267    0.527    9.103E - 3  
  0.9    90    0.639605    0.637    9.329E - 3  
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ranty protection. The manufacturer is not free of obligation until one of his 
products outlives the warranty period. Let  X  equal the total number of items 
installed until one lives beyond  W . Let  F ( x ) denote the CDF of the product. 
The probability that  X     =    1 is the probability that the original item failed 
beyond the warranty life  W , that is,

    P X F W R W=[ ] = − ( ) =1 1 ( ).     (4.62)   

 The number of items will equal 2 if one item failed before  W  and the second 
survived beyond  W :

    P X F W R W=[ ] = ( )2 ( ).     (4.63)   

 It follows that the probability that  X     =     k  is:

    P X k F W R Wk{ ] ( ).= = ( )−1     (4.64)   

 This is a geometric distribution in which  R ( W ) plays the role of the success 
probability  p  and  F ( W ) is 1    −     p  (cf. Section  2.7  of Chapter  2 ). Its expected 
value is:

    E X
R W

( ) = 1
( )

.     (4.65)   

 If, as in the previous example, product life was distributed as  W (2, 2) 
the expected total number of items a customer would use, including the 
original, is:
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 Thus, extending a renewing free replacement warranty increases the manufac-
turer ’ s cost by 28.4%. 

 The text by Blischke and Murthy  (1994)  is recommended for readers with 
a particular interest in warranties and their analysis.   

   4.8    OPTIMUM BIDDING 

 This is an old problem in the operations research literature adapted here to 
utilize a Weibull distribution. 

 In a series of sealed bid competitions assume the winning bid  B , expressed 
as a markup, follows the Weibull distribution with known parameters. That is, 
 Y     =    ( B     −     K )/ K  follows  W (  η  ,   β  ), where  K  is the bidder ’ s cost. The problem is 
to fi nd the optimum amount to bid to maximize the bidder ’ s expected profi t. 
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 Let  A  be a bid.  A  will be a winning bid if  A     <     B . Assuming equal cost  K  for 
all participants, the probability that bid  A  wins is:

   Prob Probwin A Y
B K

K
A K

K
A K

K
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 If the bid in the amount  A  wins the competition, the bidder ’ s profi t will be:

   E Profit A A K P win A P lose A| | |[ ] = −( ) [ ]+ ⋅ [ ]0  
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    (4.67)   

 When  A  is large, the profi t ( A     −     K ) is large but the probability of winning 
is small. When  A  is small, the probability of winning is large but the amount 
won is small. The optimum bid amount  A  *  is found by setting the deriva-
tive of the expected profi t with respect to  A  equal to zero and solving. The 
result is that the maximum expected profi t occurs when  A  is such that the 
markup is:

    ( )
.

* /
A K
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1

1

    (4.68)   

    

 Example 
 By studying the pattern of winning bids in a certain market it was found that 
the winning markup followed a two - parameter Weibull distribution with 
  η      =    0.73 and   β      =    1.5. What markup optimizes expected profi t assuming this 
pattern of bidding persists among the competition? 

 Optimum markup    =    0.73(1/1.5) 1/1.5     =    0.557. 
 Implicit in this model is the assumption that all the bidders have equal cost 

and that the number of bidders remains fairly constant over time. 

   4.9    OPTIMUM BURN - IN 

 We have seen in Section  3.4  that if the Weibull shape parameter is less than 
1.0, the hazard function decreases with time and the survivors of a period  x  0  
of running will be more reliable than the original population. However, the 
improved reliability comes at a cost. There is the cost of running, which 
includes a setup cost and a cost that increases with the length of the burn - in 
period  x  0 . There is also the cost of the product itself if it fails during the run - in 
process. These costs are balanced against the decreased cost of failing prior to 
a warranty period  W . 
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 Defi ne the following costs:

    c  0     =    setup cost for performing burn - in  
   c  1     =    cost per unit time spent running  
   c  2     =    cost per failure during the run - in period  
   c  3     =    penalty cost if a burn - in survivor fails prior to a warranty period  W .    

 The expected cost per item as a function of burn - in period  x  0  is:

   f x c c x c
x

c

x w

0 0 1 0 2
0

3

0

1 1( ) = + + − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
+ −

− +

exp

exp

η
ηβ

⎛⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎡

⎣
⎢

⎤

⎦
⎥

β

β

η
exp

.
x0

    (4.69)   

    
 Example 
 A product life is distributed as  W (5000, 0.8), where the scale parameter is 
specifi ed in hours. The product has to survive a warranty period of  W     =    700 
hours. The costs are  c  0     =    $0.50,  c  1     =    $0.07/hour, and  c  2     =    $3/unit failed during 
burn - in, and  c  3     =    $500/unit failed under warranty. The optimum value of  x  0  is 
found to be 46.9 hours using a Mathcad module. The associated expected cost 
is $92.3/unit. To see if it is more economical not to conduct burn - in, it is neces-
sary to let the setup cost  c  0     =    0 and evaluate the cost function using  x  0     =    0. In 
the present problem this results in a cost of $93.7/unit so burn - in is worthwhile. 
Figure  4.8  shows the cost plotted against  x  0 .   

     Figure 4.8     Total cost versus burn - in duration.  
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 The Mathcad module for burn - in optimization (burninoptimizer.xmcd) is 
listed below: 

 Further discussion of the problem of burn - in may be found in Kececioglu 
and Sun  (1997) . 

   4.10    SPARE PARTS PROVISIONING 

 As discussed in Section  4.7  the renewal process for the exponential distri-
bution turns out to be the Poisson Process, and if failure occurs in accor-
dance with an exponential distribution, the problem of determining the 
required number of spare parts to guarantee a prescribed reliability is 
readily solved. 
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 If one component is running and  n  components are on hand, the reliability 
at time  t ,  R ( t ) is the probability that the cumulative number of failures  N ( t ) is 
less than  n . Because we are assuming the exponential distribution, it does not 
matter how long the component in service has been running since there is no 
wearout. Using the Poisson distribution of  N ( t ), the reliability function is:

    R t
e t

k

t k

i

n

( ) = ( )−

=
∑

λ λ
!

.
0

    (4.70)   

   

    k       p ( k )      Σ  p ( k )  

  0    0.25924    0.25924  
  1    0.349974    0.609214  
  2    0.236233    0.845447  
  3    0.106305    0.951752  
  4    0.035878    0.98763  
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needed. 
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 EXERCISES 

1.    Find the smallest number of components that must be in standby parallel 
if each component life is distributed as W (100, 2) and it is desired that the 
reliability at 1000 hours exceed 0.9. Assume that  n  is large enough that the 
time to failure is approximately normally distributed.   

2.    A population is a mixture of  W (100, 1),  W (200, 1.5), and W(150, 1.8) in the 
proportions 20%, 30%, and 50%, respectively. The scale parameters are 
expressed in hours. Compute the population reliability at a life of 120 
hours.   

3.    The stress distribution  Y  is  W (1000,  β ). The strength distribution  X  is 
W (1200,  β ). Find the shape parameter value for which  P ( Y     <     X ) is 0.9.   

4.    If  Y  is distributed as  W (100, 2),  X  is distributed as  W (120, 2), and  Z  is 
distributed as W (80, 2), compute the probability that  Y  is less than both  X
and Z .   

5.    A bomb is aimed at a target with coordinates  X     =    1000,  Y     =    500. The  X
location actually struck is normally distributed N(1000, 2 2 ) expressed in 
miles. The  Y  location struck is N(500, 2 2 ), also in miles. Assuming the  X  and 
Y  locations are statistically independent, fi nd the radial distance from the 
desired target location that will contain 90% of the bomb strikes.   

6.    A tire is sold with an optional pro rata warranty of 60,000 miles and the 
purchase price is $120. Tire life in miles is Weibull distributed with scale 
parameter of 100,000 miles and shape parameter is 1.2. The buyer ’ s utiliza-
tion rate is 15,000 miles/year. Assuming a discount rate of 5%, fi nd the 70 - th 
percentile of the distribution of the warranty buyer ’ s value.   
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7.   A drill bit has a life in revolutions that follows a Weibull distribution  W (10 6 , 
1.8). It costs $25 to replace the drill bit on a planned replacement basis. 
However, if it fails in service, the ancillary damage is estimated to cost a 
total of $250. Find the the optimum age (in revolutions) for planned replace-
ment of the drill bit. What is the cost in dollars per revolution for this 
optimum policy? What is the cost if there is no planned replacement?    



  C H A P T E R   5 

Estimation in Single Samples     

    5.1    POINT AND INTERVAL ESTIMATION 

 All of the calculations described in the preceding two Chapters are applicable 
when the Weibull parameters are known or assumed. The present chapter is 
concerned with the problem of estimating one or more parameters or some 
functions of the parameters from a single data sample obtained from the 
results of an experiment, a life test or from fi eld data. 

 A distinction is made between point and interval estimation. A point esti-
mate is a single numerical value computed from the observations in a data 
sample in such a way as to be a good guess at what the true but unknown 
parameter value is. Point estimates, being functions of the values in a random 
sample, are themselves random variables and will vary in successive random 
samples drawn from the same distribution in accordance with a probability 
distribution known as the sampling distribution of the estimate. 

 An interval estimate consists of two numbers calculated so that one is 
highly confi dent in stating that the true parameter value is contained between 
them, provided that the distribution sampled has the form assumed. The 
degree of confi dence is expressed as the proportion of times that the statement 
would be true in similar calculations performed on an indefi nitely large number 
of independent random samples drawn from the same population.  

   5.2    CENSORING 

 A complete or uncensored sample is one for which the exact value of the 
random variable is observed for each member of the sample. In a censored 
sample the exact value of the random variable is only bounded for some of 
the members of the sample. An observation is said to be right censored if it is 
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known that the random variable ’ s exact value is greater than a bounding value. 
This is a common occurrence in life testing when a test is terminated prior to 
failure for some of the specimens. For those specimens it is known only that 
the exact time to failure exceeds the time at which testing was suspended. In 
strength testing, samples will ordinarily be uncensored. 

 Interval censoring occurs in life testing when a life test is monitored peri-
odically, for example, once a day, and the exact lives of any failures that are 
found are known only to have taken place at some time since the last inspec-
tion. Specimens found to be failed at the time of the fi rst inspection are said 
to be left censored. In principle left censoring could occur in strength testing 
if a specimen breaks at a load that is below the smallest load that the test 
machine is capable of registering. The discussion that follows will be in the 
context of life testing. 

 Censoring may be by design or random. Random censoring occurs when 
an arbitrary mechanism other than the failure mechanism under study acts to 
remove an item from test. A competing failure mode is an example. In testing 
rolling bearings most failures occur on the more highly stressed bearing inner 
ring rather than on the outer ring or on one of the rolling elements. When it 
is necessary to test a new, expensive, or diffi cult to machine material, a common 
practice is to make the inner ring from the new material while using standard 
outer rings and ball or roller sets. When the test is conducted failures of the 
outer ring or of one or more rolling elements are regarded as censored obser-
vations with respect to the primary test element, the inner ring. Censoring 
occurs in biomedical studies when a subject drops out of the study or succumbs 
to an accident or a fatal disease other than the one under study. Random 
censoring also occurs when subjects enter the study at random times but the 
study is of fi xed duration. At the end of the study surviving members will have 
experienced various lengths of observation or treatment. 

 Planned censoring may be at a predetermined life (type I) or at a prede-
termined number of failures (type II). Planned censoring may also be single 
or multiple (cf. Nelson,  1982 ) depending, in the case of type I censoring, upon 
whether all items are removed from test when a prespecifi ed life is achieved 
or whether a subset of the items are removed at each of several prespecifi ed 
lives. Multiple type I censoring occurs in medical studies when subjects enter 
the study at various times but the study concludes on a fi xed date. Similarly, 
in multiple type II censoring, prescribed numbers of items are randomly 
removed from test at the occurrence of prespecifi ed numbers of failures. Mul-
tiple type II censoring is sometimes also called progressive censoring. Sudden 
death testing, a term coined by Johnson  (1964) , is a special case of progressive 
censoring. In sudden death testing, a subgroup of test elements are tested 
together on a machine that can simultaneously accommodate a number of test 
elements. When the fi rst failure occurs on each of the machines, testing is 
suspended on the other elements under test on that machine. The set of fi rst 
failures on each machine and the subgroup size permit estimation of the 
parameters of the original population. The design and analysis of the results 
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of a sudden death test are discussed in Chapter  7 . In progressive testing, upon 
the occurrence of a failure, a preselected number of items are removed from 
testing. These suspensions have the same accumulated life as the associated 
failures but are not necessarily tested on the same test unit. Rausand and 
H ø yland  (2004)  defi ne type III censoring in which testing terminates when 
either a prespecifi ed time has elapsed or a prespecifi ed number of failures have 
occurred, whichever comes fi rst. Additionally, although no one has yet named 
the practice, the author has witnessed occasions when, after a fi xed time has 
elapsed, it is judged that an insuffi cient number of failures have occurred and 
so testing resumes until an acceptable number of failures do occur.  

   5.3    ESTIMATION METHODS 

 Many methods are available for estimating the parameters of the Weibull 
distribution (cf. Lawless,  2002 ; Meeker and Escobar,  1998 ; Nelson,  1982 ) each 
having its advantages and disadvantages. 

 In the selection of a method of estimation it is relevant to consider the fol-
lowing characteristics:

1.     Applicability to censored samples  
2.     Precision. This refers to the scatter in the sampling distribution of the 

estimate; the less scatter, the greater the precision.  
3.     Applicability to interval estimation  
4.     Degree of bias. An estimator is a biased estimator if the average value 

of the estimate over repeated samples is not equal to the true value of 
the quantity being estimated.  

5.     Simplicity of calculation.    

 To give concrete meaning to these fi ve desiderata we next discuss two estima-
tors that are lacking in some of them. Neither is recommended but both may 
prove useful on occasion. 

   5.3.1     M enon ’ s Method 

 Menon ’ s method (Menon,  1963 ) is an example of an estimation method that 
is easy to calculate but not applicable to censored sampling. Until very recently 
(Phan and McCool,  2009 ) it was not applicable to interval estimation. It will 
be shown to be biased but the bias is now correctible. Interval estimation and 
bias correction for Menon ’ s method is deferred until Chapter  6 , where it will 
be shown that while generally lacking the precision of the method of the 
method of maximum likelihood (ML), it is surprisingly precise for some 
purposes. 
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 From Section  3.3.1  the natural logarithm  Z  of a Weibull distributed random 
variable has an expected value given by:

    E Z( ) = −lnη γ
β

    (5.1)   

 The population variance of  Z  is:

    σ
π
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= .     (5.2)   

 Menon suggested equating the mean and variance of the logarithms of the 
observations in a complete random sample from the two - parameter Weibull 
distribution to the corresponding population values. Equating the sample vari-
ance of ln    x , that is,   s xln

2 , to the population value and solving for the shape 
parameter gives Menon ’ s estimate of the Weibull shape parameter:
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 Equating the population mean  E ( Z ) to the mean of the logarithms of the 
sample,   ln x, and substituting   �β for   β   leads to Menon ’ s estimate of the scale 
parameter:
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 Having estimated the scale and shape parameter, they may be substituted into 
Equation  3.12  to produce the following estimate of the 100 p  - th percentile.

    � ��x kp p= ⋅( ) /1 β η     (5.5)   

    

 Example 
 The following uncensored sample of size  n     =    10 was randomly drawn from a 
Weibull population for which the true shape parameter was 1.3 and the scale 
parameter was 56.46. This choice made the population tenth percentile equal 
to 10.0:

    14.01, 15.38, 20.94, 29.44, 31.15, 36.72, 40.32, 48.61, 56.42, 56.97     

 The mean of the natural logarithm of the data is computed to be 3.450. The 
standard deviation of the logarithms is 0.5061. Menon ’ s estimate of the shape 
parameter is calculated to be 2.539. The estimated value of the scale parameter 
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is 39.56. The 10th percentile estimate is 16.04 and the 50th percentile (median) 
is estimated to be 34.24. 

 To check on the precision and possible bias of Menon ’ s method of estima-
tion, 10,000 uncensored samples of size 10 were generated from this same 
Weibull population and Menon ’ s estimates of the shape and scale parameters 
as well as  x  0.10  were computed for each sample. The mean of the 10,000 shape 
parameter estimates was 1.509 and the standard deviation was 0.4930. Since 
by the central limit theorem the mean of a sample of size 10,000 is sure to be 
normally distributed, a 95% confi dence interval on the true mean may be 
calculated as:

   1 509
1 96 0 4930

10 000
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10 000
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.− × < < + ×

E �β   

 So that with high confi dence the mean of Menon ’ s shape parameter estimate 
falls in the interval 1.509    ±    0.0097. Since this interval does not include the true 
value of 1.3, we may conclude that Menon ’ s estimate is biased high. In a similar 
way, the interval for the scale parameter estimate was computed to be 
57.405    ±    0.290. Again, the interval does not include the true value, 56.46, so 
Menon ’ s estimate of the scale parameter is also biased high. The correspond-
ing interval for the estimator of the 10th percentile is 12.701    ±    0.140. Since the 
true value of the 10th percentile was 10.0, we see that the  x  0.10  estimator is 
likewise biased high. 

   5.3.2    An Order Statistic Estimate of  x  0.10  

 An intuitive estimator of the 10th percentile in a sample of size 10 is just the 
smallest observation, since 90% of the sample exceeds it. Using the same 
10,000 simulated samples described above, the smallest value was determined 
for each sample of size 10 and the 10,000 values of the fi rst failure were 
regarded as the sampling distribution of this estimate of  x  0.10 . The average of 
10,000 estimates and the width of the associated 95% confi dence interval on 
the mean was computed to be 8.932    ±    0.135. Despite its intuitive appeal, this 
estimate is accordingly seen to be biased low since the interval does not 
contain the true value 10.0. The size of the uncertainty interval is comparable 
to that of Menon ’ s estimator of  x  0.10 , although it is calculated from only one 
member (the smallest) of the sample and Menon ’ s estimate uses all 10 values 
in the sample. 

 Histograms showing the comparative distributions of Menon ’ s estimate of 
 x  0.10  and the fi rst - order statistic estimate are shown in Figure  5.1 .   

 The histograms clearly show the bias in both estimators and that the fi rst -
 order statistic estimator is much more likely to result in an underestimate of 
the true value. The bias in the fi rst - order statistic estimate can be assessed 
analytically. The distribution of the fi rst - order statistic in Weibull samples is 
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     Figure 5.1     Sampling distribution of  x  1,10  and Menon ’ s estimate of  x  0.10 .  
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itself Weibull distributed as will be recalled from Section  3.2 . The scale param-
eter is equal to the population scale parameter divided by  n     =    10 raised to the 
1/  β   power, and the shape parameter is equal to the shape parameter of the 
Weibull population from which the sample was drawn. Thus, the mean of 
the sample fi rst failure is:

    E X1 110
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ββ Γ     (5.6)   

 Expressing the scale parameter in terms of  x  0.10  and with 
 k  0.10     =    ln(1/0.9)    =    0.105361, the mean of the fi rst - order statistic is:
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 For  x  1  to be an unbiased estimate of  x  0.10  it would be necessary for the 

quantity   Γ 1
1

0 10536 1+⎛
⎝⎜

⎞
⎠⎟β

β( . ) /  to be unity. This factor is approximately 1.0 

when the true shape parameter is 0.88. For   β      =    1.0 it has the value 0.947. It 
then decreases slowly with   β   to a value of 0.862 at about 2.0 and rises very 
slowly thereafter, asymptotically approaching unity. At   β      =    3.0 its value is 
0.878. At   β      =    100 it has risen to 0.994. At   β      =    1.3 it is 0.885, and so the expected 
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value of the fi rst - order statistic in our simulation is 8.85. Note that this value 
is within the confi dence interval computed from the simulation results.   

   5.4    GRAPHICAL ESTIMATION OF  W EIBULL PARAMETERS 

   5.4.1    Complete Samples 

 The oldest and still widely practiced means for estimating the Weibull param-
eters is the graphical method whereby the ordered observed values in a sample 
are plotted on the abscissa and an associated estimate of the cumulative dis-
tribution function is plotted on the ordinate on a grid on which the Weibull 
cumulative distribution function (CDF) plots as a straight line. This grid was 
discussed previously in Section  3.1 . A straight line is fi t to this set of points 
and interpreted as an estimate of the population line. Percentile estimates may 
be read directly from the fi tted line and the shape parameter may be estimated 
as the slope of the fi tted line. The fi t may be performed by  “ eyeball, ”  or a 
regression routine may be employed to remove the element of subjectivity. 

 As noted, the essence of the graphical method of parameter estimation is 
to use the sample data to construct an estimate of F ( x ) and hence its param-
eters, using either Weibull graph paper as described in Chapter  3  or by trans-
forming the data and the F ( x ) estimates and plotting the transformed values 
on an ordinary linear grid. 

 Let  x(1)     <     x(2)     <     ·  ·  ·  x(n)  denote the ordered observations in a complete sample 
of size n . Then, even though  F ( x ) is not known, we may write, since  F ( x ) is a 
nondecreasing function of x ,  F ( x(1) )    <    F(x (2) ) ·  ·  ·     <     F ( x(n) ). For the  i  - th ordered 
observation in the sample,  x(i) , it is necessary to compute some estimate of the 
CDF evaluated at that order number. The set of values  i / n  ( i     =    1.. n ) is known 
as the empirical distribution function. Its disadvantage as a plotting position 
is that its value is 1 or 100% for i     =     n , and this value cannot be plotted on a 
Weibull grid. However, just before the  i  - th observation the empirical distribu-
tion function is ( i     −    1)/ n , and just after it, it is  i / n , so some writers have pro-
posed using the average, ( i     −    1/2)/ n  as plotting position, that is, as the estimate 
of F ( x(i) ). 

 Now as noted before, the quantities  F ( x(i) ) are an ordered set of random 
variables. If one took many samples,  F ( x(i) ) would vary from sample to sample 
in accordance with a probability distribution. It happens that this probability 
distribution, known as the beta distribution, depends as on i and n but not  F ( x ) 
as explained in Section  3.5 . In particular the expected value of this distribution 
is simply i /( n     +    1). Some writers have therefore proposed using  i /( n     +    1) as the 
plotting position on the F (x) axis for  x(i)  on the strength of the argument that 
F ( x(i) ) is equal to  i /( n     +    1)  “ on the average. ”  Kapur and Lamberson  (1977)  
argue against this choice on the grounds that the beta distributions are skewed 
such that the mean will be greater than the median at early failure times and 
less than the median for later failure times. The net effect of using the mean 
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compared with using the median would be a clockwise rotation of the fi tted 
line. The medians of  F ( x  (   i   ) ) have been dubbed median ranks and are a popular 
choice of plotting position for Weibull data. As noted in Section  3.5 , published 
tables of median ranks are available but they may readily be computed using 
statistical software or Excel to fi nd the median of the beta distribution with 
appropriate parameters. An excellent numerical approximation to the  i  - th 
median rank is ( i     −    0.3)/( n     +    0.4). This approximation is attributed to Benard 
and Bos - Levenbach  (1953) . The various proposed plotting positions discussed 
above are all of the form ( i     −     a )/( n     −     2a     +    1) for  a     =    0, 0.5 and 0.3 Another 
plotting position that shares this property is ( i     −    3/8)/( n     +    1/4) due to Blom 
 (1958) . 

 Table  5.1  contains, in ascending order of magnitude, the same simulated 
uncensored random sample of  n     =    10 observations used in our example of 
Menon ’ s method of estimation. Also shown in Table  5.1  are the true median 
ranks correct to fi ve decimal places, the value of the approximation ( i     −    0.3)/
( n     +    0.4), and the 5% and 95% percentiles of the rank distribution for each 
order number.   

 To within graphical plotting accuracy, the true median ranks and the 
approximation are indistinguishable. 

 To remove the subjectivity in fi tting the straight line, one may formally use 
the method of least squares, although ordered life data are not consistent with 
the assumptions of the Gauss – Markov theorem. The ordered lives are corre-
lated and their variance is not constant. Nevertheless, ordinary least squares 
is a reasonable, nonsubjective, way of fi tting a straight line. Generalized least 
squares accounts for the different variances of the order statistics and the 
covariances among them and is the basis for the  best linear unbiased estimate s 
( BLUE ) fi rst developed for the Weibull distribution by Lieblein and Zelen 

  Table 5.1    Ordered Observations, Median, 5%, 95% Ranks, and Benard ’ s 
Approximation 

   Failure 
Order No. ( i )  

   Observation 
 X  (i)   

     ˆ ( )( )F x i  
Median Rank       

i
n
−
+

0 3
0 4
.
.   

   5% 
Rank  

   95% 
Rank  

  1    14.01    0.06697    0.06731    0.00512    0.25887  
  2    15.38    0.16226    0.16348    0.03677    0.39416  
  3    20.94    0.25857    0.25962    0.08726    0.50690  
  4    29.44    0.35510    0.35577    0.15003    0.60662  
  5    31.15    0.45169    0.45192    0.22244    0.69646  
  6    36.72    0.54831    0.54808    0.30354    0.77756  
  7    40.32    0.64490    0.64423    0.39338    0.84997  
  8    48.61    0.74142    0.74038    0.49310    0.91274  
  9    56.42    0.83774    0.83654    0.60584    0.96323  

  10    56.97    0.93303    0.93269    0.74113    0.99488  
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 (1956) . BLUE estimates require tables of coeffi cients which are diffi cult to 
compute and available for limited sample sizes. Their use for Weibull param-
eter estimation has largely been supplanted by the ML method discussed later 
in this chapter. 

 As noted in Section  3.1 , the Weibull CDF transforms to linear form as:

    ln ln ln ln .
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⎛
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F x
xβ β η     (5.8)   

 For each ordered value  x  (   i   )  in a sample of data we have the associated value 
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. These values should plot against ln( x  (   i   ) ) as an approximate 

straight line with a slope equal to the shape parameter and an intercept equal 
to minus the product of the shape parameter and the log of the scale param-
eter. Defi ning:
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  and  T  i  as ln    x  (   i   )  one may use simple linear regression of  Y  against  T  to obtain 
a nonsubjective straight line fi t. The slope of the fi tted line will then be an 
estimate of the shape parameter and the intercept will be an estimate of 
 −   β  ln(  η  ). This will minimize the sum of the squared deviations of the points  Y i   
from the fi tted straight line. Some argue that the squared deviations should be 
minimized in the other direction since the values of  Y i  , being functions of the 
order number in the sample and the sample size, are not random. In that case 
 T i   and  Y i   are linked by the straight line equation:

    T Yi i= ( ) +ln .η
β
1

    (5.10)   

 When this choice is made, the slope of the fi tted line is an estimate of the 
reciprocal of the shape parameter and the intercept is an estimate of ln(  η  ). 
For the data in Table  5.1  the two fi tted regression lines are

   Y T= − +7 975 2 160. . .  

  and

   T Y= +3 682 0 4451. . .   

 The fi rst leads to the estimates   β      =    2.160 and   η      =    40.13 and the second to 
  β      =    2.246 and   η      =    39.13. The associated estimates of  x  0.10  are 14.158 and 14.587. 
Figure  5.2  shows the fi tted line plot for the second of these regressions.   
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     Figure 5.2     Weibull plot of sample data and fi tted regression line.  
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 In this fi gure the ordinate and abscissa are reversed from their usual rep-
resentation on a Weibull probability plot since regression software customarily 
plots the dependent or response variable on the vertical axis. 

 In addition to the median ranks, one may also plot the transformed values 
of the 5% and 95% ranks to convey a sense of the uncertainty in the fi t. Plot-
ting these around the observed life values will not result in a smooth band, so 
the custom is to adjust the observed values so that they fall on the fi tted 
straight line. Figure  5.3  shows the adjusted data points and the transformed 
values of the median, 5% and 95% ranks with the observed values shown on 
the abscissa consistent with custom.   

 Curves of this type are often used to compute a kind of confi dence limit 
for percentiles of interest as the abscissa values where a horizontal line inter-
sects the 5% and 95% curves. For example, recalling that the CDF evaluated 
at the scale parameter   η  , that is,  F (  η  )    =    1    −    1/ e , it is clear that lnln[1/
(1    −     F (  η  ))]    =    0. Drawing a horizontal line at the ordinate value of 0, the inter-
section with the median rank plot gives an abscissa value that may be consid-
ered a point estimate of the logarithm of the scale parameter   η  . The intersection 
with the other two 5% and 95% curves defi nes an uncertainty interval for ln     η  . 
To within graphical accuracy these seem to be roughly 3.325 and 3.95 on the 
log scale, which translates to an interval of 27.8 to 51.9 in original units. This 
procedure is tantamount to assuming that the estimated straight line repre-
sents the true population CDF and not just an estimate of it. 
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 If the location parameter   γ   is not zero, that is, the sample is drawn from the 
three parameter Weibull distribution, it is possible to estimate the location 
parameter graphically by iteratively assuming a value of   γ  , subtracting it from 
each data point, and constructing a probability plot, then revising   γ   and replot-
ting until there is no obvious systematic curvature in the plot. When the trial 
value of   γ   is too small, the Weibull plot appears to be a concave function. The 
concavity of the plotted data when sampling from a three - parameter Weibull 
distribution is the basis for an analytic approach to estimating the location 
parameter that will be discussed in Chapter  10 .  

   5.4.2    Graphical Estimation in Censored Samples 

 When the censoring is simple type I or type II censoring, probability plotting 
can proceed as above, except that the lives associated with the unfailed ele-
ments are unknown and hence cannot be plotted. One can plot the failures 
that have occurred using their order numbers in the complete sample and 
perform the fi tting operation using just these points. However, when samples 
have progressive or random censoring some suspensions will occur between 
other failures, causing ambiguity in the order number applicable to the failures. 
Some methods are in existence for such cases notably those of Kaplan and 
Meier  (1958) , Johnson  (1964) , and Nelson  (1969) . They each involve plotting 
only failures at plotting positions determined by an algorithm specifi c for each 

     Figure 5.3     Weibull plot with approximate 90% limits.  
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author ’ s method. The method due to Nelson is simplest to use and will be 
illustrated here. When applied to the uncensored case, it results in larger values 
of the plotting positions than median ranks and thus Weibull quantiles esti-
mated by fi tting in this way will be systematically smaller than those estimated 
using median rank plotting positions. 

 It is recalled from Equation  2.50  of Section  2.8.1  that for any distribution, 
the cumulative hazard function is related to the CDF as follows:

    Λ x F x( ) = − − ( )ln( )1     (5.11)   

 The relationship between the cumulative probability  F ( x ) and the cumulative 
hazard  Λ ( x ) for a distribution can thus be rewritten as:

    F x x( ) = − − ( )1 exp[ ].Λ     (5.12)  

  where  F ( x)  represents the probability that a randomly selected item will fail 
prior to life  x . 

 In Nelson ’ s method, estimates of   Λ  ( x ) constructed from a data sample are 
plotted against  x  on a special grid devised to display the theoretical relation-
ship as a straight line. A straight line is then fi tted to the test data and used as 
an estimate of  Λ ( x ). The CDF  F ( x ) may then be estimated using Equation  5.12 . 

 For the Weibull distribution, the cumulative hazard function is related to 
the parameters as follows:

    Λ x
x( ) = ⎛

⎝⎜
⎞
⎠⎟η

β

.     (5.13)   

 Taking logarithms in Equation  5.13  and rearranging gives the following rela-
tionship between the logarithm of life and the logarithm of the cumulative 
hazard function:

    ln ln ln( ).x x( ) = ( )( ) +1
β

ηΛ     (5.14)   

 ln( x ) is a thus a linear function of ln( Λ ( x )). Weibull hazard paper in which 
estimated values of   Λ  ( x ) plot linearly against  x  is seen to be simply log - log 
graph paper. 

 Given a sample of size  n  and denoting the ordered times to failure or test 
suspension  x  (1)     <     x  (2)     <     . . .     x  (k)     <     . . .     x  (n) , one may form a stepwise continuous 
estimate of the hazard function. If  x  (   k   )  is a failure time, then, just prior to time 
 x  (   k   )  there are  n     −     k     +    1 items that have not yet failed or been suspended. Let 
 Δ  x k   denote the time until the next failure. Further assume that any suspensions 
that take place during this interval occur at the end of the interval. With this 
assumption we may state that the number at risk over the interval is  n     −     k     +    1. 
Of these, only one fails. The failure rate measured as failures per unit time per 
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number of items at risk can be expressed over the time between the failure at 
 x  (   k   )  and just prior to the next failure as:

    ˆ
( )

; .
( )

( ) ( ) ( )λ x
n k x

x x x x
k

k k k( ) =
− +

< < +1
1 Δ

Δ     (5.15)   

 The integrated hazard   Λ  ( x ) over that same interval may be approximated by 
summing the areas of the rectangles that form the stepwise approximation, 
over the intervals corresponding to ordered failure times  x  (   j   )  for which  j     ≤     k .

    ˆ ˆ ; .( ) ( ) ( )Λ x x
n j

x x x xj

j

k

j

k

k k k( ) = ( ) =
− +

< < +
=
∑ ∑λ xj Δ Δ

1

1
1

    (5.16)   

 The sum takes place over the values of  j  corresponding to the order numbers 
of just the failures in the ordered list of failures and suspensions. Only failures 
contribute to the sum, but suspensions affect the amount of their contribution 
through their effect on the value of  j  that each failure assumes. 

 The CDF may be estimated as:

    ˆ exp[ ˆ ].F x x( ) = − ( )1 Λ     (5.17)   

 The computations for Nelson ’ s method is best illustrated by an example. 
Column 1 of Table  5.2  shows the sorted lives obtained in a life test of 10 speci-
mens in which an extraneous failure mode claimed six of the test specimens 
before they could fail by the mode of interest. The lives of these specimens at 
the point of test suspension is indicated by the letter (S). The lives of the test 
elements that failed due to the primary mode are indicated by an (F).   

 The next column in Table  5.2 , headed  “ Reverse Rank, ”  contains the order 
number of each failure or suspension in reverse order, for example, the small-

  Table 5.2    Hazard and  K     −     M  Computations 

   Life  
   Reverse 

Rank     Hazard    −      λ    
   Cumulative 
Hazard   Λ        F ( x )    =    1    −     e     −      Λ        K     −     M   

  0.569 S    10     –      –      –      –   
  8.91 F    9    0.1111    0.1111    0.1052    0.111  
  21.41 S    8     –      –      –      –   
  21.96 F    7    0.1429    0.2540    0.2243    0.238  
  32.62 S    6     –      –      –      –   
  39.29 F    5    0.2000    0.4540    0.3649    0.390  
  42.99 S    4     –      –      –      –   
  50.40 F    3    0.3333    0.7873    0.5449    0.593  
  53.27 S    2     –      –      –      –   
  102.6 S    1     –      –      –      –   
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est member of the sample is assigned the value 10. For the  j  - th life, be it a 
failure or a suspension, the reverse rank ’ s value is  n     −     j     +    1. 

 The entries in the third column, headed  “ Hazard, ”  are the reciprocals of the 
corresponding reverse rank entries and are only computed for the lives labeled 
(F), that is, for the primary failure mode. Each entry in the fourth column, 
labeled  “ Cumulative Hazard, ”  and designated by the symbol  Λ , is the sum of 
the associated entry in the third column and all other entries above it in the 
third column. The fi fth and fi nal column is the plotting position F obtained 
from the associated value of  Λ  by the transformation 1    −    e  −  Λ  . These values of 
F may then be plotted against the primary mode failure lives on an ordinary 
Weibull grid. The fi tted straight line represents the graphical estimate of the 
two - parameter Weibull distribution of primary mode life. 

 Another approach to nonparametric estimation of the CDF in the presence 
of multiple censoring is due to Kaplan and Meier  (1958) . Their method is easily 
explained with reference to Table  5.2 . Prior to the fi rst failure at a life of 8.91 
there were nine items at risk since one had been withdrawn at life 0.569. Of 
these nine, one failed and eight survived beyond life 8.91. Therefore, 8/9 is the 
estimated reliability at life    =    8.91. The corresponding estimate of the probabil-
ity of failing prior to 8.91 is  F (8.9)    =    1    −    8/9    =    0.1111. This remains the esti-
mated value of  F  until another failure occurs. At the second failure at life 21.96 
there were seven items at risk of which six survived beyond life 21.96. The 
conditional reliability of surviving beyond a life of 21.98 given survival up to 
that point is therefore estimated as 6/7. The overall estimated reliability of 
surviving beyond a life of 21.96 is the product of surviving beyond 8.91 times 
the probability of surviving beyond 21.96 conditional on having survived 
beyond 8.91. This is the product 6/7    ×    8/9    =    0.7619. The estimated CDF at 21.96 
is therefore 1    −    0.7619    =    0.2381. The rest of the table follows in a similar way. 
Typically the  K     −     M  estimates are not much different from Nelson ’ s. Like 
Nelson ’ s, the  K     −     M  estimates are easier to illustrate than to write in formal 
notation. The usual formal notation is to defi ne a binary variable for each item 
in the ordered list of failures and suspensions as   δ   j     =    0 for a suspension and 1 
for a failure. The CDF at the  k  - th failure is then expressible as:

    F x
n j

n j
k

j

k j

( ) .= − −
− +

⎛
⎝⎜

⎞
⎠⎟

=
∏1

11

δ

    (5.18)   

 For the censored observations the contribution to the product is 1.0 so only 
the failed items affect the computation. 

 The  K     −     M  estimates may be used in the usual way in graphical estimation 
of the CDF. For the cumulative hazard estimates we need to fi t a straight 
line to the linear relation between ln     Λ  ( x ) and ln    x . 

 As with ordinary graphical estimation one may use least squares as a fi tting 
procedure to remove the subjectivity of fi tting a line to the data points. Mini-
mizing the scatter of the life values about the fi tted line, we regress the natural 
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     Figure 5.4     Regression fi t to Weibull plot.  
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logarithm of life upon the logarithm of the estimated cumulative hazard 
function. 

 The intercept of the fi tted straight line will be an estimate of ln(  η  ) and the 
slope of the fi tted straight line will be an estimate of 1/  β  . The fi tted straight 
line and the data points are shown in Figure  5.4 .   

 The shape parameter is therefore estimated to be 1/1.488    =    0.672 and the 
scale parameter estimate is exp(5.766)    =    319.3. 

 Romanowski  (1998)  has studied the behavior of the estimates obtained by 
hazard plotting for the case where primary and secondary Weibull failure 
modes act as competing risks to produce censored observations. For example, 
choosing a sample size of  n     =    10, a total of 10 observations are generated by 
simulation from the primary failure mode Weibull distribution having shape 
parameter   β   1  and scale parameter   η   1 . Ten additional observations are then 
generated from the secondary Weibull distribution having shape and scale 
parameters of   β   2  and   η   2 . The failure lives of the two modes are randomly 
paired as shown in Table  5.3 . If the primary mode life is smaller, it is taken as 
the failure time. If the secondary mode distribution yields the smaller life, it 
is taken as the censoring life. The hazard plotting procedure is then conducted 
as usual. It was necessary to restrict the study to cases wherein at least three 
primary mode failures occurred because the estimates became unstable with 
only two.   

 For this example, the line fi t by regressing ln( x ) against ln Λ ( x ) had a slope 
of 0.9853 and an intercept of 0.2416. The computation of the scale and shape 



maximum likelihood estimation 145

parameter estimates in terms of the estimated slope and intercept of the fi tted 
line are as follows:

   ˆ
.

. ; ˆ exp . . .β η= = = = ( ) =1 1
0 9853

1 015 0 2416 1 273
b

  

 The, 10th percentile is computed as:

   x0 10

1 1 015

1 273
1

0 90
0 1387.

/ .

. ln
.

. .= ⋅ ⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=   

 Some fi ndings of the study were as follows:

   1.     When the target failure mode is rare, simulations exhibit wide scatter at 
small sample sizes due to a few occasional extremely large values.  

  2.     For sample sizes  ≥ 30 and primary mode fraction  ≥ 50% the shape param-
eter is underestimated by about 3% and the scale parameter is biased 
low by 1.5 – 2%.  

  3.     For  n     =    50 and equal scale parameters there is a negligible effect on the 
shape and scale parameters when the primary failure mode distribution 
has unit shape parameter as the competing mode shape parameter value 
varies from 0.5 to 3. Over that range the proportion of mode 1 failures 
increases from 45% to 57%.      

   5.5    MAXIMUM LIKELIHOOD ESTIMATION 

 The method of ML is an estimation method due to Fisher  (1934)  that has the 
properties of unbiasedness and minimum variance in large samples. Loosely 

  Table 5.3    Hazard Calculations 

    x  1       x  2   

   Time to 
Failure    =    

Minute( x  1 ,  x  2 )     Mode  
   Reverse 

Rank  

   Hazard 
Values 

  λ  ( x )  

   Cumulative 
Hazard Value 
Mode 1  Λ ( x )  

  0.35434    0.02969    0.02969    2    10    0.100000      
  1.09545    0.04827    0.04827    2    9    0.111111      
  0.19065    0.29876    0.19065    1    8    0.125000    0.125000  
  0.31964    1.35455    0.31964    1    7    0.142857    0.267857  
  0.38159    0.98788    0.38159    1    6    0.166667    0.434524  
  1.86767    1.00301    1.00301    2    5    0.200000      
  1.20585    1.94545    1.20585    1    4    0.250000    0.684524  
  1.42434    1.25575    1.25575    2    3    0.333333      
  1.83543    1.35151    1.35151    2    2    0.500000      
  2.02333    1.86398    1.86398    2    1    1.000000      
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speaking the method of maximum likelihood yields estimates of the distribu-
tion parameters that make the probability of occurrence of the observed 
sample the largest. 

 Given a complete (uncensored) random sample  x  1 ,  x  2 ,    . . .     x n  , the likelihood 
function is the product of the density function evaluated at each value of the 
observed data:

    L f x f x f xn= ⋅( ) ( ) ( ).1 2 �     (5.19)   

 With the sample in hand the values of the  x  ’ s are known so  L  depends only 
on the unknown parameters of the distribution function. For the two - parameter 
Weibull distribution the values of the parameters that make the likelihood a 
maximum need to be found numerically. On the other hand, for the normal 
distribution, the ML estimates of the mean and variance are just the usual 
sample mean and variance. In general, under certain regularity conditions, the 
parameter values that maximize the likelihood function may be found by 
solving the system of equations that result from differentiating the likelihood 
function with respect to each of the parameters and setting the derivatives 
equal to zero. Given  k  parameters,   α   1 ,   α   2     . . .      α   k , their ML estimates are the 
solution of the  k  equations that result when the derivatives of  L  with respect 
to each parameter are equated to zero. That is,

    
∂
∂

= ∂
∂

= ∂
∂

=L L L

kα α α1 2

0� .     (5.20)   

 When the sample is right censored and the number of failures is designated  r  
and the number of censored observation is  n     −     r , it is convenient to renumber 
the observations so that the fi rst  r ,  x  1 ,  x  2 ,    . . .    ,  x r  , represent the failure times 
and the remaining  x r    + 1 ,  x r    + 2 ,    . . .     x n   are the times at censoring. With this nota-
tional convention, the likelihood function may be written as:

    L C f x F xi

i

r

i

i r

n

= ⋅ − ( )
= = +
∏ ∏( ) [ ].

1 1

1     (5.21)   

 The constant C varies with the type of censoring but is independent of the 
parameters of the distribution and not relevant to fi nding the maximizing 
values of the parameters. A failure contributes a term  f ( x ) evaluated at the 
failure life. A censored observation contributes a term [ 1     −     F ( x )] evaluated at 
the censoring time. It is generally convenient to deal with the logarithm of  L  
rather than  L  directly. The parameter values that maximize ln   L also maximize 
L. Designating the natural logarithm of L by  l , it may be expressed as:

    ln ln ln[ ] ln[ ].L l C f x F xi

i

r

i

i r

n

= = + ( ) + − ( )
= = +
∑ ∑

1 1

1     (5.22)   
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   5.5.1    The Exponential Distribution 

 In the special case that   β      =    1 the Weibull distribution reduces to the exponen-
tial distribution. The exponential distribution is very prominent in reliability 
engineering and merits discussion in its own right and not just as a special case 
of the Weibull distribution. Accordingly in this section we will alter notation 
and use  t  in lieu of  x  and denote the scale parameter by   θ   instead of   η  . 

 The pdf and CDF are therefore written:

    f t e
t

( ) = −1
θ

θ.     (5.23)  

    F t e
t

( ) = −
−

1 θ.     (5.24)   

 Using these expressions appropriately evaluated at observed lifetimes or at 
observed censoring times, the log likelihood becomes after simplifying:

    l C r t ti

i

r

i

i r

n

= − − −
= = +
∑ ∑ln ln .θ

θ θ
1 1

1 1

    (5.25)   

 Note that the failure lives and the lives at censoring may be combined into a 
single summation. With that simplifi cation, taking the derivative with respect 
to   θ   results in:

   
d L
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θ θ θ
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 The solution for   θ   is denoted by a caret overstrike to indicate that it is the ML 
estimate of   θ  :

    ˆ .θ = =∑ t

r

i
i

n

1     (5.26)   

 This result applies no matter what the censoring mode. The numerator of this 
expression is termed the total time on test and is often represented symboli-
cally as TTT.  

   5.5.2    Confi dence Intervals for the Exponential Distribution —
 Type  II  Censoring 

 When testing is continued until the  r  - th failure occurs, Epstein and Sobel 

 (1953)  found that the quantity   Y
r TTT= = ×2 2θ̂
θ θ

 will vary from sample to 

sample in accordance with a chi - square distribution having 2 r  degrees of 
freedom. The random variable  Y  is said to be a pivotal quantity; it contains 
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the actual parameter value as well as the ML estimate of   θ  , but its distribution 
depends only on the number of failures and not on the parameter itself. Con-
fi dence intervals on   θ   may be computed using appropriate percentage points 
of the chi - square distribution with 2 r  degrees of freedom. For example, with 
 r     =    10, tables of percentage points for the chi - square distribution tell us that 
if  Y  follows a chi - square distribution with 2 r     =    20 degrees of freedom, the fol-
lowing probability statement is true:

   Prob[ . . ] . .9 591 34 170 0 95< < =Y   

 9.591 is the 2.5th percentile of the chi - square distribution with 20 degrees of 
freedom and 34.170 is the 97.5th percentile. There is thus a combined 5% 
chance of  Y  being above the upper or below the lower limit. Thus, the probabil-
ity that a chi - square variable with 20 degrees of freedom will be observed to 
fall between these two values is 95%. Substituting for  Y  in terms of   θ   and its 
ML estimate,

   Prob 9.591
2

34.170 0.95.< <
⎡

⎣
⎢

⎤

⎦
⎥ =

rθ̂
θ

  

 The two inequalities in this expression can be solved for   θ   and leads to the 
following two - sided 95% confi dence interval statement:

   2
34 170

2
9 591

r rˆ

.

ˆ

.
.

θ θ θ< <   

 Using the uncensored data in Table  5.1  and treating it as if it came from an 
exponential distribution, the ML estimate of   θ   is:

   ˆ .
. .θ = = ==∑ ti

i 1

10

10
349 96

10
35 0   

 The 95% confi dence interval for   θ   is therefore:

   20 48
2 10
34 170

35
2 10
9 591

35 72 98.
. .

. .= × × < < × × =θ   

 In a given sample this statement will be either true or false; that is, the true 
value of  θ  will either fall between these two limits or it will not. However, in 
an indefi nitely large number of statements made from a large set of samples 
of the same size, 5% of the statements will be wrong; the true   θ   will  not  be 
within the calculated limits. The error rate is thus 0.05. When data are simu-
lated from a known population, the truth of a given confi dence interval state-
ment will be known. This is not so when the data come from testing rather 
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than from simulation. It should therefore be borne in mind when declaring 
that an unknown parameter lies within calculated bounds that there is a risk, 
controllable by the experimenter, that the statement is wrong. 

 In general the expected fraction of incorrect intervals is designated by the 
Greek letter   α  . The two values of chi - square are chosen so that there is a 
chance of   α  /2 of exceeding the upper and   α  /2 of falling below the lower. The 
resultant confi dence interval is said to be a 100(1    −      α  )% interval. A general 
100(1    −      α  )% interval for the exponential parameter   θ   i s expressed as follows:
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   χ α1 2 2
2
− / , r denotes the upper 100(1    −      α  /2) percentile and   χα / ,2 2

2
r the lower 100(  α  /2) 

percentile of the chi - square distribution with 2 r  degrees of freedom. 
 The experimenter controls the error rate   α   and can set it to a smaller value, 

say 0.01, to lower the risk of making an incorrect statement. The result will be 
a wider set of limits having a greater chance of enclosing the true value of the 
population parameter. Regrettably, if the experimenter is unwilling to take any 
risk at all and so sets   α      =    0, the limits become infi nitely wide. Thus, to make 
any kind of meaningful statement, some risk must be tolerated. It should be 
borne in mind that the error rates associated with confi dence intervals do not 
account for the error that stems from misidentifying the distribution. In the 
example above we used data from a known Weibull distribution to illustrate 
computations applicable to data from an exponential distribution. In practice 
one assumes a distribution form based on history or policy and perhaps verifi es 
that the data do not contradict the choice using some kind of goodness - of - fi t 
test. There is rarely any certainty that the distribution chosen is the correct 
one. Goodness - of - fi t tests will be considered in Chapter  6 . 

 Sometimes only one - sided statements are necessary. If, for example, a lower 
95% confi dence limit was wanted, one could write:

    
2

.
0.95,2
2

r

rχ
θ θ⎡

⎣⎢
⎤
⎦⎥

<ˆ     (5.28)   

 In our numerical example, this leads to: 

   22 3
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31 41
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= ⎛
⎝⎜

⎞
⎠⎟ ⋅ < θ . This is often the case in reliability where a customer 

may want to know with a high level of confi dence that a certain low percentile 
of a life distribution exceeds a minimum acceptable value. 

 Since the 100 p  - th percentile for the exponential distribution is equal to  k p  θ  , 
a confi dence interval for   θ   can be multiplied by  k p   to compute a confi dence 
limit for  x p  . Thus, in the numerical example above, a two - sided 95% interval 
for  x  0.10  is:

   2 16 0 105361 20 48 0 105361 72 98 7 690 10. . . . . . ..= × < < × =x   
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 The estimated reliability at a given life  x  may be computed as:

    ˆ ( ) [ / ˆ].R x x= −exp θ     (5.29)   

 For the example above, the estimated probability of surviving a life of  x     =  
  50 is:

   ˆ ( ) exp . ,R 50
50
35

0 240= −⎡
⎣⎢

⎤
⎦⎥
=   

 Substituting a lower confi dence limit for   θ   will give a corresponding lower limit 
for  R ( x ). In our example, a lower 95% confi dence interval for  R (50) is:

   R0 95 50
50

22 3
0 106. exp

.
. .( ) = −⎡

⎣⎢
⎤
⎦⎥
=   

 The failure rate for the exponential is the reciprocal of the scale parameter and 
so the ML estimate of the failure rate is the reciprocal of the ML estimate 

of the scale parameter. Thus, in the example above,   ˆ .λ = =1
35

0 0286. 

 Because a large scale parameter means a small failure rate, the confi dence 
intervals for failure rate are the reciprocals of the corresponding limits for   θ   
but with the upper and lower ends interchanged. Thus, for the example:

   0 0137
1

72 98
1

20 48
0 0488.

. .
. .= < < =λ   

 In type II censoring the ML estimate of the mean is unbiased. This follows 
from the fact that the ML estimate can be expressed as:

   ˆ .θ θ= Y
r2

 

  where  Y  follows the chi - square distribution with 2 r  degrees of freedom. Taking 
expected values and using the fact that the expected value of a chi - square 
variable is just its degrees of freedom shows that   E θ̂ θ( ) = .  

   5.5.3    Estimation for the Exponential Distribution — Interval Censoring 

 Data that results from interval censoring is sometimes called grouped data. It 
arises when an ongoing life test is monitored periodically and the number of 
failures since the last inspection is recorded. The intervals do not have to be 
the same length but ordinarily will be. The likelihood function for interval data 
is easy to write. As an illustration consider what would have resulted if the life 
test in Table  5.1  had been monitored every 15 hours. The table below shows 
the interval data that would have resulted. 
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 The likelihood function is the product of the probability of having these 
numbers of failures occur in each interval as a function of the scale param-
eter   θ  .

   L F F F F F F F( ) ( ) [ ( ) ( )] [ ( ) ( )] [ ( ) ( )] .θ = × − × − × −15 30 15 45 30 60 453 3 3   

 Had there been an open ended interval on the right, say  > 60, a further term 
 R (60)    =    [1    −     F (60)] would have been included for every failure occurring 
beyond 60. The function  F  is the CDF:

   F t
t( ) = − −⎡

⎣⎢
⎤
⎦⎥

1 exp .
θ

  

 So the likelihood is a function of   θ   and the maximizing value may be found 
graphically or by the use of optimization software. It is generally easier to solve 
if one uses the logarithm of the likelihood:

   l F F F F F F F( ) ln ( ) ln[ ( ) ( )] ln[ ( ) ( )] ln[ ( )θ = + − + − + −15 3 30 15 3 45 30 3 60 (( )].45   

 The maximum value of  l (  θ  ) was found to be  − 18.249 and occurred at   ̂ .θ = 33 949. 
A plot of the logarithm of the likelihood function versus   θ   is shown in 
Figure  5.5 .   

 Approximating the data by the midpoints of the intervals results in: 7.5, 
22.5, 22.5, 22.5, 37.5, 37.5, 37.5, 52.5, 52.5, and 52.5. Using these values as if they 
were exact data gives the estimate:

   ˆ . .θ = =
=
∑1

10
34 5

1

10

xi

i

  

 The value computed in this manner is at a good starting value to begin the 
iterative search for the ML estimate and may suffi ce in itself. Inference based 
on grouped data has not been widely studied. If the intervals are not too wide 
one might base confi dence intervals and tests on the use of the midpoints as 
if they were exact data.  

   5.5.4    Estimation for the Exponential Distribution — Type  I  Censoring 

 It will be recalled that in type I censoring  n  items are tested for a fi xed time 
 t  0 . One then observes the number of failures r and their associated lives. The 

   Time Interval     No. of Failures  

  0 – 15    1  
  15 – 30    3  
  30 – 45    3  
  45 – 60    3  
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expression for the ML estimate of   θ   remains the same in this case, but both 
the number of failures  r  and the total time on test are random. Bartholomew 
 (1963)  has found the distribution of the ML estimate in this case to be a 
weighted sum of chi - square integrals and too complex for routine use. He 
offers two not particularly simple approximate solutions. An exact solution for 
the type I censored case is possible if the test is conducted in a specifi c way: 
Put a single item on test and replace it when it fails until the fi xed time  t  0  
elapses. The total time on test will be  t  0  and  r  will be the observed number of 
failures. Alternatively, if there are  n  test stands available, put an item on each 
and replace all failures as they occur. In this case the total time on test will be 
 nt  0  and the number of failures r will be the total number of failures observed. 
In this case the number of failures will follow the Poisson Process with param-
eter  nt  0 /  θ   and the two sided 100(1    −      α  )% confi dence limits for   θ   are:

    
2 2

1
2

2 2

2

2
2

2

r r

r r

ˆ ˆ
.

, ,

θ
χ

θ θ
χα α− +

< <     (5.30)   

 This confi dence interval is similar to the interval for type II censoring, except 
that the degrees of freedom is 2 r     +    2 for the lower confi dence limit. Many 
writers suggest this as an approximation for the type I censored case even 
when the Poisson protocol is not followed. Bartholomew offers two examples 
of data from type I censored experiments and applies his two, more complex, 

     Figure 5.5     Log likelihood versus   θ   for an interval censored sample.  
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approximate solutions to each. In one example a considerable proportion 
(15/20) of the specimens failed prior to the time  t  0 . In the second example only 
10 of 40 failed prior to  t  0 . 

   

    
 Example 1 
 Twenty items are observed for a time period t 0     =    150 hours and 15 fail at the 
following lives: 3, 19, 23, 26, 27, 37, 38, 41, 45, 58, 84, 90, 99, 109, and 138. The 
ML estimate of   θ   is 105.7. 

 Ninety - fi ve percent limits calculated using the approximation of Equation 
 5.30  are:

   64 1
2 15 105 7

49 48
2 15 105 7

16 791
188 9.

.
.

.
.

.= × × < < × × =θ   

 Bartholomew ’ s limits using his two approximations are (69, 184) and (68, 187). 
The Poisson approximation appears to be conservative (limits are wider) 
compared with Bartholomew ’ s approximations and not substantially 
different. 

 Example 2 
 In Bartholomew ’ s second example 40 items were tested for  t  0     =    300 hours and 
10 failed at the following lives: 6, 23, 31, 91, 94, 102, 119, 160, 170, and 241. The 
ML estimate of   θ   is 1003.7. A 95% confi dence interval computed from Equa-
tion  5.30  is:

   545 8
2 10 1003 7

36 781
2 10 1003 7

9 591
2093.

.
.

.
.

.= × × < < × × =θ   

 Bartholomew ’ s two approximations gave (570, 1862) and (558, 1906). Again, 
the Poisson Process approximation is seen to be conservative. 

   5.5.5    Estimation for the Exponential Distribution — 
The Zero Failures Case 

 When a type I censored test results in zero failures the lower confi dence limit 
in Equation  5.30  may still be calculated since the chi - square percentage point 
has 2 degrees of freedom when  r     =    0. Although the ML estimate of   θ   cannot 
be calculated, the product of  r  and   ̂θ = =TTT nt0 is known. The result is further 
simplifi ed by the fact that   χ αα2 1

2 2, ln( )− = − . Hence, a lower 100(1    −      α  )% limit 
for   θ   may be written as:

    nt0

−
<

ln
.

α
θ     (5.31)   
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 This is readily converted to a lower bound on a percentile or the reliability at 
a prescribed life. As an example consider Bartholomew ’ s second example 
above but suppose that  t  0     =    5 hours instead of 300 hours. In that case there 
would have been no failures and the total time on test would be 40    ×    5    =    200 
hours. The lower 95% limit for   θ   would be:

   66 8
200

0 05
.

ln( . )
.=

−
<θ   

 Although the ML estimate of   θ   is undefi ned when  r     =    0, some use the lower 
50% confi dence interval as a way of producing some kind of estimate. In the 
present case that would be:

   288 5
200

0 50
.

ln( . )
.=

−
<θ   

 Equation  5.31  is sometimes used as the basis for a zero failures reliability 
demonstration test. As an example consider the problem of demonstrating 
with 95% confi dence that the mean of an exponential distribution exceeds 
1000 hours by means of a test of duration t 0  in which no failures occur. From 
Equation  5.31  this implies that

   1000
0 05

0=
−

<nt
ln( . )

θ   

 So that

   nt0 2995 7= .   

 Any combination of n and t 0  having a product of 2995.7 will suffi ce with the 
proviso that n must be an integer. If, say, it were desired to run the test for 300 
hours a total of 10 specimens would need to endure without failure to validate 
the claim.   

   5.6     ML  ESTIMATION FOR THE  W EIBULL DISTRIBUTION 

   5.6.1    Shape Parameter Known 

 It is recalled that the transformation  t     =     x  β    applied to a Weibull random vari-
able produces an exponential random variable whose scale parameter   θ   is 
equal to   η   β   . Estimation and hypothesis testing methods applicable to the 
exponential distribution may be applied to the transformed Weibull data when 
the shape parameter is believed to be known. 

 The ML method of estimation for censored exponential data leads to the 
following estimate of the exponential scale parameter:
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    ˆ .θ
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1 1     (5.32)   

 Where   ∑ =i
n

it1  is the total transformed time on test summed over the life of both 
failures and suspensions and  r  is the number of failures. As before, this result 
applies no matter what censoring type gave rise to the data. Note that there 
is no specifi c dependence on sample size, only on the number of failures and 
the total time on test. Thus it does not matter if 10 items are tested until all 
fail or if 20 items are tested until the fi rst 10 fail. If the total time on test 
happens to be the same so will the estimate of   θ  . The ML estimate of the 
Weibull scale parameter follows from the fact that ML estimates of functions 
are those functions of the ML estimates. Thus, since the scale parameter of the 
transformed Weibull is   η   β   , the ML estimate of the Weibull scale parameter is:

    ˆ .
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    (5.33)   

 The estimate of the 100  p  - th percentile is computable as:

    ˆ ( ) ˆ./x kp p= ⋅1 β η     (5.34)   

 For the data in Table  5.1 , recalling that it was generated from a Weibull popu-
lation having   β      =    1.3, we may estimate the scale parameter as:

   ˆ .
. .

/ .

η = ⎛
⎝⎜

⎞
⎠⎟ =1053 69

10
35 90

1 1 3

  

 The estimated value of  x  0.10  is:

   ˆ . ( . ) . ..
/ .x0 10

1 1 335 90 0 105361 6 368= ⋅ =    

   5.6.2    Confi dence Interval for the  W eibull Scale Parameter — Shape 
Parameter Known, Type  II  Censoring 

 Although the ML estimate is the same regardless of the censoring mode, the 
computation of confi dence limits is dependent on the type of censoring. Exact 
confi dence limits can be computed for complete or type II censored samples. 

 For type II censoring at the  r  - th failure, Epstein and Sobel have shown that 

  2rθ̂
θ

 follows a chi - square distribution with 2 r  degrees of freedom and thus so 

does   2r ⋅ ⎛
⎝⎜

⎞
⎠⎟

η̂
η

β

 and, for that matter,   2r
x
x

p

p

ˆ⎛
⎝⎜

⎞
⎠⎟

β

. Harter and Moore  (1965)  use this 
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fact to show that the ML estimate of the scale parameter or a percentile is 
biased but that the bias may be corrected by multiplying the raw estimate by 
the factor  C ( r ,   β  ) defi ned below.

    C r
r r

r
,

( )
.β

β

β

( ) =
+⎛

⎝⎜
⎞
⎠⎟

1

1
Γ

Γ
    (5.35)   

 For   β      =    1.0, this factor is 1.0 for any value of  r , indicating, as we have shown, 
that the ML estimate of the exponential scale parameter is unbiased. For 
  β      =    1.3 and  r     =    10, the bias correction factor is 1.009. So the bias is negligible 
in this case. 

 With 2 r     =    20 a 95% probability interval for   20
x̂
x

p

p

⎛
⎝⎜

⎞
⎠⎟

β

 is:

   Prob 9.591 20 34.170 0.95.<
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 This leads, after some simplifi cation, to the 95% confi dence interval for  x p  .

   
.

ˆ
.

ˆ .
/ /20

34 17
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9 591

1 1
⎛
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⎞
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β β

x x xp p p   

 For the example, a 95% confi dence interval for  x  0.10  is:

   4 217 0 6623 6 368 1 76 6 368 11 200 10. . . . . . ..= ⋅ < < ⋅ =x   

 As noted previously, on the basis of a specifi c sample, a confi dence interval 
will be either true or false; that is, the true value of  x p   will either fall between 
the two limits or will not. However, in an indefi nitely large number of state-
ments made from a large set of samples of the same size, 5% of the statements 
will be wrong; the true  x p   will  not  be within the calculated limits. The error 
rate is thus 0.05. As it happens the sample used here was generated from a 
population for which the true value of  x  0.10  was 10.0 and so the computed 
confi dence interval in this case is a correct statement. 

 A general 100(1    −      α  )% interval is expressed as follows:
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   χ α1 2
2
− /  denotes the upper 100(1    −      α  /2) percentile and   χα / 2

2  the lower 100(  α  /2) 
percentile of the chi - square distribution with 2 r  degrees of freedom. 
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 A one - sided lower 95% confi dence interval for  x p   may be computed as:

    2
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⎡
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<ˆ     (5.37)   

 Similarly an upper 50% confi dence interval could be written:
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    (5.38)   

 This expression suggests that the right - hand side is a median unbiased estimate 
of  x p  . That is, there is a 50% chance that the modifi ed estimate:
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  will exceed the true value. 
 For the same 10,000 simulated samples as used previously in the evaluation 

of Menon ’ s method and the fi rst - order statistic estimate of  x  0.10 , ML estimates 
of  x  0.10  were computed from Equation  5.34 , although the exact sampling dis-
tribution of the ML estimate could have been established analytically in terms 
of the chi - square distribution as outlined above. For this case the bias correc-
tion factor is negligibly different from unity and so was not applied. The means, 
standard deviations, minima, maxima, and medians are tabled below: 

     
   Estimator     Mean     Std. Dev.     Minimum     Median     Maximum  

  Menon    12.701    7.140    0.397    11.434    21.0572  
  X 1:10     8.9474    6.9507    0.0127    7.1939    55.1643  
  ML    9.9447    2.4286    3.4347    9.7805    21.0572  

 The ML estimate has a substantially lower standard deviation and the mean 
and median are both closer to the true value of 10.0 than either of the other 
two estimators. The histogram below in Figure  5.6  substantiates the superiority 
of the ML estimate. Its distribution is very nearly symmetrical and has com-
parable variation on both sides of the true mean. A large part of the superiority 
of the ML estimate in this comparison is due to the use of a known value of 
  β   in computing the ML estimate but not the other two estimates.    

   5.6.3     ML  Estimation for the  W eibull Distribution —
 Shape Parameter Unknown 

 The ML method is applicable to arbitrary censoring and studies show it to be 
as precise as any other method in existence (cf. Gibbons and Vance,  1981  and 
Genschel and Meeker,  2010 ). In the important case of type II censoring, 
methods are available for constructing interval estimates for the Weibull 
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parameters. Implementation of the ML method involves the solution of a 
nonlinear transcendental equation that would generally be regarded as too 
diffi cult for hand calculations when more than two failures have occurred. It 
is, however, readily programmed for implementation on a computer. 

 Graphical methods are, however, simple to employ and unlike any other 
methods provide valuable insight into data discrepancies (outliers) and pos-
sible non - Weibull behavior that no other method does. 

 A reasonable approach to the analysis of Weibull data is to prepare a 
graphical estimate for a subjective appraisal of the validity of the data and the 
applicability of the Weibull model and then use the method of maximum likeli-
hood for calculation of point and interval estimates. If there is doubt about 
the goodness of fi t to a Weibull distribution, formal tests can be conducted. 
Such tests are discussed in Chapter  6 . 

 Estimating both parameters of the two - parameter Weibull distribution by 
the ML method involves the iterative solution of two simultaneous nonlinear 
equations. These are the equations that result when the derivatives of the log 
likelihood with respect to   β   and   η   are set equal to zero. This includes those 
situations where the three - parameter model applies but the location parameter 
  γ    is known, for then one need only transform the data by subtracting the known 
location parameter from each observation prior to performing the analysis. 

 A statistical test of the hypothesis that the location parameter is nonzero 
is given by McCool  (1998)  and is described and illustrated in Chapter  10 . This 
test must be performed using an iterative numerical procedure. 

 In the two - parameter Weibull case, the ML estimate of the shape parameter 
is given as the solution of the following equation (Cohen,  1965 ),

     Figure 5.6     Sampling distribution of three estimators of  x  0.10 .  
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  where  x  1     . . .     x r   are the lives of the  r  failed test elements and  x r    + 1     . . .     x n   are the 
lives at test suspension of the censored elements in a random sample of size 
 n  having  r  failures. Equation  5.40  applies irrespective of the type of censoring. 
There is no implication in Equation  5.40  that  x r      <     x n  , for example. 

 Having solved Equation  5.40  for   β̂, the ML estimate of the scale parameter 
is computed as:
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 The  p  - th quantile  x p   is calculated as,
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 The Mathcad module below, named weib1.xmcd, illustrates the computation 
of the ML estimates for the sample in Table  5.1 . 

  Mathcad Module for ML Estimation of the Shape, Scale, and Tenth Per-
centile of the Two - Parameter Weibull Distribution  

 The vector  x  contains the data, ordered so that the failure times are listed 
fi rst.  n  is the sample size and  r  is the number of failures:

   ORIGIN ≡ 1   

 Set the sample size  n , and number of failures  r :

   n r: := =10 10  

   x :
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 Enter the  r  failure times and ( n     −     r ) censoring times in the vector  x . The 
fi rst  r  components are the failure times and the next  n     −     r  are the censoring 
times. 

 The ML estimate of the shape parameter is the root of the following 
equation:
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 b     =    Initial guess of Weibull shape       b :    =    1 
 parameter

   β : ( ( ), )= root f b b  

   β = 2 582. .   

 The scale parameter and 10th percentile estimates are computed as follows:
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 A DOS program named Weib.exe will also compute the ML estimates. 
Figure  5.7  shows the input screen with the input for the data of Table  5.1  
partially visible.   

     Figure 5.7     Input screen for Weib.exe.  
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 The results screen for the complete sample shown as Figure  5.8  displays the 
raw ML estimates of the shape parameter   β̂ and the scale parameter   ̂η along 
with the estimated values of the 1st, 5th, 10th, 50th, 90th, 95th, and 99th per-
centiles. The lower half of the screen gives the 90% confi dence limits and 
median unbiased estimates of the shape parameter and 10th percentile. These 
are computed using numerical approximations to percentage points of certain 
pivotal quantities discussed subsequently. The reader is advised to ignore these 
approximate values and to recompute the confi dence limits using exact values 
of the relevant percentage points of the pivotal functions obtained using the 
simulation software program Pivotal.exe described in Chapter  7 .   

     Figure 5.8     Results screen for Weib.exe.  

 If the statistical package Minitab is available, the ML estimates are given 
in the legend of the probability plot module. Figure  5.9  shows the plot for the 
test data we have used in the previous examples and confi rms the estimates 
obtained with the Mathcad module and with the program Weib.exe.   

 The AD value refers to the Anderson Darling statistic used as a measure 
of goodness of fi t. Goodness - of - fi t testing for the Weibull is discussed in 
Chapter  6 , where software for computing critical values of the AD statistic will 
be described. As will be explained in Chapter  6 , the  p  - value shown in the 
legend of Figure  5.9  indicates that there is no basis to reject that the data were 
drawn from a two - parameter Weibull distribution. 

 A useful property of ML estimates is that the ML estimate of any function 
of a set of parameters is formed directly as that function of the ML estimates 
of those parameters. This property is termed the invariance property of ML 
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estimates. Thus, the ML estimate of the reliability at life  x  for the two - parameter 
Weibull case may be computed in terms of the ML estimates of the 
parameters:

    ˆ
ˆ

.
ˆ

R x exp
x( ) = − ⎛

⎝⎜
⎞
⎠⎟η

β

    (5.43)   

 Thus, using the estimates just obtained, we could estimate the reliability at the 
life of  x     =    15 to be:

   ˆ exp
.

. .
.

R 15
15

39 56
0 92

2 58

( ) = − ⎛⎝⎜
⎞
⎠⎟ =    

   5.6.4    Confi dence Intervals for  W eibull Parameters — 
Complete and Type  II  Censored Samples 

 With simple type II censoring the lives of the failed elements correspond to 
the fi rst  r  order statistics of the sample and the other  n     −     r  items are suspended 
at the failure time  x  r  of the  r  - th item. 

 In this case, exact confi dence intervals on   β   and  x p   can be computed because 
of the existence of a pair of random variables that are functions of the param-
eters and the ML estimates, and which follow distributions that depend only 

     Figure 5.9     Weibull plot of sample data.  
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on sample size  n , number of failures  r , and for one of the functions, the quantile 
of interest  p  (cf. Thoman et al.,  1969 ; McCool,  1970a,b ). These functions, known 
as pivotal quantities, are:

    v r n, .( ) = β̂
β

    (5.44)  

  and

    u r n p
x
x

p

p

, , ln .( ) = ⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ
β     (5.45)   

 The distribution of these random variables can be determined by Monte Carlo 
sampling and values of their quantiles tabulated for various values of  r ,  n , and 
 p . With these quantiles available one can, for example, set a one - sided upper 
90% confi dence interval on   β   as:

    β β<
ˆ

( , )
.

.v r n0 10

    (5.46)  

  or a two - sided 90% confi dence interval as,

    
ˆ

( , )

ˆ

( , )
.

. .

β β β
v r n v r n0 95 0 05

< <     (5.47)  

  where  v  0.90  ( r ,  n ),  v  0.05 ( r ,  n ), and  v  0.95 ( r ,  n ) denote the 90th, 5th, and 95th per-
centiles of the distribution of  v ( r ,  n ). 

 Similarly a one - sided 90% confi dence interval for  x p   is computed as,

    x
u r n p

xp p< −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ⋅exp

( , , )
.0.10

ˆ
ˆ

β
    (5.48)   

 A two - sided 90% confi dence interval is found as,

    exp
( , , )

exp
( , , )0.95 0.05−

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ < < −

⎛
⎝

u r n p
x x

u r n p
p pˆ

ˆ
ˆβ β⎜⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ x̂p.     (5.49)   

 In general two - sided 100(1    −      α  )% confi dence intervals for   β   and  x p   may be 
found as follows,

    
ˆ

( , )

ˆ

( , )
.

/ /

β β β
α αv r n v r n1 2 2−

< <     (5.50)  
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    exp
( , , )

exp
( , , )1 / 2 / 2− ⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ < < −

⎛
⎝

−u r n p
x x

u r n p
p p

α α

β βˆ
ˆ

ˆ⎜⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ x̂p.     (5.51)   

 Fifty percent one - sided confi dence intervals are a special case of the above 
and represent values that the true but unknown values of   β   and  x p   are as likely 
to exceed as to fall short of. Defi ning,

    β β′ =�
ˆ

( , ).v r n0 50

    (5.52)  

    ˆ
( , , )

ˆ
ˆ ..′ = −

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ ⋅x exp

u r n p
xp p

0 50

β
    (5.53)   

 It follows that   ˆ ′β  and   ̂ ′xp are median unbiased estimates of the Weibull param-
eters   β   and  x p  . That is, calculation of modifi ed point estimates of   β   and  x p   
according to Equations  5.52  and  5.53  results in estimates that 50% of the time 
will be smaller than the true (but unknown) values and 50% of the time larger 
than the true values. These estimates are said to be median unbiased. The 
factor by which the raw ML estimates are multiplied in calculating them may 
be regarded as bias correction factors. 

 Some percentage points for  v ( r ,  n ) and  u ( r ,  n ,  p     =    0.632) for the uncensored 
case ( r     =     n ) covering the range 5    <     n     <    120 are given by Thoman et al.  (1969) . 

 McCool ( 1974 ) gives values of 21 percentage points of  u ( r ,  n ,  p ) and  v ( r ,  n ) 
ranging from   α      =    0.01 to 0.99 for  p     =    0.01, 0.10, 0.50, and 0.632 and the follow-
ing values of  n  and  r ,

   n r= =5 3 5; ,  

   n r= =10 3 5 10; , ,  

   n r= =15 5 10 15; , ,  

   n r= =20 5 10 15 20; , , ,  

   n r= =30 5 10 15 20 30; , , , , .   

 At one time computation of the distribution of pivotal functions required a 
substantial amount of time on a mainframe computer and is the principal 
reason that published tables are so limited in coverage. These same simulations 
can now be computed in seconds on a standard personal computer. An easy 
to use program for computing these distributions called Pivotal.exe, and 
written in Visual Basic, will be described in Chapter  7 . Table  5.4  lists the 5th, 
95 th , and 50th percentage points of  u  and  v  for several combinations of  n  and 
 r  for the purpose of illustrating the computations. The last two columns in this 
table will be discussed in Chapter  6 .   
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  Table 5.4    Table of Percentage Points of  v ( r ,  n ) and  u ( r ,  n ,  p ) for Some  n  and  r  

    r       n   

    v ( r ,  n )      u ( r ,  n , 0.10)  

    R        R0 50.
β      0.05     0.5     0.95     0.05     0.5     0.95  

  3    5    0.6351    1.6510    6.7596     − 1.2672    0.8483    9.9607    10.60    898  
  5    5    0.6795    1.2346    2.8146     − 1.1422    0.4465    4.4453    4.14    92.4  
  3    10    0.6208    1.7223    7.6478     − 1.4304    0.4313    7.0208    12.30    135  
  5    10    0.6482    1.3117    3.2791     − 0.9571    0.3737    3.7698    5.06    36.7  

  10    10    0.7361    1.1031    1.8363     − 0.8794    0.2125    2.1304    2.49    15.3  
  5    15    0.6430    1.3321    3.3937     − 0.9223    0.2435    2.9446    5.28    18.2  

  10    15    0.7130    1.1269    1.9428     − 0.6184    0.1933    1.9477    2.72    9.75  
  15    15    0.7715    1.0679    1.5634     − 0.7648    0.1393    0.5091    2.03    8.41  
  5    20    0.6432    1.3353    3.5078     − 0.9601    0.1482    2.5445    5.45    13.8  

  10    20    0.7047    1.1328    1.9913     − 0.7274    0.1604    1.7473    2.83    8.89  
  15    20    0.7459    1.0754    1.6327     − 0.7055    0.1215    0.4431    2.19    7.37  
  20    20    0.7949    1.0476    1.4454     − 0.6740    0.0958    1.2262    1.82    6.13  
  5    30    0.6430    1.3475    3.4437     − 1.1306    0.0176    1.6920    5.36    8.12  

  10    30    0.6996    1.1309    2.0236     − 0.6348    0.0931    1.3891    2.89    5.99  
  15    30    0.7410    1.0819    1.6771     − 0.6038    0.0928    1.2125    2.26    5.39  
  20    30    0.7662    1.0569    1.5182     − 0.5955    0.0790    1.1130    1.98    5.04  
  30    30    0.8259    1.0290    1.3353     − 0.5672    0.0536    0.9147    1.62    4.22  

   From Harris,  Rolling Bearing Analysis , 3rd edition, copyright 1991 by John Wiley and Sons, Inc. 
Reprinted by permission of John Wiley and Sons, Inc.   

 Example 
 Using the ML method, calculate the 90% confi dence intervals and median 
unbiased estimates for the shape parameter, scale parameter, and the tenth 
quantile  x  0.10  for the uncensored data sample of size  n     =    10 given in Table  5.1 . 

 The following values are needed for this calculation: 

   v  0.05 (10, 10)    =    0.736     u  0.05 (10, 10, 0.10)    =     − 0.879     u  0.05 (10, 10, 0.632)    =     − 0.665  
   v  0.50 (10, 10)    =    1.103     u  0.50 (10, 10, 0.10)    =    0.213     u  0.50 (10, 10, 0.632)    =     − 0.230  
   v  0.95 (10, 10)    =    1.836     u  0.95 (10, 10, 0.10)    =    2.130     u  0.95 (10, 10, 0.632)    =    0.638  

 Referring to the results of the the Mathcad module shown above, the raw 
ML estimates of  x  0.10 ,   η  , and   β   were calculated to be:

   ˆ ..x0 10 16 55=  

   ˆ .η = 39 56  

   ˆ . .β = 2 58   

 From Equation  5.47  one has,

   1 41
2 581
1 836

2 581
0 736

3 51.
.
.

.

.
. .= < < =β   
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 And from Equation  5.49 :

   7 25
2 130
2 58

16 55
0 879
2 58

0 10. exp
.
.

. exp
.
.

.= − ⎛⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⋅ < < − −⎛x ⎝⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

=16 55 23 2. .   

 Recalling that the Weibull scale parameter is the same as the 63.2 th  percentile 
we compute a 90% confi dence interval for the scale parameter   η  :

   30 9
0 638
2 58

39 55
0 665
2 58

. exp
.
.

. exp
.
.

= − ⎛⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
× < < − −⎛

⎝⎜
⎞
⎠η ⎟⎟⎡

⎣⎢
⎤
⎦⎥
× =39 55 51 17. . .   

 These confi dence intervals illustrate an important point. It will be recalled that 
the data sample was drawn from a two - parameter Weibull population for 
which the true values of   β  ,  x  0.10 , and   η   were 1.3, 10.0, and 56.46 respectively. 
Thus, the statements 1.41    <      β      <    3.51 and 30.9    <      η      <    51.17 are incorrect, while 
the statement 7.25    <     x  0.10     <    23.3 is correct. In practice one never knows whether 
the confi dence interval statement is or is not correct since he or she does not 
know the true parameter values. Our only assurance is that we know that the 
procedure followed in making the interval calculation will lead to correct 
statements 90% of the time; that is, in 1000 such calculations we can expect 
an average of 900 correct and 100 incorrect statements. In the example above 
we have seen a false statement emerge from the calculations for   β   and   η  . It 
should be borne in mind that a false statement will occur in 10% of all inde-
pendent calculations when one uses 90% confi dence interval statements. It 
should also be borne in mind that a set of confi dence intervals computed for 
  β   and a number of percentiles from the same sample as we have done here 
are not statistically independent. 

 From Equations  5.52  and  5.53 , the median unbiased estimates of   β  ,  x  0.10 , and 
  η   are:

   ˆ .
.

.′ = =β 2 58
1 103

2 15  

   ˆ exp
.
.

. ..′ = − ⎛⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
× =x  0 10

0 213
2 58

16 55 15 4  

   ˆ exp
.
.

. .′ = − ⎛⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
⋅ =η 0 213

2 58
39 56 39 22   

 It is noted that these median unbiased values are in quite good agreement 
with the respective values, 2.16, 14.2, and 40.1 estimated using regression on 
the Weibull plot in Figure  5.1 . 
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     Figure 5.10     The Weibull log likelihood function for interval censoring.  
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   5.6.5    Interval Censoring with the  W eibull 

 The Weibull Likelihood function for interval censored data is constructed in 
the same manner as for the Exponential except that the CDF has two param-
eters. For the same data as used with the exponential example the Weibull 
likelihood function is maximized at  η     =    38.849 and  β     =    2.748. The maximized 
value of the log likelihood is  − 13.963. A surface plot of logL versus   η   and   β   is 
shown in Figure  5.10 :   

 The ML estimates based on using the midpoints of the intervals as data are 
not far off:   ˆ .β = 2 556 and   ̂ .η = 38 812. 

 There is no theory yet available for setting confi dence based on estimates 
computed from interval censored data. If the estimated parameters do not 
differ greatly from the values that result from treating the midpoints as exact 
observations, then one could reasonably use the methodology for exact data 
in setting confi dence limits.  

   5.6.6    Confi dence Limits for  W eibull Parameters — Type  I  Censoring 

 Type I censoring is favored by experimenters and their management because 
the maximum amount of testing and hence the time to complete the test may 
be calculated in advance and so the testing costs may be determined and not 
just estimated. For a test of  n     =    40 items for  t  0     =    100 hours and with 20 test 
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machines available, the total time on test cannot exceed 4000 hours and the 
test will take no longer than 200 hours to complete. Moreover, whenever a 
failure occurs a new item can replace it without affecting the test protocol. The 
situation grows unpredictable and complex with type II censoring when the 
sample size exceeds the number of test machines available. It becomes a chal-
lenge to end up with, say,  r     =    15 failures out of 40 with the unfailed items 
censored at the life of the 15th failure. 

 Type I censoring poses a statistical problem, however, because with a sample 
of size  n  the number of failures that occur prior to the time - up life  t  0  is a 
binomial random variable that can range from 0 to  n . The probability of a 
failure prior to time  t  0  is related to the unknown parameters through the CDF, 
that is,

    p
t= − −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥1 0exp .

η

β

    (5.54)   

 The expected number of failures prior to time  t  0  is:

    E r np( ) = .     (5.55)   

 If in a given test  r  is less than  E ( r ), it means that more items than expected 
lived beyond  t  0  with the result that such tests will tend to have greater than 
average life. When  r  is greater than  E ( r ), it means that more early failures 
occurred than expected and so such tests will tend to have lower than average 
life. If the time - up life  t  0  is made small,  p  will be small, and the variability in  r  
will diminish since the variance of a binomial random variable is  np (1    −     p ). 
Unfortunately with few failures one cannot estimate the distribution param-
eters with great precision. 

 The problem remains very much an open one and the best solution may 
well be to use testing strategies in which type II censored tests are performed 
in smaller subgroups and then combined statistically. Another useful strategy 
depending on the aims of the test program is to use the sudden death approach 
discussed in Chapter  7  to reduce test time with type II censoring. 

 Today the consensus approach for type I censored tests is to use asymptotic 
(large sample) ML theory for the construction of approximate confi dence 
intervals for Weibull parameters and percentiles. There are a number of pos-
sibilities within this approach including the use of the distribution of the likeli-
hood ratio and transformations of both the random variable and the parameter 
estimates to speed the approach to asymptotic normality. These techniques 
along with the use of Bootstrap methods are explained and compared in a 
comprehensive paper by Jeng and Meeker  (2000)  in which the comparative 
performance of no less than 10 approximate methods for computing confi -
dence intervals on the Weibull parameters and percentiles with type I censor-
ing is assessed. We will describe and illustrate the widely used asymptotic 
approach and compare its results in a few numerical examples to the expedient 
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of treating the data as if the  r  value that resulted was the planned  r  value in 
a type II censored test. 

 The two - parameter Weibull distribution and the extreme value distribution 
followed by the logarithm of a Weibull random variable both satisfy the regu-
larity conditions that assure that the ML estimates are the solution of the set 
of equations that result when the derivatives of the likelihood function with 
respect to each parameter are equated to zero. These regularity conditions 
guarantee that as the sample size increases without limit the ML estimates 
become unbiased and normally distributed. Because of the invariance prop-
erty of ML estimates, the same numerical estimates result whether or not the 
likelihood function is expressed in terms of the Weibull distribution using 
the original data or the extreme value distribution using the logarithms of 
the observed lives and censoring times. In the latter case the ML estimates 
of the extreme value distribution are fi rst computed and then transformed to 
the corresponding Weibull parameters. Lawless, Meeker, and Escobar, and 
others recommend working with the extreme value distribution on the grounds 
that the parameter estimates approach normality faster, that is, at smaller 
sample sizes in this metric. The confi dence limits on the Weibull distribution 
parameters may then be obtained by transforming the confi dence limits for 
the extreme value distribution parameters. 

 Recall that  Z     =    ln X  has the CDF:

    F z
z( ) = − − −⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

1 exp exp .
δ

ξ
    (5.56)  

  where the parameters are related to the corresponding Weibull parameters as 
  δ      =    ln(  η  ) and   ξ      =    1/  β  . The density function is:

    f z
dF z
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⎤
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    (5.57)   

 The reliability function is:

    R z
z( ) = − −⎛

⎝⎜
⎞
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⎡
⎣⎢

⎤
⎦⎥

exp exp .
δ

ξ
    (5.58)   

 Let  z  1 ,  z  2     . . .     z r   represent the logarithms of the time to failure of the  r  items 
that failed and  z r    + 1 ,  z r    + 2 ,    . . .     z n  , denote the logarithms of the attained lives at 
which testing was suspended on the ( n     −     r ) unfailed items. No ordering is 
implied other than that the failures are listed fi rst and the suspensions second. 

 Except for a constant multiplier which we omit as inconsequential to the 
estimation process, the likelihood function is:

    L f z R zi

i

r

i

i r

n

= ⋅
= = +
∏ ∏( ) ( ).

1 1

    (5.59)   
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 Denote the natural log of the likelihood as  l (  δ  ,   ξ  ):

    l f z R zi

i

r

i

i r

n

δ ξ, ln ln ( ).( ) = ( ) +
= = +
∑ ∑

1 1

    (5.60)   

 The ML estimates are the values of   δ   and   ξ   for which this expression is 
maximum and are found by solving the two equations:

    
∂
∂
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=l l( , ) ( , )
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δ ξ
δ

δ ξ
ξ

0     (5.61)   

 The information matrix is defi ned as:
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 The expected values of the quantities in this matrix depend on how the censor-
ing is carried out and on the true parameter values. The inverse of the infor-
mation matrix is the 2    ×    2 symmetric covariance matrix  V :

    V
v v

v v
= = ( )−11 12

21 22

1I δ ξ, .     (5.63)   

 The component v 11  is the variance of the ML estimate of  δ , v 22  is the variance 
of the ML estimate of  ξ  and v 12     =    v 21  is the covariance of the ML estimates of 
 δ  and  ξ . Harter and Moore  (1967)  have computed the covariance matrices for 
various specifi ed proportions of left and right censoring, For the uncensored 
case their results imply that the information matrix is:

   I
nδ ξ
ξ

,
.

. .
( ) = 2

1 0 423

0 423 1 824
 

  and depends only on   ξ   and not   δ  . When ML estimates are substituted for the 
actual parameters in the information matrix it becomes the estimated, or local, 
information matrix. The inverse of the local information matrix gives approxi-
mate values of the variance of the estimates. The covariance matrix thus 
obtained in the present case is:

   V
n

ˆ, ˆ
ˆ . .

. .
.δ ξ ξ( ) = −

−

2 1 109 0 257

0 257 0 608
  

 The elements of this matrix are actually what Harter and Moore published. 
The information matrix given above was reverse engineered. 
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 When the expected values of the terms in the information matrix are not 
available as is the case for complex censoring patterns, the values of the second 
partial derivatives calculated from the data are substituted for the expected 
values. This matrix is sometimes called the  observed  information matrix and 
its inverse may be used as a further, less exact, approximation of the covariance 
matrix. (Some writers use observed and local information matrix interchange-
ably.) The observed information matrix for the extreme value distribution is 
shown by Lawless to be expressible as:

    I

r y e

y e r y e
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    (5.64)   

 The terms  y i   are the standardized values of the logarithm of the  i  - th failure or 
censoring time and   ̂yi is the standardized value after replacing the parameters 
by their ML estimates:

    ˆ
ˆ

ˆ
ln ˆ

ˆ .y
z x

i
i i= − = −δ
ξ

δ
ξ

    (5.65)   

 The estimates of the variance and covariance are the customary elements of 
the inverse of this matrix. For the uncensored sample of size 10 given in Table 
 5.1 , the ML estimates of the extreme value distribution are   ̂ ˆ .δ η= =ln 3 678 

and   ̂ ˆ .ξ
β

= =1
0 387. The computed value of   I ˆ, ˆδ ξ( ) is:

   I ˆ, ˆ
ˆ

.

. .
.δ ξ

ξ
( ) = 10 1 0 4106

0 4106 1 69042
  

 In this form, with the sample size factored out and shown as a scalar multiplier, 
the components of the matrix may be compared to the exact expected values 
in the matrix  I (  δ  ,   ξ  ) shown above for an uncensored sample following Equa-
tion  5.63 . We will compare the confi dence intervals based on the local and 
observed information matrices, further below. 

 Inverting the observed information matrix after multiplying through by the 
scalar factor gives the following approximate covariance matrix:

   V =
− −

− − −
0 017 4 046 3

4 046 3 9 855 3

. .

. .

E

E E
  

 Approximate 90% confi dence limits for   δ   based on the normal distribution 
approximation are:
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   3 465 3 678 1 645 0 017 3 678 1 645 0 017 3 89
1
2

1
2. . . . . . . .= − ( ) < < + ( ) =δ   

 The corresponding 90% interval for   η   results from exponentiating both sides 
of this interval:

   31 99 48 913 465 3 89. . .. .= < < =e eη   

 A 90% interval for   ξ   is:

   0 224 0 387 1 645 9 855 3 0 387 1 645 9 855 31 2 1 2. . . ( . ) . . ( . )/ /= − − < < + − =E Eξ 00 551. .   

 The corresponding interval for   β   results from taking the reciprocals of these 
two limits and interchanging the upper and lower since if 1/  β      <    0.551, 
  β      >    1/0.551. The resultant interval is:

   1 816 4 465. . .< <β   

 To estimate the 100 p  - th percentile of the z distribution, we use:

    ˆ ˆ ˆz yp p= +δ ξ     (5.66)  

  where the constant  y p   is:

    y
p

p ≡ −
⎛
⎝⎜

⎞
⎠⎟

ln ln .
1

1
    (5.67)   

 For our example the estimate of the 10th percentile  z  0.10  is:

   ˆ . . . . ..z0 10 3 678 2 25 0 387 2 806= − × =   

 The estimated 10th percentile of the Weibull distribution is:

   ˆ . ..
.x e0 10

2 806 16 56= =   

 This agrees with what was found previously using direct ML estimation for 
the Weibull distribution. To fi nd the variance of   ̂ .z0 10 we recognize that in 
general  z p   is a linear combination of two random variables so its variance may 
be written:

    var z var y var y ovcp p pˆ ˆ ˆ ˆ, ˆ .( ) = ( ) + ( ) + ( )δ ξ δ ξ2 2     (5.68)   

 For the example,

   var z E Eˆ . ( . ) . . ..0 10
20 017 2 25 9 855 3 2 2 25 4 046 3( ) = + − × − + × −( ) × − −( ) = 00 085. .   

 A 90% confi dence interval on  z  0.10  is:

   2 327 2 806 1 645 0 085 2 806 1 645 0 085 31 2
0 10

1 2. . . ( . ) . . ( . ) ./
.

/= − < < + =z 2285.   
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 Exponentiating both sides gives the 90% interval for  x  0.10 :

   10 25 26 720 10. . ..< <x   

 The intervals for the Weibull parameters   η  ,   β  , and  x  0.10  were recalculated 
using the local information matrix with Harter and Moore ’ s matrix compo-
nents. The table below summarizes the asymptotic approximate intervals com-
puted with these two information matrices and the exact values computed 
previously: 

     

   Method       η         β        x  0.10   

  Observed matrix    31.99, 48.91    1.816, 4.465    10.25, 26.72  
  Local matrix    31.99, 48.90    1.837, 4.344    10.39, 26.36  
  Exact    30.9, 51.17    1.41, 3.51    7.25, 23.2  

 We see that for this example the difference between using the local matrix 
and the observed matrix is negligible, but both differ substantially from the 
exact limits. 

 The exact confi dence limits for   η   are somewhat wider than both the asymp-
totic limits. The exact limits for   β   and  x  0.10  are distinctly asymmetric, suggesting 
that the distributions have not yet converged to normality at a sample size 
of 10. 

 A Mathcad module titled asymptoticxample.xmcd that performs these cal-
culations is shown below: 

  Mathcad Module for ML Estimation of the Shape and Scale Parameters and 
the Tenth Percentile of the Two - Parameter Weibull Distribution and Compu-
tation of Confi dence Limits Based on Asymptotic Normality  

 The vector x contains the ordered data.  n  is the sample size and  r  is the 
number of failures in a type I or type II censored sample:

   x :

.

.

.

.

.

.

.

.

.

.

=

⎛

⎝

⎜
⎜
⎜

14 01

15 38

20 94

29 44

31 15

36 72

40 32

48 61

56 42

56 97

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

   n r: : .= =10 10   
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 ML shape parameter estimate — initial guess

   β : = 1  

   f
r

x
x x

x
i

i

r
i i

i

n
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   β : ( ( ), ) . .= =root f β β β 2 582   

 ML scale parameter estimate

   η η
β β
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⎣

⎢
⎢

⎤

⎦

⎥
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 ML estimate of  x  0.10 
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 Compute ML estimates of parameters of extreme value distribution

   δ η ξ
β

: ln : .= ( ) = 1
  

 Transform data to standardized extreme value random variables

   y :
ln

.= ( ) −x δ
ξ

  

 Compute the local information matrix

   I :=
×( )

×( ) + ( ) ×⎡⎣ ⎤⎦
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 Compute the estimated covariance matrix by inverting the local information 
matrix

   Cov I Cov:
. .

. .
.= =

− ×
− × ×

⎛
⎝⎜

⎞
⎠⎟

−
−

− −
1

3

3 3

0 017 4 046 10

4 046 10 9 855 10
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 Compute 90% intervals using normality

   
δ δ δ

δ δ

upper Cov upper

lower Cov

: . .

: .

,
.

,

= + ( ) =

= −

1 645 3 89

1 645

1 1
0 5

1 1(( ) =0 5 3 465. .δlower
 

   
η η
η η
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: .
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 Compute the variance of the log of 10th percentile

   varz Cov Cov C10 2 1 11111 1 111111 1 1 2
2: ln ln . ln ln ., ,= + × ( )( ) × + ( )( ) × oov2 2, .( )  

   
z x varz z

z

10 1 645 10 10 3 285

10
0 10

0 5upper upper
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: ln . .

:
.

.= ( ) + =
= lln . ..

.x varz z0 10
0 51 645 10 10 2 327( ) + − =lower
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z

10 10 26 715

10 10

10
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upper upper

lower lo
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: .

:

= =
= wwer = 10 25.

  

 As a further example we consider the uncensored life test data obtained on 
23 ball bearings and reported by Lieblein and Zelen  (1956) . These data have 
been considered by many writers including Lawless, Meeker and Escobar, and 
Leemis (Leemis  1995 ). The lives in millions of revolutions are in ascending 
order: 17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84, 51.96, 54.12, 55.56, 
67.80, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, and 173.40. 
We will examine these data in the uncensored form, and after artifi cially time 
censoring it at 60.0 following Jeng and Meeker. To simulate type I censoring 
at  t  0     =    60, the data values in the sample in excess of 60 are changed to 60. The 
number of actual failures prior to 60 is  r     =    11. 

 The ML estimates of   η  ,   β  , and  x  0.10  were computed to be 81.85, 2.103, and 
28.07, respectively in the uncensored case and 68.68, 3.082, and 33.10 with 
censoring. To compute exact 90% confi dence limits for   η  ,   β  , and  x  0.10  the 5% 
and 95% points of the distributions  of u ( r ,  n ,  p ) and  v ( r ,  n ) were obtained by 
simulation using the program Pivotal.exe. for  n     =    23,  r     =    11 and  r     =    23, and 
 p     =    0.10 and 0.632. These percentage points and the medians are tabled 
below: 
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 The agreement is quite good for  η . As with the previous example, the 
asymptotic lower limits for β  and  x0.10  are not small enough and the symmetry 
assumed in the normal approximation is not yet valid at n     =    23. 

 The same comparison for the type I censored data is: 

   Pivotal Function     5%     50%     95%  

u (11, 23, 0.10)  − 0.684    0.137    1.556  
u (11, 23, 0.632)  − 1.053     − 0.1054    0.423  
v (11, 23)    0.711    1.116    1.910  
u (23, 23, 0.10)  − 0.632    0.0801    1.107  
u (23, 23, 0.632)  − 0.393     − 0.0146    0.375  
v (23, 23)    0.8034    1.041    1.413  

   Method      η       β       x0.10

  Asymptotic    68.8, 97.3    1.67, 2.83    19.4, 40.67  
  Exact    68.9, 97.3    1.49, 2.62    16.6, 37.9  

   Method      η       β       x0.10

  Asymptotic    57.13, 82.58    2.109, 5.726    24.64, 44.46  
  Exact for type II    59.87, 96.65    1.614, 4.334    19.97, 41.32  

 The exact and asymptotic 90% confi dence limits are tabled below for the 
uncensored case. The observed information matrix was used in computing the 
asymptotic limits. 

 The limits computed using the exact values for a type II censored test 
should not be far off in this case since a type II censored test with r     =    11 would 
have concluded at a life close to t0     =    60 anyway. The method based on the 
likelihood ratio cited in the Jeng and Meeker paper gives limits of (19.74, 
43.26) for x0.10  and (1.667, 5.00) for  β  and are in good agreement with the exact 
values at the lower end of the interval. The likelihood ratio method requires 
a numerical search technique. 

 Lawless cites a set of data due to Freireich  (1963)  on the remission time in 
weeks for a set of 21 leukemia patients treated with a drug called 6 - MP. The 
remission time was observed for r     =    9 patients and the other 12 left the study 
prior to remission after varying lengths of time. The censoring pattern in this 
data is therefore quite complex. The data are as follows:

   Observed remission times: 6, 6, 6, 7, 10, 13, 16, 22, 23  
  Censoring times: 6, 9, 10, 11, 17, 19, 20, 25, 32, 32, 34, 35.    
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 The ML estimates of  η ,  β , and  x0.50  are 33.77, 25.7, and 1.354. The exact confi -
dence interval computation is not applicable in this case because the data do 
not conform to the type II censoring model. Nevertheless, we have calculated 
95% limits on that basis as well as asymptotic results with the observed infor-
mation matrix. The results are tabled below: 

   Method      η       β       x0.50

  Asymptotic    21.5, 52.9    0.876, 2.98    15.8, 42.0  
  Exact type II    22.5, 128.6    0.546, 2.12    12.3, 73.9  

 For  x0.50  and  β  the results for the exact type II calculation are more conser-
vative at the important lower end of the intervals. 

 Clearly unless the samples are quite large, possibly on the order of 50 –
 100, the asymptotic approach is problematic. If at the planning stage of a 
life test it is found to be possible to avoid type I censoring by using another 
strategy, the experimenter is well advised to do so. If one has type I cen-
sored data, it might be useful in helping to assess the results to use the type 
II exact computation as a  “ second opinion ”  even though it is not strictly 
applicable.    
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  14.6375    66.9203    68.4248    69.2899    71.8208  
  77.4557    94.8249    100.317    101.453    104.603  

  7.764,84    18.1968    26.9440    37.7441    52.7651  
  52.7651    52.7651    52.7651    52.7651    52.7651  

 EXERCISES 

1.    If a sample of size 10 is drawn from the Weibull population  W (100, 2) 
compute the expected value of the fi rst - order statistic.   

2.    The following sample was randomly drawn from  W (100, 2). Estimate  η ,  β , 
and x0.10  using Menon ’ s method of estimation. 

3.    The following is a random sample of size  n     =    10 type II censored at  r     =    5 
and drawn from an exponential distribution with mean θ     =    100 hours. 
Compute two - sided 95% confi dence limits for  θ . Estimate the reliability at 
life    =    25 hours. 

4.    An acceptance test of an exponential sample is passed if  n     =    20 items 
survive t0     =    100 hours. Compute a lower 95% confi dence limit for the mean 
θ .   

5.    For the sample of problem 2, compute the raw maximum likelihood esti-
mate of the scale parameter η  assuming the shape parameter is known to 
be β     =    2. Compute the bias corrected value of  η .   

6.    For the sample in problem 2, use weib.exe or other software to estimate  β , 
η , and  x0.10  using the method of maximum likelihood. Using appropriate 
pivotal quantity percentage points in Table  5.4 , compute a 90% confi dence 
interval and a median unbiased estimate for the shape parameter.   

7.    For an exponential distribution with mean  θ , how long must 15 specimens 
run without failure to demonstrate with 90% confi dence that that  θ  exceeds 
80 hours?    



  C H A P T E R   6 

Sample Size Selection, Hypothesis 
Testing, and Goodness of Fit     

    6.1    PRECISION MEASURE FOR MAXIMUM 
LIKELIHOOD ( ML ) ESTIMATES 

 There are two reasons for conducting a life test, one being to test a hypothesis 
about one or more parameters of a distribution and the second being to form 
an estimate of one or more parameters to add to a growing body of knowledge 
and serve as a reference in future, yet unformulated, decision making. 

 In the second situation McCool  (1999)  proposed using the ratio of the 
upper to lower ends of a confi dence interval (with some suitable associated 
confi dence level) as a measure of the precision with which the parameter has 
been determined by a type II censored life test, and to select the sample size 
that yields a value of this ratio that the experimenter feels is needed. He sug-
gested a 90% interval on the basis that it is wide enough to be useful but 
narrow enough to avoid using the less reliable extreme percentiles of a distri-
bution determined by Monte Carlo simulation. 

 Equation  5.47  gives the expression for a two - sided 90% confi dence interval 
for   β  . The ratio  R  of the upper to lower ends of this interval is,

    R
v r n
v r n

= 0 95

0 05

.

.

( , )
( , )

.     (6.1)   

 The precision measure  R  is independent of the data and varies with the sample 
size parameters  n  and  r . Values of  R  for various combinations of  r  and  n  are 
given in Table  5.4 . It is instructive to scan the  R  column in the table. When  r  
is a small fraction of  n ,  R  is large, indicating that the shape parameter is best 
estimated if at least half the sample has failed. If one were to require that 
 R     <    2 at least 20 failures would be required. 
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 An alternate measure of the precision with which the shape parameter is 
determined by a sample of a given size was proposed in Phan and McCool 
 (2009) . It is based on the difference  d  between the upper and lower 90% 
confi dence limits.

   d UCL LCL
v v

= − = −
ˆ ˆ

.
. .

β β
0 05 0 95

  

 Expressed this way the criterion is not very useful for test planning pur-
poses since its magnitude depends on the shape parameter estimate   β̂. 
However, we may scale it by dividing by the true value   β   to give the rela-
tive error:

   D
d

v v
v

v v
= = −⎡

⎣⎢
⎤
⎦⎥

= −⎡
⎣⎢

⎤
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.
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1 1 1 1
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 The bracketed term is a constant and a function of  n  and  r  and  v  is the 

pivotal quantity   β̂
β

 The median value of  D  designated  D  0.50  depends only on  n  

and  r  and seems to be a reasonable measure of the precision of the shape 
parameter determination resulting from a sample of size  n  with  r  failures. It 
is expressible as:

    D v
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    (6.2)   

 From Equation  5.49 , the ratio of the upper to lower ends of a 90% confi dence 
interval for  x p   is:

    R
u r n p u r n p= ( ) − ( )⎛
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    (6.3)   

 Unlike the ratio for shape parameter estimation, this ratio is not a constant 
but depends upon the ML estimate   β̂  which is a random variable and varies 
from sample to sample. The median value of  R , designated  R  0.50 , is accordingly 
proposed as a criterion and is computed by substituting the median value of 
  β̂ , namely,   β v  0.50 ( r , n ) into this expression. The result is:
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 Raising both sides of Equation  6.4  to the power   β   gives,

    R
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 In general the right - hand side of Equation  6.5  depends on sample size ( r  and 
 n ), and the quantile  p  under investigation. In practice one prescribes a value 
of  R  0.50  and an assumed value of   β   and scans tables of the distribution  u ( r ,  n , 
 p ) until values satisfying Equation  6.5  are found. Values of   R0 50.

β  based 
on a 90% confi dence interval for  x  0.10  are listed in Table  5.4  in Chapter  5  
for various values of  r  and  n . Comparable tables may readily be developed 
for other values of  p  using the software called Pivotal.exe described in 
Chapter  7 . 

    
 Example 
 Find the sample size required for determining the 10th quantile  x  0.10  of a two -
 parameter Weibull distribution so that the median ratio of upper and lower 
90% confi dence intervals is less than 3.5. Assume a shape parameter   β      =    1.3.

   R0 50
1 33 5 5 1.
.. . .β = =   

 From Table  5.4  one sees that a sample size of 30 with at least 20 failures is 
needed. 

 Although the values of  r  and  n  in Table  5.4  are typical of the sample sizes 
used in bearing life tests, the values of   R0 50.

β  are disappointingly large. They 
serve to discourage doing a life test if, for example, one could only afford a 
sample of size  n     =    5. It has been shown, however (McCool,  1979 ), that when 
a number of tests are run representing small differences in operating or design 
conditions (e.g., lubricant type, load, cage design) it is possible to combine the 
results to compute refi ned estimates of the shape parameter and the percen-
tiles having greatly improved precision. The validity of the approach depends 
upon the shape parameters being equal among the test group populations. A 
way of testing the reasonableness of this assumption has been developed. 
When the assumption of equal population shape parameters can be justifi ed, 
it has been found, for example, that with fi ve groups having  n     =     r     =    30, 
  R0 50 2 33. .β = . As seen in Table  5.4  in a single sample with  n     =     r     =    30 has   R0 50 4 22. .β = . 
Since it is a frequent practice to test multiple groups it is recommended that 
experimenters exploit the improved precision that will result from pooling the 
results of a number of life test groups. The analysis of multiple groups of type 
II censored data from the two - parameter Weibull distribution is discussed in 
Chapter  8 . 

   6.2    INTERVAL ESTIMATES FROM MENON ’ S 
METHOD OF ESTIMATION 

 As mentioned previously it has been found recently (Phan and McCool,  2009 ) 
that the same pivotal quantities of the ML estimates are pivotal for Menon ’ s 
estimates as well, and therefore once the distributions are determined by 
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simulation, one may set confi dence intervals and form median unbiased esti-
mates in the same manner. Since Menon ’ s method is not applicable to cen-
sored samples, the notation for the pivotal functions reduces to  v ( n ) and  u ( n , 
 p ). Software for simulating the distribution of these pivotal functions has been 
written in Microsoft Visual Basic. The executable version, titled Menon.exe, 
may be downloaded from  http://www.personal.psu.edu/mpt . The program will 
prompt the user to specify values for the sample size, the percentile of interest, 
and the number of simulation samples to be used. It then computes the Menon 
shape and scale parameter estimates and pivotal functions  u  and  v  for each 
simulated sample and sorts them over the set of simulated samples. For 10,000 
simulated samples of size 30 the computation time is nearly instantaneous on 
a contemporary personal computer. Since the precision of estimated percent-
age points  u ( n ,  p ) varies with both  n  and  p , it is advisable to run the software 
several times to gauge the variability of the percentage points of interest. 

 The following percentage points of  v (10) and  u (10,0.10) have been deter-
mined by running the software using 100,000 simulated samples to illustrate 
the calculations on the data sample we have been analyzing. 

     

   v  0.05 (10)    =    0.663     u  0.05 (10, 0.10)    =     − 0.956  
   v  0.50 (10)    =    1.093     u  0.50 (10, 0.10)    =    0.167  
   v  0.95 (10)    =    1.861     u  0.95 (10, 0.10)    =    2.190  

 Recall that for this sample, Menon ’ s estimates of the shape parameter and 
 x  0.10  were 2.539 and 16.04, respectively. The median unbiased estimate of the 
shape parameter is:

   �′ = =β 2 539
1 093

2 32
.
.

. .   

 The median unbiased estimate based on the ML estimate was 2.15. 
 Ninety percent confi dence limits for the shape parameter are:

   1 364
2 539
1 861

2 539
0 663

3 829.
.
.

.

.
. .= < < =β   

 The corresponding interval based on the ML estimates was (1.41, 3.51). and 
hence was tighter than the limits based on Menon ’ s estimates. This was true 
at all sample sizes examined. Table  6.1  shows the value of the ratio  R  of the 
upper to lower limits of a 90% interval on   β  , as a function of sample size for 
Menon ’ s method and the ML method. Also shown are the comparative values 
of the criterion based on differences of the upper and lower limits  D  0.50 .   

 The table shows the clear superiority of the method of MLwith respect to 
estimating the Weibull shape parameter using either measure of precision. For 
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  Table 6.1    Ratio and Median Differences of Upper and Lower 90% Limits on the 
Weibull Shape Parameter: Menon and  ML  

         n      5     10     15     20     25     30     35     40     50     60     80     100  

   R     ML    4.11    2.50    2.05    1.84    1.71    1.62    1.55    1.52    1.45    1.40    1.34    1.30  
  Me    4.57    2.79    2.28    2.09    1.93    1.83    1.74    1.70    1.61    1.54    1.45    1.40  

   D  0.50     ML    1.387    0.878    0.703    0.614    0.528    0.482    0.441    0.414    0.368    0.336    0.289    0.259  
  Me    1.547    1.059    0.874    0.739    0.666    0.618    0.571    0.542    0.473    0.436    0.384    0.341  

    From the  Journal of Risk and Reliability  223(O4), copyright 2009. Reprinted by permission of The 
Institute of Mechanical Engineers.   

example, using ML, a sample of size 20 gives roughly the same precision as a 
sample of size 30 if Menon ’ s method is used, regardless of the precision 
measure. A sample of size 13 gives an  R  value by Menon ’ s method equal to 
2.45. This is roughly equivalent to the precision of a sample of size 10 using 
ML estimation. With the  D  0.50  criterion it takes a sample of size of 15 for 
Menon ’ s method to be equivalent to a sample of size 10 using ML 
estimation. 

 The median unbiased estimate of the 10th percentile is:

   �′ = × − −⎛
⎝⎜

⎞
⎠⎟

⎡
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=x0 10 16 04
0 1670
2 539

17 1. . exp
.
.

. .   

 This compares to 15.4 for the computation based on ML estimates. 
 The 90% confi dence limits for  x  0.10  are computed as follows:
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 This compares to the slightly tighter ML interval of (7.25, 23.2). 
 Figure  6.1  shows the precision measure   R0 50.

β  plotted against  p  for  n     =    10 
and  n     =    30 for both Menon and ML estimation. To within graphical accuracy, 
the precision of Menon ’ s estimator is comparable to ML for 0.4    <     p     <    0.7. If 
interest centers on the median or mean of the distribution, Menon ’ s method 
is quite satisfactory. Such might be the case if the random variable is strength 
rather than lifetime.    

   6.3    HYPOTHESIS TESTING — SINGLE SAMPLES 

 Hypothesis testing is an application of statistical inference closely related to 
interval estimation. A statistical hypothesis is a mathematical statement about 
the parameters of one or more probability distributions. In testing a statistical 
hypothesis, two such statements are set down. One is called the null hypothesis, 
designated  H  0 , representing a  “ baseline ”  or  “ business as usual ”  condition. The 
other is called the alternative hypothesis. It is designated  H  1  and represents 
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the type of departure from the baseline that the experimenter is concerned 
with detecting. 

 For example, one may be interested in testing whether a new treatment or 
process has had an effect upon  x  0.10  life. It is assumed that in the absence of 
any such effect the  x  0.10  life should have the value ( x  0.10 ) 0  known from theory 
or from historical data. 

 The null hypothesis in this case is written as,

   H0 0 10 0 10 0: ( ) .. .x x=   

 The appropriate alternative hypothesis will be any one of the following three 
depending upon the purpose of the experiment.

   H1 0 10 0 10 0: ( ). .x x<  

   H1 0 10 0 10 0: ( ). .x x>  

   H1 0 10 0 10 0: ( ). .x x≠   

 The fi rst alternative applies when the experimenter is concerned only with 
fi nding out whether  x  0.10  is lower than the prescribed standard value and is not 
concerned about whether it is greater. 

 Such a case might arise, for example, if one has introduced a manufacturing 
change that lowers costs. It is then prudent to test whether the change has 
been detrimental to fatigue life. If the change has actually improved fatigue 
life, that is all to the good. 

     Figure 6.1     Precision comparison of ML and Menon as a function of  p . From the  Journal of Risk 
and Reliability  223(O4), copyright 2009.  Reprinted by permission of The Institute of Mechanical 
Engineers.   
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 On the other hand, if a new process that increases costs is purported to 
improve fatigue life, one would be inclined to test the second alternative 
above, that is, H 1 :  x  0.10     >    ( x  0.10 ) 0 . In this case there would be no reason to adopt 
the new process unless it could be established conclusively that it brings about 
an improvement in fatigue life. 

 The third (two - sided) alternative applies when there is no preconceived 
idea about the likely direction of an effect on fatigue life. 

 To test a hypothesis one must fi nd a test statistic whose distribution is 
known when the null hypothesis is true. From this distribution one determines 
a critical region within which the statistic will lie with specifi ed small probabil-
ity   α   when the hypothesis is true and with higher probability when the alterna-
tive is true. 

 The test procedure consists of calculating the test statistic and rejecting the 
null hypothesis if the test statistic falls in the critical region.   α   is thus the risk 
that one is taking of erroneously rejecting the hypothesis when it is true. 
Rejecting a hypothesis when it is true is called a type I error. 

 To test, with signifi cance level   α  , the hypothesis that a general Weibull 
quantile  x p   assumes a designated value ( x p  ) 0 , one computes,

    ˆ ln
ˆ

.β x
x

p

p( )
⎛

⎝
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⎞

⎠
⎟

0

    (6.6)  

  where   β̂  and   ̂xp are the uncorrected ML estimates of   β   and  x p   from a sample 
of size  n  with  r  failures. 

 The hypothesis is accepted if   ˆ ln
ˆ
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x

p
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⎡
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⎤

⎦
⎥

0

 does not fall in a critical region, 

the size of which depends upon  n  and  r  and also upon what alternative to the 
null hypothesis is being considered. 

 Likewise, to test the hypothesis that the Weibull shape parameter assumes 
a specifi ed value   β   0 , one computes   ˆ /β β0. 

 The acceptance criteria for hypothesis tests on a percentile and on the shape 
parameter are summarized in Table  6.2 .   

   

    
  Table 6.2    Acceptance Regions for Tests on a Weibull Percentile 

   Alternate Hypothesis     Accept If  
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 Example 
 A materials scientist claims to have a new fi nishing process that will increase 
the fl exure strength of a ceramic material. To test this claim a group of 30 
specimens so fi nished will be fractured in a three - point bending test under 
conditions for which the historical value of the scale parameter is 1000 MPa.

   1.     Set up the critical region for a 10% level signifi cance test of this claim. 
 The null hypothesis is,

   H x x0 0 632 0 0 632 0 1000 0: ( ) .. .= = =η   

 The alternative hypothesis is

   H x x1 0 632 0 632 0: ( ). .>   

 The signifi cance level is   α      =    0.10. 
 The null hypothesis of no improvement is accepted if

   ˆ ln
ˆ

( , , . ).β η
1000

30 30 0 6320 90
⎛
⎝⎜

⎞
⎠⎟

< u   

 Running the Pivotal.exe software described in Chapter 7, it is deter-
mined that

   u0 90 30 30 0 632 0 256. , , . .( ) =    

  2.     Assume the fl exure strength test is run and the raw ML estimates are 
calculated to be   η̂ = 1210 MPa and   ˆ .β = 5 10. To test the above hypothesis, 
compute:

   ˆ ln
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. ln .β η
1000

5 10
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0 972⎛
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 Since 0.972    >    0.256, the scientist ’ s claim is accepted.    

   Alternate Hypothesis     Accept If  
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Table 6.2 (Continued)
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 Example 
 For a shape parameter   β      =    1.0 the Weibull distribution reduces to the expo-
nential distribution and the hazard function becomes a constant. 

 It is desired to test the hypothesis that bearing fatigue life is exponential 
rather than Weibull using an uncensored life test of 30 bearings. Set up the 
acceptance region for this test using a 5% level of signifi cance. 

 The null hypothesis is,

   H0 0 1 0: . .β β= =   

 The alternative is

   H1 1 0: . .β ≠   

 The null hypothesis will be accepted if   ˆ /β β0 falls in the following interval,

   v r n v r n0 05
0

0 95. ,( ) < < ( )
ˆ

, ..
β
β

  

 Running Pivotal.exe, the acceptance region is found to be:

   0 788 1 402
0

. < <
ˆ

. .
β
β

  

 Since the hypothesized value   β   0     =    1.0, the exponential hypothesis will not be 
rejected if   β̂  is between 0.788 and 1.402. It is important to remember that 
failure to reject a hypothesis does not prove that the hypothesis is true. It 
simply means that the data do not offer evidence to dispute the claim embod-
ied in the null hypothesis. 

   6.4    OPERATING CHARACTERISTIC ( OC ) CURVES FOR 
ONE - SIDED TESTS OF THE WEIBULL SHAPE PARAMETER 

 The hypothesis tests discussed in the previous section are constructed so as to 
accept the null hypothesis when it is true with a probability 1    −      α  , since, by 
defi nition,   α   is the probability of incorrectly rejecting H 0 . Obviously, if the true 
parameter value were close to but not equal to the value specifi ed by the null 
hypothesis, the probability of accepting the null hypothesis would still be close 
to 1    −      α  . As the true value departs more and more from the null hypothesized 
value, the probability of accepting the null hypothesis decreases. A plot of the 
probability  P a   of accepting the null hypothesis against the true parameter 
value is known as the  operating characteristic  ( OC ) curve of the test and is a 
function of sample size. It is very useful for informing an experimenter whether 
his or her test has suffi cient discriminating power and hence whether the 
sample size and amount of censoring selected are adequate for the purpose 
of the test. 



operating characteristic (oc) curves for one-sided tests 189

 OC curves may be constructed for the one - sided hypothesis tests given in 
Section  6.3 . 

 Consider the test of the hypothesis   β      =      β   0  against the alternative   β      <      β   0 . 
Assume the true value of   β      =      β   1  and is, in fact, less than   β   0 . Erroneously accept-
ing a hypothesis as true when it is false is termed a type II error in the statistical 
literature. This hypothesis will be erroneously accepted if,

   
ˆ

, .
β
β α

0

> ( )v r n   

 The probability that this is so, given that   β      =      β   1  is formally expressible as:

    P v r na = > ( ) =⎡⎣ ⎤⎦Prob ˆ , | .β β β βα0 1     (6.7)   

 Given that   β      =      β   1 , then   β̂ β1 will follow the distribution of  v ( r ,  n ). The prob-
ability of acceptance may then be rewritten as:
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 Since the probability that  v ( r ,  n ) exceeds   β β α0 1 ⋅ ( )v r n,  is equal to  P a  , then 
  β β α0 1 ⋅ ( )v r n,  must equal the 100(1    −     P  a )th percentile of  v ( r ,  n ). Comparable 
reasoning applies to the test against the alternative   β      >      β   0 . 

 For the test of the hypothesis that   β      =      β   0 , the probability of acceptance,  P  a , 
is related to the true value   β   1  as summarized below.   

 For the alternative   β      <      β   0  the value of   β   1  is computed as:

  
β β α

1
0

1
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,v r n
v P r na  

 For the alternative   β      >      β   0  the value of   β   1  is computed as:

  
β β α

1
0 1= ( )−
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,v r n
vP r na  

    

 Example 
 Determine several points on the OC curve for the hypothesis test that   β      =    2.0 
against the alternative   β      <    2.0 at the 5% level of signifi cance (  α      =    0.05) using 
a type II censored life test with  r     =    15,  n     =    30. 

 Some percentage points of  v (15, 30) are shown in column 1 of Table  6.3 . 
Using  v   1  −  α      =     v  0.95     =    1.703, one divides   β   0  v  1  −  α   ( r ,  n )    =    2.0    ×    1.703 by each of the 
percentage points in Table  6.3  to give   β   1 . These values are shown in column 2. 
The value of  P  a  associated with each   β   1  value thus calculated is the comple-
ment of the corresponding quantile of the values in column 1. These values of 
 P  a  are written in column 3. A plot of  P  a  against   β   1  forms the OC curve for the 
test and is shown in Figure  6.2 . Additional points beyond those in Table  6.3  
have been calculated to give the curve a smooth appearance.     
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  Table 6.3    Computation of the  OC  Curve for a Test on 
the Weibull Shape Parameter, H 0 :   β      =    2.0, H 1 :   β      <    2.0, 
 n     =    30,  r     =    15,   α      =    0.05 

   Selected Quantiles of  v  (15, 30)       β   1       P  a   

   v  0.05     =    0.7406    4.60    0.05  
   v  0.10     =    0.8026    4.24    0.10  
   v  0.25     =    0.9228    3.69    0.25  
   v  0.50     =    1.090    3.12    0.50  
   v  0.75     =    1.293    2.63    0.75  
   v  0.90     =    1.525    2.23    0.90  
   v  0.95     =    1.703    2.0    0.95  

     Figure 6.2      P  a  versus   β   for testing H 0 :   β      =    2.0 versus   β      <    2.0;  n     =    30,  r     =    15,   α      =    0.05.  

OC Curve: H0: b = 2.0 vs. H1: b < 2.0; n = 30, r = 15, a = 0.05

True Shape Parameter Value, b 

P
a

2.0 3.02.5 3.5 4.0 4.5 5.0 5.5

1.0

0.8

0.6

0.4

0.2

0.0

 According to Table  6.3 , the true shape parameter value would need to be 
greater than 4.60 before the probability of accepting   β      =    2.0 drops to below 
5%. 

 If this amount of discrimination is unacceptable to an experimenter he 
should choose a larger sample size. For this example, assume that the experi-
menter wished to have  P  a     =    0.05 for   β   1     =    3.0. He must therefore fi nd a sample 
size  n  and number of failures  r  for which:
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 Table  6.4  shows values of  v  0.95 / v  0.05  for uncensored sample sizes ranging from 
20 to 50 in increments of 5. It is seen that an uncensored sample size between 
40 and 45 will meet the experimenter ’ s objectives.   
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   6.5     OC  CURVES FOR ONE - SIDED TESTS ON 
A WEIBULL PERCENTILE 

 For the test of the hypothesis  x  p     =    ( x  p ) 0 , the probability of acceptance varies 
with the true value of  x  p , say ( x  p ) 1 . Consider the alternative H 1 : ( x  p ) 1     <    ( x  p ) 0 . 
The null hypothesis will be accepted if:
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 The leftmost term is now  u ( r , n , p ) since ( x  p ) 1  is the true value of  x  p . After mul-
tiplying and dividing the second term by   β   and introducing   v = β̂ β, the accep-
tance criterion can be rewritten as:
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  Table 6.4    Ratio of  v  0.95 / v  0.05  for Sample Size Selection 

    n     =     r       v  0.95 ( r ,  n )      v  0.05 ( r ,  n )       

v
v

0 95

0 05

.

.   

  20    1.450    0.798    1.81  
  25    1.374    0.8061    1.70  
  30    1.330    0.8206    1.62  
  35    1.300    0.8332    1.56  
  40    1.279    0.8410    1.52  
  45    1.251    0.8470    1.48  
  50    1.236    0.8990    1.45  

 The power of a hypothesis test is defi ned as the probability of correctly 
rejecting a hypothesis when it is false. The power curve is the complement of 
the OC curve; that is, it is a plot of 1    −     P  a  against the set of alternative param-
eter values. 
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 The probability  P  a  that the null hypothesis will be accepted is therefore the 
probability that
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 In this expression the dependence on  r ,  n , and  p  have been suppressed for 
simplicity of notation. The random variable  s , which depends on   α  ,  r ,  n , and  p , 
is defi ned as:

    s r n p
u r n p u r n p

v
α α, , ,

, , , ,
.( ) ≡ ( ) − ( )     (6.13)   
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point of the distribution of  s . From this, one may solve for ( x p  ) 1  as summarized 
in Table  6.5  for the two one - sided alternative hypotheses.   

 For the alternative ( x  p ) 1     <    ( x p  ) 0 ,
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 For the alternative ( x  p ) 1     >    ( x p  ) 0 ,
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 The distribution of  s (  α  ,  r ,  n ,  p ) must be determined by Monte Carlo simulation. 
Percentage points of  s (  α  ,  r ,  n ,  p ) are given in McCool  (1974)  for 17 combina-
tions of  n  and  r ,   α      =    0.10 and 0.90, and  p     =    0.10 and 0.50. Other cases can be 
determined using a combination of the software described in the next chapter 
and a spreadsheet like Excel or a statistical package. This process is described 
and illustrated in Section  7.4  of Chapter  7 . It is noted that the OC curve of a 
test on a Weibull quantile depends on the true but unknown value of   β  . In 
practice one must use a reasonable value obtained from experience for the 
purpose of selecting sample sizes. To be conservative one should err on the 
side of selecting smaller values of   β  . 

  Table 6.5    Relation between Acceptance Probability  P  a  and Alternative Values of 
the 100 p  - th Percentile 

   Alternative Hypothesis     Relationship between  P  a  and ( x p  ) 1   

  ( x p  ) 1     <    ( x p  ) 0   
  ( x P  ) 1     =    ( x P  ) 0  exp[ s P   a (  α  , r , n , p )/  β  ] or [( x P  ) 1 /

( x P  ) 0 ]   β       =    exp[ s P   a (  α  , r , n , p )]  

  ( x p  ) 1     >    ( x p  ) 0   
  ( x P  ) 1     =    ( x P  ) 0  exp[ s  1 −    P   a (1    −      α  , r , n , p )/  β  ] or [( x P  ) 1 /( x P  ) 0 ]   β       
=    exp[ s  1 −    P   a (1    −      α  , r , n , p )]  
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  Table 6.6    Percentage Points of  s (0.10,10,10,0.10) and 
Computation of  P  a  

   100 p  %    =     P  a       s (0.10,10,10,0.10)  
     ( )

exp[ ].

.

x
x

sPa
0 10 1

0 10 0( )
⎛

⎝
⎜

⎞

⎠
⎟ =

β

  

  1     − 1.943    0.143  
  2     − 1.832    0.160  
  5     − 1.652    0.192  

  10     − 1.487    0.226  
  20     − 1.268    0.281  
  30     − 1.104    0.332  
  40     − 0.9606    0.383  
  50     − 0.820    0.440  
  60     − 0.6607    0.517  
  70     − 0.5015    0.606  
  80     − 0.2924    0.747  
  90    0.000    1  
  95    0.2316    1.260  
  98    0.5360    1.71  
  99    0.7421    2.10  

 Table  6.6  gives 15 percentage points of  s (0.10,10,10,0.10). These are the 
values needed for determining the OC curve for a one - sided 10% level test of 
the hypothesis that  x  0.10     =    ( x  0.10 ) 0  against the one - sided alternative that 
 x  0.10     <    ( x  0.10 ) 0  using an uncensored sample of size  n     =     r     =    10.   

 The probability of acceptance is shown plotted in Figure  6.3 .    

     Figure 6.3     OC curve for one - sided test of  x  0.10     =    ( x  0.10 ) 0 .  

OC Curve: H0:x0.10 = (x0.10)0 vs. H1:x0.10 = (x0.10)1 < (x0.10)0

[(x0.10)1(x0.10)0]
b 
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 Finding the sample size to achieve a required level of discrimination will 
now be discussed. Column 3 of Table  6.7  gives values of the critical value of  u  
for conducting the test of H 0 :  x  0.50     =    ( x  0.50 ) 0  against the alternative H 1 : 
 x  0.50     <    ( x  0.50 ) 0  with   α      =    0.10 for 15 pairs of  r  and  n  values. Column 4 gives the 
value of the 90th percentile of  s (0.90, r , n ,0.50). The last column gives the ratio 
of the true to the hypothesized  x  0.50  for which  P  a     =    0.10, raised to the power   β  .   

    
  Table 6.7    Values of  u  0.90 ( r , n ,0.50) and   ( )

( )
.

.

x
x

0 50 1

0 50 0

⎡
⎣⎢

⎤
⎦⎥
b

 for  P  a     =    10%; H 1 :( x  0.50 ) 1     <    ( x  0.50 ) 0  

    r       n       u  0.90 ( r , n ,0.50)      s  0.90 (0.90, r , n ,0.50)  
     ( )

( )
.

.

x
x

0 50 1

0 50 0

⎡
⎣⎢

⎤
⎦⎥

β

  

  5    5     − 1.07     − 1.96    7.10  
  5    10     − 0.546     − 1.25    3.49  

  10    10     − 0.603     − 1.19    3.29  
  5    15     − 0.429     − 1.21    3.35  

  10    15     − 0.444     − 0.944    2.57  
  15    15     − 0.462     − 0.932    2.54  
  5    20     − 0.420     − 1.31    3.71  

  10    20     − 0.367     − 0.849    2.34  
  15    20     − 0.382     − 0.791    2.21  
  20    20     − 0.392     − 0.786    2.19  
  5    30     − 0.459     − 1.51    4.52  

  10    30     − 0.329     − 0.845    2.33  
  15    30     − 0.298     − 0.677    1.96  
  20    30     − 0.292     − 0.622    1.86  
  30    30     − 0.305     − 0.616    1.85  

 Example 
 An experimenter wishes to test the hypothesis that  x  0.50     =    100 against the one -
 sided alternative  x  0.50     >    100 at the 10% level of signifi cance. She does not wish 
to have more than a 10% risk of mistakenly accepting  x  0.50     =    100 if the true 
value of  x  0.50  were as great as 200. Find the required sample size assuming 
  β      =    1.5. 

 Using ( x  0.50 ) 0     =    100 and ( x  0.50 ) 1     =    200, one calculates,

   ( )
( )

. ..

.

.x
x

0 50 1

0 50 0

1 5200
100

2 82
⎡
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⎤
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= ⎡
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⎤
⎦⎥

=
β

  

 From Table  6.7 a  type II censored life test with  n     =    15,  r     =    10 is seen to be 
adequate although 10 failures out of 10 is not. What is generally true is that 
for a given value of  n , the discriminating power increases with  r . It appears 
from Table  6.7  that once  r / n  exceeds about 1/2, there is a diminishing return 
on additional failures with respect to discrimination on the 50th percentile. 
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   6.6    GOODNESS OF FIT 

   6.6.1    Completely Specifi ed Distribution 

 A probability plot is the fi rst line of defense against adopting the wrong model 
for a set of data. Minitab has a distribution identifi cation module that creates 
plots of the user ’ s data on up to 10 different grids corresponding to various 
alternative distributions. Obvious curvature in the plotted data may be taken 
as evidence against a given distribution. However, there are many formal tests 
of goodness of fi t, with a rich literature surrounding them. The book edited by 
D ’ Agostino and Stephens  (1986)  is a good guide to the subject and the litera-
ture prior to 1986. 

 The foremost test for goodness of fi t is the chi - square test covered in most 
introductory texts on statistics. This test is generally considered appropriate 
only for large samples and is not recommended for the range of sample sizes 
typically used in life testing. 

 More useful are the class of goodness - of - fi t tests referred to as empirical 
distribution function (EDF) tests. The EDF based on a complete ordered 
sample  x  (1)     <     x  (2)     <     x  (n)  is defi ned as:

   F x
i
n

x x xn i i( ) ; .( ) ( )≡ < < +1   

  F n  ( x ) is a staircase function having jumps of size 1/ n  at each successive ordered 
observed value of the random variable. The way to measure large discrepan-
cies between  F  n   ( x ) and a proposed cumulative distribution function (CDF) 
 F ( x ) is what differs among the various tests of the EDF class. The oldest EDF 
test is the Kolmogorov – Smirnov (K – S) test. (Kolmogorov,  1933 ; Smirnov, 
 1939 ). It is based on the absolute value of the largest difference  D  between 
 F n  ( x ) and some proposed completely specifi ed CDF  F  0 ( x ) over the range of  x  
values in the sample. 

 The null hypothesis in this test is,

    H0 0: ,F x F x( ) = ( )     (6.14)  

 Selecting between life test sample sizes that give nearly equivalent protec-
tion can be made on the basis of other considerations such as the relative cost 
of specimens and test time. 

 Assuming the experimenter chooses to test  n     =    15 specimens until  r     =    10 
failures occur, the test procedure will be to form the ML estimates   ̂ .x0 10 and   β̂  
and accept  x  0.50     =    100 if:

   ˆ ln
ˆ

. ..β x0 50

100
0 444⎛

⎝⎜
⎞
⎠⎟

< −   
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  and the alternative is

    H1 0: .F x F x( ) ≠ ( )     (6.15)   

 This test is applicable when  F  0 ( x ) is completely specifi ed, that is, both its form 
and its parameter values are set forth. An example might be  F  0 ( x )    =     W (  η      =    56.46, 
  β      =    1.3). The alternative hypothesis is that  F ( x ) is not equal to this specifi c 
distribution; that is,  F ( x ) is some other distribution, possibly even a member 
of the same family as the hypothesized distribution. Because of the generality 
of this alternative, some refer to tests of this type as  “ omnibus ”  tests. This is 
as opposed to the case where the hypothesized distribution is pitted against 
a specifi c alternative. We will consider a test of this type in Section  6.7  where 
the hypothesized distribution is Weibull and the alternative is lognormal and 
vice versa. In Section  6.3  we considered testing the null hypothesis that a 
data sample is exponentially distributed against the alternative that it is 
Weibull. 

 The value of  D  is readily computed in three stages. First compute  D   +   as:

    D
i
n

F x i
+ = − ( )⎡

⎣⎢
⎤
⎦⎥

max .( )0     (6.16)   

 Next compute  D   −   as:

    D F x
i

n
i

− = ( ) − −( )⎡
⎣⎢

⎤
⎦⎥

max .( )0
1

    (6.17)   

 The fi nal value  D  is then:

    D D D= + −max( , ).     (6.18)   

 A closely related variant of the K – S test is due to Kuiper  (1960) , who proposed 
the test statistic V, computed as:

    V D D= ++ −.     (6.19)   

 One - sided tests of whether the distribution exceeds or is smaller than the 
hypothesized distribution may be based on the distribution of D  +   or D  −  . Most 
usually the two - sided test based on  D  is conducted. If  F  0 ( x ) is the true distribu-
tion, then the distribution of  D  is the same no matter what the form of the 
true distribution is. In this sense the K – S test is said to be a nonparametric 
test. It does not depend on the parametric form of any specifi c distribution. 
Large values of  D  argue against the hypothesized distribution. Upper percent-
age points are taken to defi ne the acceptance region for the test. Critical values 
of  D  for various values of the type I error   α   are given compactly by Stephens 
as a constant  D  α   , which depends upon the desired type I error rate and which 
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is adjusted for sample size by dividing by the term   n
n

+ +⎛
⎝⎜

⎞
⎠⎟

0 12
0 11

.
.

 

(Stephens,  1974 ). He lists  D  0.05  as 1.358 so for a sample of size  n     =    10, the 
hypothesized distribution should be rejected at the 5% level of signifi cance if 
 D  is found to exceed 1.358/3.317    =    0.409. As noted, since the hypothesized 
distribution is completely specifi ed, the critical values of  D  do not depend on 
the form of the hypothesized distribution, be it normal, Weibull, or any other. 

   

 Example 
 As an example application of the K – S test for a completely specifi ed distribu-
tion we will compute the K – S test statistic for the data of Table  5.1 , which was 
generated by simulation from the Weibull population having   η      =    56.46 and 
  β      =    1.3. We will test to see if the data are consistent with this distribution. 

  Table 6.8    Computation of the Kolmogorov – Smirnov Test Statistic 

    x  (   i   )       i /10  
     F x

x
i

i( ) exp
.

( )
( )

.

= − − ⎡
⎣⎢

⎤
⎦⎥

1
56 46

1 3

  
    i /10 -  F ( x  (   i   ) )      F ( x  (   i   ) ) - ( i  - 1)/10  

  14.01    0.1    0.150702     − 0.050702    0.150702  
  15.38    0.2    0.168404    0.031596    0.068404  
  20.94    0.3    0.240752    0.059248    0.040752  
  29.44    0.4    0.348775    0.051225    0.048775  
  31.15    0.5    0.369703    0.130297     − 0.030297  
  36.72    0.6    0.435392    0.164608     − 0.064608  
  40.32    0.7    0.475613    0.224387     − 0.124387  
  48.61    0.8    0.560955    0.239045     − 0.139045  
  56.42    0.9    0.631782    0.268218     − 0.168218  
  56.97    1.0    0.636421    0.363579     − 0.263579  
               D   +      =    0.363579     D   −      =    0.150702  

 The sorted data are given in column 1 of Table  6.8  and the EDF is given in 
column 2. Column 3 shows the computed value of  F ( x ) at each observed 

sample value. Column 4 gives the computed values of   
i
n

F x i− ( )( )0  and column 

5 the computed values of   F x
i

n
i0

1
( )( ) − −( ) . The values of  D   +   and  D   −   are listed 

in the last row of columns 4 and 5, respectively. The test statistic  D  is then:

   D D D= = =( ) =+ −max . , . . .0 363579 0 150702 0 363579     

 Since  D  is less than 0.409, we cannot reject that the data came from this speci-
fi ed distribution at the 5% level of signifi cance. 
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 For type I and type II censored samples, modifi ed expressions for the K – S 
statistic and the associated tables of critical values are given in chapter  4  of 
D ’ Agostino and Stephens  (1986) .  

   6.6.2    Distribution Parameters Not Specifi ed 

 It will be rare for an experimenter to wish to test his or her data against a 
completely specifi ed distribution. A more likely question to ask of the data is 
whether they fi t a specifi ed form, regardless of the parameter values. An 
example is  “ do my data follow a Weibull distribution? ”  This is called a  “ com-
posite ”  hypothesis by many writers. The natural thing to do in this case is to 
fi rst estimate the parameters, substitute the estimates into the hypothesized 
distribution form and calculate the test statistic in the usual way. Unfortunately 
the critical values will change when this is done and their values will be specifi c 
to the form of the hypothesized distribution and the method used to estimate 
the parameters. Lilliefors  (1967)  was the fi rst to publish tables of the critical 
values of the K – S statistic for use in testing whether an uncensored sample is 
drawn from an exponential population using the ML estimate of its mean. 
Critical values for uncensored samples from the two parameter Weibull dis-
tribution with parameters estimated by the method of ML have been com-
puted by Littell et al.  (1979)  and Chandra et al.  (1981) . Evans, Johnson, and 
Greene (EJG; Evans et al., 1989) have extended these tables up to sample 
sizes as large as 400. They found that the critical values  D   α   for   α      =    0.01. 0.05 
and 0.10 are well approximated by the following functions of sample size:

    D
n

0 10 0 82645983
0 199103

. .
.= − ⎛

⎝⎜
⎞
⎠⎟

    (6.20)  

    D
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    (6.21)  
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0 01 1 04550210
0 282595

. .
.

.= − ⎛
⎝⎜

⎞
⎠⎟

    (6.22)   

 Repeating the calculation in Table  6.8  but using the estimated parameters 
  ˆ .η = 39 56 and   ˆ .β = 2 58 the test statistic  D  is computed to be 0.124158. The 5% 
level critical value for a sample of size  n     =    10 is computed from the expression 
above for  D  0.05  to be 0.828. Since 0.124    <    0.828 one cannot reject the hypothesis 
that the data are Weibull distributed. 

 Competing with the K – S test are members of the class of tests based on the 
squared difference between  F n  ( x ) and  F  0 ( x ) over the range of  x  and weighted 
in various ways. These include the Cramer – von Mises W 2 , Watson ’ s U 2 , and 
the Anderson – Darling (AD) A 2  tests. 

 Littell et al.  (1979)  have studied fi ve goodness - of - fi t tests of the null hypoth-
esis that  F ( x ) is of Weibull form based on ML - estimated Weibull parameters 
using simulated uncensored samples randomly drawn from six non - Weibull 
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distributions. The proportion of times a test correctly rejects that the data came 
from a Weibull population is a measure of the power of the test. On this basis 
Littell et al. recommend A 2  and U 2  as the best overall choices. Wozniak  (1994)  
used simulation to assess the power of fi ve EDF - based tests including D, A 2 , 
and W 2  using parameters estimated by ML as well as by two other techniques. 
She recommends W 2  and A 2  as more powerful than the other three. 

 Evans, Johnson, and Greene evaluated three goodness - of - fi t tests namely, 
D, A 2 , and another non - EDF – based test employing correlation that they call 
Rwe, for testing the two - parameter Weibull. They used complete samples and 
parameters estimated by the ML method. They concluded that A 2  was most 
powerful when tested against four alternative distributions. Weibull probabil-
ity plots computed using the Minitab software include the value of A 2  com-
puted using the ML estimates. 

 The computing formula for A 2  in uncensored samples is:

    A
n

i U U ni n i

i

n
2

1

1

1
2 1= − −( ) +[ ] −( ) + −( )

=
∑ ln ln     (6.23)  
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 Pettitt and Stephens  (1974)  proposed the following alternative form when the 
sample is type II censored at the  r  - th order statistic:
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 In the completely specifi ed case when   η   and   β   are the hypothesized true 
parameter values, the quantities  U  (   i   )  become order statistics from the uniform 
distribution when the hypothesis is true. When the parameters are estimated, 
however, they are no longer uniform order statistics and hence simulation 
must be used to fi nd the distribution of A 2 . Critical values   Aα

2 valid when the 
distribution is completely specifi ed as given by Stephens are independent of 
 n  provided  n     >    5. The critical values in Table  6.9  are extracted from Stephens ’  
 (1974)  tables.   

 When the parameters are estimated by the ML method, the critical values 
do depend on sample size. The values in Table  6.10 , valid for complete samples 
of size  n , are excerpted from Evans et al. (1989).   
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  Table 6.10     EJG  Critical Values of A 2  for Weibull 
Parameters Estimated by  ML  Uncensored Samples 

    n        α      =    0.10       α      =    0.05       α      =    0.01  

  10    0.6171    0.7277    0.9878  
  15    0.6222    0.7372    1.0065  
  20    0.6265    0.7433    1.012  
  25    0.6236    0.7458    1.0179  
  30    0.6302    0.7489    1.0235  
  40    0.6320    0.7550    1.0362  
  50    0.6336    0.7559    1.0405  

  Table 6.9    Critical Values of  AD  Statistic Completely 
Specifi ed Uncensored Samples 

     Aα
2      1.933     2.492     3.857  

    α      0.10    0.05    0.01  

 Example 
 Table  6.11  again shows the ordered, uncensored sample data that we have been 
using in all of our examples. Column 3 lists the values of  U  (   i   )  computed as:

   U
x

i
i

( )

.

exp
.

.= − ⎡
⎣⎢

⎤
⎦⎥

( )1
56 46

1 3

    

 The next column gives  U  (   n    − i + 1) . This column is just column 3 sorted in descending

order. Row  i  of column 4 contains   − −( ) + −( ) − +( )
1

2 1 1 1
n

i U Ui n i{ln ln( }) . 

  Table 6.11    Sample Calculation of  AD  Statistic Uncensored Completely 
Specifi ed Case 

  Order  

    X  (i)       U  (   i   )       U  (   n    −    i    + 1)       − (2 i     −    1)[ln U  (   i   )     +    ln(1    −    U (   n    +    i    − 1) )]/10      i   

  1    14.01    0.150702    0.636421    0.2904208913  
  2    15.38    0.168404    0.631782    0.8341410734  
  3    20.94    0.240752    0.560955    1.123569658  
  4    29.44    0.348775    0.475613    1.189197975  
  5    31.15    0.369703    0.435392    1.410010676  
  6    36.72    0.435392    0.369703    1.422380007  
  7    40.32    0.475613    0.348775    1.523665365  
  8    48.61    0.560955    0.240752    1.280313832  
  9    56.42    0.631782    0.168404    1.094153467  

  10    56.97    0.636421    0.150702    1.168956486  
                  11.33680943  
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   6.6.3    Censored Samples 

 Most of the work on the censored case applies when the hypothesized distribu-
tion is completely specifi ed. Barr and Davidson  (1973)  give critical values of 
the K – S statistic applicable to type I and type II censoring when the distribu-
tion is completely specifi ed. Guilbaud  (1988)  outlines a K – S approach to the 
multiply censored case based on the Kaplan – Meier product limit estimate of 
the distribution function. Hollander and Proschan  (1979)  suggest another 
approach to a multiply censored completely specifi ed goodness - of - fi t test. 
Koziol  (1980)  considered versions of the K – S and W 2  statistics for multiply 
censored data. 

 Michael and Schucany  (1984)  propose a method for modifying singly right 
censored data so that uncensored completely specifi ed techniques can be 
applied. Stephens (D ’ Agostino and Stephens,  1986 ) offers a modifi ed form of 
the A 2  computing formulas for singly type I or type II right censoring and gives 
critical values for the completely specifi ed hypothesis as a function of sample 
size  n , censoring fraction  r / n , and type I error probability   α  . 

 For the composite case, Aho, Bain et al. provide tables of critical values for 
the K – S, Cramer – von Mises, and Kuiper tests for singly right censored data 
(Aho et al.,  1983, 1985 ). 

 Wozniak and Li  (1990)  offer tables of critical values for a 5% level test 
using ML parameter estimates with single right censoring.  

 The test statistic A 2  is the sum of the values in the last column minus the 
sample size  n     =    10 or 1.337. This is not signifi cant at the 5% level since 
 A  2     <    2.492 the 5% critical value given by Stephens for a completely specifi ed 
distribution. 

 Repeating the calculation using the estimated parameter values   ˆ .β = 2 581 
and   ˆ .η = 39 56 gives an  A  2  value of 0.261, which is less than the 5% critical 
value, 0.7277, from the EJG table excerpt listed in Table  6.10 , applicable when 
the parameters are estimated using the ML method. 

 The results show that we cannot reject either that the data are from a 
Weibull population or that the data come from the specifi c population 
 W (56.46, 1.3). 

   6.6.4    The Program  ADS tat 

 Recently, Mehta  (2010)  developed software for computing the null distribu-
tion of the AD statistic for censored and uncensored samples when the null 
distribution is the two - parameter Weibull distribution with the parameters 
either specifi ed or estimated by the ML method. The software is written in 
Visual Basic and has been dubbed ADStat. It may be downloaded from the 
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Figure 6.4     Output of ADStat for the completely specifi ed case  n     =     r     =    10.  

author ’ s website along with a Readme fi le containing operating instructions. 
The software is based on simulating 10,000 type II censored samples with 
user - specifi ed values of  n  and  r . The 10,000 values are drawn from the Weibull 
population W (1,1). For the completely specifi ed case the AD statistic is com-
puted for each of the 10,000 samples using β     =     η     =    1. For the unspecifi ed or 
composite case the AD statistic is computed after estimating β  and  η  by the 
ML method for each of the 10,000 samples. In either case the 10,000 values 
of the AD statistic are sorted and 20 percentage points are displayed. The 
software is also capable of computing the AD statistic for a user ’ s data 
sample. 

 Figure  6.4  shows the program output for the data in Table  5.1  when the 
Weibull population is completely specifi ed as  W (56.46,1.3). The value of the 
AD statistic is calculated to be 1.33681 as shown on the bottom right - hand 
side of Figure  6.4 . This value agrees with the value found in the manual cal-
culation in Table  6.11 . Entering this value in the text box on the upper right 
shows that the p  value is 0.2155 so the hypothesis that the data were drawn 
from the population W (56.46,1.3) cannot be rejected. Note that the 95th per-
centile of the distribution of the AD statistic is 2.508, consistent with the value 
2.492 proposed by Stephens and given in Table  6.9 .   
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Figure 6.5     Output of ADStat for the unspecifi ed case  n     =     r     =    10.  

 Running the program again with the same data sample but using the 
unspecifi ed option results in the screen shown as Figure  6.5 . The ML estimates 
of the scale and shape parameters and the computed AD statistic are shown 
on the right of the screen. Again, entering the AD test statistic in the text box 
on the upper right of the screen gives the p  value of 0.7375. The hypothesis 
that the data follow a two - parameter distribution cannot be rejected. The AD 
statistic agrees with the value computed manually with the estimated param-
eters substituted for the population values in Table  6.11 . The 95th percentile 
of the distribution of the AD statistic, 0.736, agrees well with the value 0.7277 
determined by EJG and given in Table  6.10 .   

 Table  6.12  shows some comparisons between the program output and the 
published values of Wozniak and Li for the unspecifi ed case for various values 
of n  and the censoring fraction  r / n . Wozniak and Li also used 10,000 simulated 
samples. The differences exhibited are consistent with the variability found in 
repeat runs of ADStat. A user of ADStat is advised to run it several times to 
gauge the variability in the computed percentage points, particularly if the 
sample size is small and there is appreciable censoring.   
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  Table 6.12    Comparison with 95th Percentile Values of Wozniak and Li, Unspecifi ed 
Case, Censored Samples 

r / n    0.4    0.6    0.8    1.0

n
   Wozniak 
and Li     ADStat  

   Wozniak 
and Li     ADStat  

   Wozniak 
and Li     ADStat  

   Wozniak 
and Li     ADStat  

  10        0.2220    0.3598    0.3500    0.5043    0.5130    0.7276    0.7260  
  20    0.2393    0.2310    0.3610    0.3630    0.5144    0.5060    0.7411    0.7340  
  30    0.2373    0.2280    0.3650    0.365    0.5172    0.5110    0.7461    0.7400  
  40    0.2316    0.2370    0.3640    0.364    0.5131    0.5188    0.7441    0.7530  
  50    0.2364    0.2320    0.3627    0.367    0.5227    0.5113    0.7394    0.7520  

  Table 6.13    Comparison with 95 th  Percentile Values of Evans, Johnson, and Green 
Unspecifi ed Case Uncensored Samples 

n    Evans, Johnson, and Green     Wozniak and Li     ADStat  

  10   0.7277   0.7276   0.7260
  20   0.7433   0.7411   0.7340
  30   0.7489   0.7461   0.7400
  40   0.7550   0.7441   0.7530
  50   0.7559   0.7394   0.7520

 Table  6.13  compares the computed 95th percentiles computed by Evans, 
Johnson, and Green, Wozniak and Li, and ADstat for uncensored samples in 
the unspecifi ed case. The values computed by EJG were based on 50,000 rep-
lications and are likely to be more precise than the other two. In any case, the 
comparisons affi rm that ADStat is consistent with other published values. 
Again, the user is advised to run the software a number of times to gauge the 
variability in the computed percentage points.     

   6.7    LOGNORMAL VERSUS WEIBULL 

 With a small data sample it is diffi cult to distinguish between a Weibull distri-
bution and a lognormal distribution. Both are employed as life distribution 
models, but the consequences of erroneously choosing between them can be 
grave. In the lognormal case the natural logarithm of the random variable 
follows a normal distribution with a mean μ  and standard deviation  σ . The 
natural logarithm of a Weibull - distributed random variable follows the extreme 
value distribution with mean and variance related to the Weibull parameters 
as follows:

μ η γ
β

= −ln  (6.26)
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     Figure 6.6     Lognormal sample plotted on Weibull grid.  
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 where   γ      =    0.5772 is Euler ’ s constant. For a Weibull random variable having 
  η      =    56.46 and   β      =    1.3, the mean and standard deviation of the logarithm of 
this Weibull variable is   μ      =    3.59 and   σ      =    0.987. A normal random sample 
of size 10 having this mean and standard deviation was generated and then 
exponentiated to give the corresponding lognormal sample. These data plotted 
on a Weibull grid are shown in Figure  6.6 .   

 The data show no systematic departure from a straight line and the A 2  
statistic of 0.259 is well below the critical value at the 10% level for a sample 
of size 10 with estimated parameters. 

 It is instructive to compare the percentiles of a Weibull distribution with 
the percentiles computed under the lognormal model having the same mean 
and standard deviation as the Weibull. 

 It is recalled that for the Weibull model the 100 p  - th percentile expressed 
in terms of its parameters is:

    ( ) ln .x
p

p W =
−

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

η
β1

1

1

    (6.28)   

 The 100 p  - th percentile for the lognormal is:

    ( ) exp[ ]x zp L p= + ⋅μ σ     (6.29)  
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  where  z p   is the 100 p  - th percentile of the standard normal distribution. Substi-
tuting for   μ   and   σ   in terms of the Weibull parameters and simplifying gives:

    ( ) exp .x

z

p L

p

=
−⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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η

π γ

β
6     (6.30)   

 The ratio  R ( p ) of the lognormal to the Weibull percentile is:

   R p
x
x

z
p

p L

p W
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 A plot of the ratio[ R ( p )]   β    as a function of  p  is shown in Figure  6.7 .   

     Figure 6.7     Ratio of lognormal to Weibull percentiles versus  p .  
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 The high and low percentiles for the lognormal are much larger than those 
for the corresponding Weibull model. The extremes become larger as the scale 
parameter  β   decreases. This plot teaches that if a Weibull model were mistak-
enly taken as lognormal the predicted values of the low percentage points, that 
is, the life associated with high reliability, will be overstated. 

 Dumonceaux and Antle used the ratio of the maximized likelihood (ML) 
under the two models as the basis for discriminating between them in uncen-
sored samples. (Dumonceaux and Antle,  1973 ; Dumonceaux et al.,  1973 ). Sub-
sequently Antle and Klimko  (1973)  showed that the ratio of the ML estimates 
of the scale parameters of the distribution of the logarithms under the two 
models was simpler to compute and had comparable power. 
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 Taking logarithms of the data, the ML estimate   σ̂  of the scale parameter is 
computed in terms of the logarithms of the data as:

    ˆ [ ]
.σ = − = −⎡

⎣⎢
⎤
⎦⎥=

∑ z z
n

n
n

si

i

n

z

2

1

1
1
2

    (6.31)   

 The uncorrected ML estimate of   σ   is computed with a denominator  n  
and not the usual  n     −    1. The ordinary standard deviation must therefore be 

corrected by multiplying by the factor   n
n
−⎡

⎣⎢
⎤
⎦⎥

1 1 2/

. 

 The ML estimate of the scale parameter of the extreme value distribution 
is the reciprocal of the ML estimate of the Weibull shape parameter.

    ˆ
ˆ .ξ

β
= 1

    (6.32)   

 To test H 0 : Weibull versus H 1 : Lognormal, the test statistic is   
ˆ

ˆ
ˆ ˆξ

σ
σβ= ( )−1. On 

the other hand, if the null hypothesis is H 0 : Lognormal versus H 1 : Weibull, the 
test statistic is   ˆ ˆ .σβ( )  

 The critical values of   ˆ ˆσβ( )−1
 for testing at signifi cance levels   α      =    0.05 and 

0.10 are excerpted below for  n  ranging from 20 to 50 in increments of 10. 
     

        20     30     40     50  

    α      =    0.05    0.9600    0.9315    0.9105    0.899  
    α      =    0.10    0.9254    0.9022    0.8847    0.8752  

 The critical values of   ˆ ˆσβ( ) are given below: 
     
        20     30     40     50  

    α      =    0.05    1.262    1.216    1.187    1.166  
    α      =    0.10    1.212    1.177    1.152    1.135  

 The determination of which to choose as the null hypothesis depends upon 
which model corresponds to  “ business as usual. ”  In the bearing industry 
the inclination would be to assume the Weibull distribution unless the 
data dictated otherwise and so the Weibull would be a null hypothesized 
distribution. 

 Another approach to distinguishing between a Weibull and a lognormal 
distribution due to Kappenman  (1988)  is framed as a selection problem rather 
than a hypothesis testing problem. The experimenter is viewed as having no 
basis for preferring one or the other distribution. A value  r  is calculated, and 
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if  r     >     k , choose the lognormal. If  r     <     k  the Weibull is chosen. The quantity  r  is 
computed as follows:

    r
A A
A A

= −
−

3 2

2 1

.     (6.33)   

  A  1  is the average of the lower 5% of the ordered logarithms and  A  3  is the 
average of the upper 5%.  A  2  is the average of what remains after the lower and 
upper 20% are discarded. Kappenman chooses  k     =    0.7477 for all sample sizes. 

 The basis for the test is the difference in shape of the extreme value distri-
bution followed by the logarithms of Weibull data and the normal distribution 
followed by the logarithms of lognormal data. The normal distribution is sym-
metrical so the numerator and denominator of r will tend to be similar for 
lognormal data. The extreme value distribution is shown in Figure  6.8  for a 
location parameter of zero and a scale parameter of 1.0. The basic left skewed 
shape is the same regardless of the parameter values.   

     Figure 6.8     Standardized distribution of smallest extremes.  
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 It is clear that because of this skewness,  A  3  –  A  2  will be less than  A  2  –  A  1  and 
therefore  r  will tend to be less than 1.0. 

 In computing the  A  values, Kappenman uses fractional values when the 
indicated fractions are not integers. For example, with a sample size of 30,  A  1  
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is the average of the fi rst 0.05    ×    30    =    1.5 ordered logarithms.  A  1  is then com-
puted as:

   A
z z

1
1 20 5

1 5
=

+( .

.

)( ) ( )

  

 Similarly  A  3  would be calculated as:

   A
z z

3
30 290 5

1 5
=

+( . )

.
( ) ( )

  

 And  A  2  would be computed after discarding the 0.2    ×    30    =    6 upper and lower 
order statistics:

   A zi

i

2

7

241
18

=
=
∑ .   

 Kappenman claims that in samples of size 50, 90% of the samples would be 
correctly identifi ed as to whether they are lognormal or Weibull using his 
method. For samples of size 20 the corresponding percentage is 77% and for 
samples of size 30 it is 83%. 
     

 Example 
 A complete random sample of size 30 was generated from a normal distribu-
tion having   μ      =    3.59 and   σ      =    0.987. This is the mean and standard deviation of 
the distribution of the logarithms of a Weibull population having   η      =    56.46 
and   β      =    1.3. These values were exponentiated and the Weibull parameters 
were estimated even though this sample is lognormal. The value of the AD 
statistic A 2  was computed to be 0.753, which is larger than 0.7489, the largest 
of the three computed critical values in Table  6.13  for  n     =    30 and   α      =    0.05. 
Thus, the AD test invites skepticism of the Weibull model for this data. 

 The Weibull parameters were estimated to be   ˆ .β = 1 064 and   ˆ .η = 61 75. The 
logarithms of the sorted data are tabled below: 

  1.4171126    2.8473605    3.138776    3.6917256    3.9947116    4.5138741  
  2.429432    2.8856396    3.1792441    3.7922064    4.2446643    4.615145  
  2.5617789    3.0469363    3.3558955    3.8552721    4.2881964    4.9614991  
  2.6524817    3.0654405    3.5946731    3.8881352    4.295375    5.5373569  
  2.8297682    3.1045878    3.6295689    3.9605876    4.4814342    5.7385071  

 The corrected value of   ˆ .σ = 0 925. Taking the null hypothesis as the Weibull, 
the test statistic is:

   ˆ ˆ
. .

. .σβ( ) =
×

=
−1 1

1 064 0 925
1 016   
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 This exceeds the critical value of 0.9315 from Antle and Klimko ’ s table for 
 n     =    30 with   α      =    0.05. Thus, the Weibull is rejected in favor of the lognormal. 

 The values of  A  1  and  A  3  are:

   A1 1 4171126 0 5 2 429432 1 5 1 754= + × =( . . . ) / . .  

   
A3

5 7385071 0 5 5 5373569
1 5

5 479504= + × =. . .
.

. .
  

  A  2  is calculated to be 3.36168. The value of Kappenman ’ s  r  is then:

   r = −
−

=5 4795 3 3617
3 3617 1 754

1 317
. .
. .

. .   

 Since  r  exceeds  k     =    0.7477, the lognormal is chosen. The tests are in agreement 
that this data sample is not Weibull. 

 Suppose the null hypothesis was that the sample came from a lognormal 
distribution. The test statistic in this case is   ˆ ˆ / . .σβ( ) = =1 0 9858 1 014. From the 
second set of Antle and Klimko ’ s tables above, the critical value for  n     =    30 
and   α      =    0.05 is 1.216. Since 1.014    <    1.216, we cannot reject the null hypothesis 
that the data are lognormally distributed. 

 The tests pitting the Weibull and lognormal against each other are more 
powerful than the AD test in this case. This is not surprising since the AD test 
is pitting the Weibull against all other distributions and not just against a single 
distribution. 
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  14.6375    66.9203    68.4248    69.2899    71.8208  
  77.4557    94.8249    100.317    101.453    104.603  

 EXERCISES 

1.    For a test of H 0 :  β     =    2.0, against the alternative H 1 :  β     <    2.0, fi nd the value 
of β  corresponding to  Pa     =    0.10 when using  α     =    0.10, with an uncensored 
sample size of n     =    20.   

2.    For an uncensored sample of size 10 and  α     =    0.10 in a test of the hypothesis 
H0 :  x0.10     =    100 against the alternative H 1 :  x0.10     <    100, fi nd the value of  x0.10  for 
which Pa     =    0.10. Assume the true value of  β  is 2.0.   

3.    For the same hypothesis and shape parameter as in exercise 2, determine 
the sample size for which Pa     =    0.10 when  x0.10     =    ( x0.10 ) 1     =    56.9.   

4.    The following uncensored sample of size 10, repeated from exercise 2 in 
Chapter  5 , was randomly drawn from  W (100,2). 

 Compute the ML estimate of  β  and use it to test H 0     =    1.0 against the 
two - sided alternative using   α      =    0.05.   

5.    Use the data sample in exercise 4 and compute the AD statistic to assess 
whether the sample came from the completely specifi ed distribution 
W (100,2).

a.     Using the ML estimates of  η  and  β , compute the AD test statistic to 
assess whether the sample was drawn from a Weibull distribution irre-
spective of the parameter values.  

b.     Using ADStat, determine the critical value for the AD statistics in the 
two cases using a 10% level of signifi cance.      

6.    Using the sample in problem 4, test whether the sample comes from a 
Weibull population against the alternative that it comes from a lognormal 
population, using Antle and Klimko ’ s test.    
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The Program Pivotal.exe     

     As mentioned in Section  5.6.3 , a software program named Pivotal.exe has been 
developed for computing the distribution of pivotal functions needed for the 
construction of confi dence intervals and hypothesis tests related to the shape 
parameter and percentiles of the two - parameter Weibull distribution based on 
complete or type II censored samples. The program is general enough to 
include the pivotal functions applicable to series systems of m  identical com-
ponents so that inferences may be made about the system characteristics in 
terms of the characteristics of the independent identical components compris-
ing the system. This generalization is discussed in Section  7.2 . The distribution 
of the pivotal functions discussed previously are obtained for the special case 
that m     =    1. This generalization to the series framework can be further exploited 
for analyzing sudden death tests as we will show in Section  7.6 . Another 
program option lets the user name, and write to a text fi le, the values of the 
maximum likelihood (ML) shape and scale parameters computed from 10,000 
type II censored Weibull samples of user - specifi ed sample size  n  and number 
of failures r . These values are generated from populations having true  η  and 
β  values of 1. They are used within the program to construct and sort 10,000 
values of the pivotal quantity u ( r ,  n ,  p ,  m ) as discussed below. The distribution 
of the pivotal quantity v ( r ,  n ) is directly obtained by sorting the 10,000 values 
of the ML estimates of the shape parameter since the true β  is equal to 1. 
These output values can be imported into a spreadsheet or statistical package 
such as Minitab and modifi ed to permit the computation of prediction inter-
vals, confi dence limits on reliability, and operating characteristic (OC) curves 
for the hypothesis tests discussed in Section  6.3 . These further applications will 
be described and illustrated in Sections  7.3  to  7.5 . 

 A zipped copy of the software and a readme fi le may be downloaded from 
the author ’ s website. The input screen appears as follows: 

Using the Weibull Distribution: Reliability, Modeling, and Inference, First Edition. John I. McCool.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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 This screen shows the input for a single component system ( m     =    1) for a 
type II censored sample of size 20 with r     =    15. For this run, the scale parameter, 
which is the 0.632 quantile, was of interest so  p     =    0.632 is input. The program 
simulates 10,000 samples of the specifi ed size and censoring amount using 
population parameters β     =     η     =    1. An output fi le named  “ shapescale ”  is speci-
fi ed in the case illustrated. The fi le name is the user ’ s choice. A text fi le named 
shapescale.txt will be written to the directory where the program resides. An 
alternate path may be specifi ed if convenient. This fi le will contain the 10,000 
values of the estimated scale and shape parameters and may be processed 
further to obtain other useful results as discussed subsequently. 

 A short table excerpt of the output as captured in an Excel spreadsheet is 
shown in Table  7.1 .   

 The results screen shown in Figure  7.2  lists 20 standard values of the per-
centage points of u (15, 20, 0.632) and  v (15, 20) corresponding to the input 
shown in Figure  7.1 . If some other nonstandard percentage point is needed, it 
may be entered in the dialog box on the upper right of the screen. In this case, 
0.55 is entered and the resultant quantiles of u  and  v  are shown in Figure  7.2 . 
The user may write the result screen to a text fi le for record keeping or inclu-
sion in a document. In Figure  7.2  this fi le was given the name pivotalpercent-
points.txt.   

Figure 7.1     Input screen for Pivotal.exe for  m     =    1,  n     =    20,  r     =    15, and  p     =    0.632.  
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  Table 7.1    Sample Text File Output of 
Pivotal.exe 

     β̂        η̂  

  0.801503    0.783556  
  1.339761    1.291463  
  1.234625    0.989331  
  0.757292    1.144527  
  1.885939    0.982971  
  1.071219    1.033692  
  1.347778    0.800993  
  1.14115    0.953514  
  0.862079    0.947985  
  1.821859    0.834359  

     Figure 7.2     Output screen corresponding to the input screen of Figure  7.1 .  

 As shown by Equation  7.6  in section  7.1 , the pivotal function needed for 
inference on a quantile  x q   is related to the pivotal function for quantile  x p  . The 
software exploits this relationship. Having computed 10,000 values of  v  and  u  
for some  p , it is easy to recalculate  u  for another quantile by computing this 
new function of the  u ’ s  and  v ’ s . This is the basis for the further option to use 
the same simulation results for a rapid computation of  u ( r ,  n ,  p ,  m ) for two 
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additional values of  p . For example,  p  1     =    0.1 and  p  2     =    0.5 in the case shown in 
Figure  7.2 . 

 We now consider the relationship between the pivotal function for the 
100 p  - th percentile  x p   and that for some other percentile, say,  x  q .  

   7.1    RELATIONSHIP AMONG QUANTILES 

 Recall that the 100 p  - th percentile is related to the Weibull parameters as:

    x kp p= 1/ βη     (7.1)  

  where

    k pp ≡ − −( )ln .1     (7.2)   

 The estimate of  x  p  is given by the same expression but with the parameters 
denoted as estimates and bearing a caret. The ratio of the estimated to the 
true value of  x p   is:

    
ˆ ˆ

.ˆ -x
x

kp

p
p= ⋅
1 1

β β η
η

    (7.3)   

 So that  u ( r ,  n ,  p ) can be expressed as:

    u r n p
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 Writing Equation  7.4  for another quantile  x q  :

    u r n q v kq, , ln( ) = −( ) + ⎛
⎝⎜

⎞
⎠⎟

1 ˆ ln
ˆ

.β η
η

    (7.5)   

 Solving Equation  7.4  for   ˆ ln
ˆ

β η
η

⎛
⎝⎜

⎞
⎠⎟
 in terms of  u ( r ,  n ,  p ) and substituting into 

Equation  7.5  gives, after rearrangement,

    u r n q v
k
k

u r n pq

p

, , ln , , .( ) = −( ) ⎛

⎝
⎜

⎞

⎠
⎟ + ( )1     (7.6)   

 The pivotal function needed for inference on quantile  x q   is thus related to the 
pivotal function for quantile  x p  . As noted, the software exploits this 
relationship. Having computed 10,000 values of  v  and  u  for some  p , it is easy 
to recalculate  u  for another  q  by computing this new function of the  u ’ s  
and  v ’ s .  
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   7.2    SERIES SYSTEMS 

 Consider a series system of  m  components each of which has an independent 
lifetime distribution that follows  W (  η  ,   β  ). The life,  y , of the system is the 
minimum of the component lives  x  1 ,  x  2 ,    . . .    ,  x m   and was shown in Section  3.2  
to follow the distribution  W ( m   − 1/    β   η  ,   β  ). 

 The  p  - th quantile  y p   of the series system is thus expressible in terms of the 
 p  - th quantile  x p   of a component:

    y m xp p= ⋅−1/ .β     (7.7)   

 Similarly, from an ML estimate   x̂p of the p - th quantile of the component, one 
may estimate  y p   as:

    ˆ ˆ ./ ˆ
y m xp p= −1 β     (7.8)   

 Thus for the series system,

    u r n p m
y

y
m x m xp

p
p p, , ,( ) =

⎛
⎝⎜

⎞
⎠⎟

= ( ) − ( )⎡⎣ ⎤⎦
− −ˆ ln

ˆ ˆ ln ˆ ln/ ˆ /β β β β1 1 ..     (7.9)   

 Rearranging,

    u r n p m v m u r n p, , , ln , , .( ) = −( ) ( ) + ( )1     (7.10)   

 Equation  7.10  defi nes a generalized version of  u ( r ,  n ,  p ) to account for system 
size  m . For  m     =    1,  u ( r ,  n ,  p ,  m ) reduces to  u ( r ,  n ,  p ). We will continue to use 
the notation  u ( r ,  n ,  p ) when it is clear from the context that  m     =    1. The random 
variable  u ( r ,  n ,  p ,  m ) is a function of pivotal functions and so, is itself, pivotal. 
Analogous to Equation  5.51 , percentage points of  u ( r ,  n ,  p ,  m ) may be used to 
set confi dence limits on the  p  - th quantile of a series system when that system ’ s 
estimate of the  p  - th quantile is computed from the corresponding quantile of 
the component by multiplying by   m−1 β̂  .

 Comparing Equations  7.6  and  7.10 , it is seen that  u ( r ,  n ,  p ,  m ) may alter-
nately be computed as  u ( r ,  n ,  q ) after determining  q  so as to satisfy:

    m
k
k

p

q

= .     (7.11)   

 Using the defi ning relations for  k p   and  k q   and simplifying gives:

    q p m= − −1 1 1( ) ./     (7.12)   
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   7.3    CONFIDENCE LIMITS ON RELIABILITY 

  T he reliability at life  x  under the two - parameter Weibull model is:

    R x
x( ) = −⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥exp .

η

β

    (7.13)   

 Example 
 A housing contains  m     =    6 equally loaded, identical radial ball bearings. A type 
II censored life test with  n     =    20 and  r     =    15 was conducted on the bearings. The 
ML estimates of the  x  0.50  life and shape parameter were 65.2 million revolu-
tions and 1.2, respectively. Set 90% confi dence limits on the median housing 
life. 

 The estimated median of the housing life is:

   ˆ . . ..
/ .y0 50

1 1 26 65 2 20 54= × =−   

 Running Pivotal.exe with  n     =    20,  r     =    15, and  m     =    6, the following percentage 
points were obtained:

   
u u

u
0 05 0 50

0 95

15 20 0 50 6 15 20 0 50 6

1

0 670 0 113. .

.

( , , . , ) ( , , . , )

(

. .= − =
55 20 0 50 6 1 363, , . , ) . .=

  

 Using these values, the confi dence limits are computed in the usual way:

   6 60 20 54 20 54 35 901 363 1 2
0 50

0 670 1 2. . . . .. / .
.

. / .= < < =−e y e   

 The median unbiased estimate of  y  0.50  is:

   ˆ . ..

.
.′ = =

−
y e0 50

0 113
1 220 54 18 69   

 As noted, the percentage points used in this calculation could have been 
obtained with  m     =    1 if the software had been run with the percentile of interest 
taken to be  x q   with  q     =    1    −    (1    −    0.5) 1/6     =    0.109.  It might at fi rst be thought that 
one could compute a confi dence interval for  y  0.50  by fi rst computing a confi -
dence interval with the same confi dence coeffi cient for  x  0.50  and then multiply-
ing both ends of the interval by   m−1 β̂ . This is incorrect and understates the 
variability in the system percentile. The interval that would be computed in 
this manner in the present example is (9.68, 22.2) and is considerably tighter 
than the correct interval. 
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 An estimate of the reliability at life  x  may be computed by substituting the 
ML estimates for the parameters.

    ˆ exp
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ˆ
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    (7.14)   

 Solving Equation  7.13  for ln x  in terms of the true reliability  R  results in:

    ln ln ln ln .x
R

= ⎛
⎝⎜

⎞
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+1 1
β

η     (7.15)   

 Taking logarithms twice transforms the expression in Equation  7.14  to:

    lnln
1
ˆ

ˆ ln ˆ ln ˆ.
R

x⎛
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= +β β η     (7.16)   

 Now substituting the expression for ln x  in Equation  7.15  into Equation  7.16  
and simplifying results in:
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    (7.17)   

 The right - hand side of Equation  7.17  involves the pivotal functions  v , 

  ˆ ln
ˆ

β η
η

⎛
⎝⎜

⎞
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 and the true reliability value  R . For a specifi ed value of true reliability  

R , one can simulate the distribution of the right - hand side. These values can 
then be transformed to give values of   R̂. This distribution of   R̂ will be contin-
gent on the true value of  R . Repeating for other values of  R  one will generate 
the family of distributions we might designate   f R Rˆ |( ). A graph of suitable 
upper and lower limits of   ˆ |R R can then be plotted and the plots used to gen-
erate confi dence intervals for  R  based on an observed value of   R̂. Using the 
output option of the program Pivotal.exe and importing the output into the 
fi rst two columns of a spreadsheet, the right - hand side of the expression above 
can be computed more simply as follows since the population values of the 
Weibull parameters are unity:

    lnln lnln ln
1 1
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R R
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 With   β̂  and   η̂ in the fi rst two columns of a spreadsheet and a chosen value of 
true reliability  R , one can compute the right - hand side and insert it into 
column 3. The values in column 3 are then exponentiated twice to give 10,000 

values of   
1

R̂
. Finally the reciprocal of these values is taken and sorted to yield 

the distribution of   ˆ |R R for whatever value of  R  was used in the computation. 
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The 500th value from the bottom is an estimate of the 5% point of the distri-
bution of   ˆ |R R. Likewise the 9500th sorted value estimates the 95th percentile. 
The table below shows the value of these percentiles as  R  varies from 10% to 
95% for a type II censored sample of size  n     =    20 with  r     =    15. The sequence of 
computations can be formed into a macro. Only the value of the true reliability 
 R  varies between computations. 

     

    R        ˆ .R0 05        ˆ .R0 95   

  10    1    24.5  
  15    3.02    31.2  
  20    6.23    37.6  
  30    15.1    49.6  
  40    25.8    60.7  
  50    36.9    70.7  
  60    47.9    79.9  
  70    58.8    87.8  
  80    69.9    93.9  
  90    82.1    98.1  
  95    89.3    99.4  

     Figure 7.3     Plot of upper and lower 5% points of estimated reliability versus  R .  
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 A plot of these percentage points against  R  is shown in Figure  7.3 .   
 Now suppose that an experimenter has conducted a life test with  n     =    20 

and  r     =    15, computed ML estimates of the Weibull parameters, and used them 
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in the reliability expression to compute the reliability at some life  x . Suppose 
that the estimated life was   ˆ .R = 0 40. The next step is to locate 0.40 on the 
ordinate of Figure  7.3  and determine the values of  R  where a horizontal line 
drawn at   ˆ .R = 0 40 intersects the two curves. These points determine a 90% 
confi dence interval for  R , which, based on reading the graph, appears to be 
roughly (0.22, 0.53).  

   7.4    USING Pivotal.exe FOR  OC  CURVE CALCULATIONS 

 It is recalled that to test the hypothesis about a percentile  x  p :

    H x xp p0 0: .= ( )     (7.19)   

 Against the one - sided alternative:

    H x xp p1 0: .< ( )     (7.20)   

 The null hypothesis is accepted at the 100  α  % signifi cance level if:
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 The probability  P  a  of accepting the null hypothesis when the alternative is true 
and  x p      =    ( x p  ) 1  was shown to be expressible as:
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 This expression means that   ln
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 is the 100 P  a  - th percentile of the 

random variable s, where  s  is defi ned as:
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 Finding the percentage points of  s  by simulation gives the value of   ln
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and hence assuming a value for   β  , of ( x  p ) 1  associated with the value of  P  a  equal 
to each percentage point. We will now discuss how to compute the points on 

a plot of  P  a  against ( x  p ) 1  or, equivalently, against   
x

x
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 We begin with a spreadsheet containing 10,000 values of   β̂  in column 1 and 
  η̂ in column 2 for some n and r of interest. Since these values were generated 
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from a Weibull population having   η      =      β      =    1.0, the fi rst column is the same as 
 v ( r ,  n ). The true value of  x  p  is:

    x k kp p p= =η β( ) /1     (7.24)   

 The estimated value of  x p   row for row of the spreadsheet is computed as:

    ˆ ˆ( ) ˆx kp p=η β
1

    (7.25)   

 The value of  u ( r ,  n ,  p ) row for row may therefore be computed as:
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 The random variable  s  may now be computed row for row remembering that 
  v = β̂ :
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 Given  u  α    and  k p   the value of  s  may be computed row by row and inserted in 
column 3. Sorting the values in this column provides estimates of the percen-
tiles  s p   of  s  where  p     =    i/10,000 and  i  refers to the  i  - th ordered value of  s . Insert-
ing the integers from 1 to 10,000 in column 4 and dividing them by 10,000 puts 
the  P  a  values in column 4 associated with each sorted value of  s . The fi nal 

step is to exponentiate the sorted values of  s  to give the ratio   
x

x
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 Example 
 We use the 10,000 values of   β̂ and   η̂ produced from a run of the software using 
 n     =    20,  r     =    15. We will test H 0 :  x  0.10     =    10 against the alternative H 1 :  x  0.10     <    10 at 
the 10% level of signifi cance. From a run of Pivotal.exe we fi nd that  u  0.10 (15, 
20, 0.10)    =     – 0.541.  k p      =     k  0.10     =     − ln(1    −    0.1)    =    0.10536. The value of  s  is therefore 
computed as:

   s = − − + −⎛
⎝
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⎞
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⎟×0 541
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0 10536
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 Computing  s  row by row and then sorting, and exponentiating gives   
x0 10 1
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for each value of  P  a . Figure  7.4  gives the OC curve in dimensionless form. 
With an assumed value of   β   the plot can be rescaled to display ( x  0.10 ) 1  on the 
abscissa if necessary.   

 Since the type I error was set at   α      =    0.10, the curve has a  P  a  value of 0.90 
corresponding to an abscissa value of 1.0. 

     Figure 7.4     Operating characteristic curve for a one - sided test of  x  0.10 ,  n     =    20,  r     =    15.  

OC Curve for H0:x0.10 = 10; H1:x0.10 < 10; n = 20, r = 15
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 Example 
 Continuing with the  n     =    20,  r     =    15 sample size example, one sorts the   β̂  (or  v ) 
values in column 1. The value  v  0.10 (15, 20)    =    0.8398 is then divided by every 
row of the sorted sample. An adjacent column is used to store  P  a  computed 
as 1    −     i /10,000, where  i  is the order number of each row of the sorted values 
of  v . The OC curve in terms of the ratio   β   1 /  β   0  is shown in Figure  7.5 .   

 The OC curves for a test on the shape parameter are particularly easy to 
calculate. Consider H 0 :   β      =      β   0  against the alternative   β      <      β   0  using a signifi cance 
level   α  . From Section  6.4  we see that when the ratio of the true to the hypoth-
esized value of   β   is   β   1 /  β   0     =     v   α  / v  p , then  P  a , the probability of accepting the null 
hypothesis, is the complement of the corresponding percentage point of  v  (i.e. , 
 P  a     =    1    −     p ).     

using Pivotal.exe for oc curve calculations 223
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   7.5    PREDICTION INTERVALS 

 If the Weibull parameters are known, an interval may be calculated such that 
an observed future value of the random variable will fall within that interval 
with specifi ed probability. For example, suppose that   η      =    500 and   β      =    2.0 and 
we calculate the 5% and 95% percentiles:

   x k0 05 0 05
1 1 2 0500 0 05129 113 2. .

/ / .( ) . .= = ( ) =η β  

   x k0 95 0 95
1 1 2 0500 2 996 865 4. .

/ / .( ) ( . ) . .= = =η β   

 One may therefore predict that with a probability of 90% a value of  x  drawn 
from this distribution will fall between 113.2 and 865.4. 

 Suppose, however, the population parameters were not known but instead 
they were estimated using the ML estimates in a sample. Using these estimates 
as if they were population values as above results in what Meeker and Escobar 
 (1998)  call a na ï ve prediction interval. It does not account for the uncertainty 
due to the fact that the Weibull parameters are estimated and not known. 

 Exact prediction intervals may be computed. however, because, as will be 
shown, the following function is pivotal:
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    (7.28)   

     Figure 7.5     Operating characteristic curve for a one - sided test of the Weibull shape parameter.  

OC Curve for H0:b = b0; H1:b < b0; n = 20, r = 15
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 In this expression  x  is an observation from a two - parameter Weibull distribu-
tion  W (  η  ,   β  ) and   β̂  and   η̂  are the ML estimates of the parameters from a type 
II censored sample of size  n  having  r  failures. 

 Remember that a Weibull random variable  x  can be generated in terms of 
a variable  u  that is uniformly distributed over the interval (0, 1):

    x u= −η( ln ) ./1 β     (7.29)   

 Substitute this value for  x  into the expression for  y :
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 This shows that  y  is a function of two pivotal quantities and a random value 
 u  from the distribution  U (0, 1). Thus,  y  is also a pivotal function. Its distribution 
does not depend on the parameters of the underlying Weibull population. 

 We may thus use the distribution of  y  to set a prediction interval on  x . 
Consider again an uncensored sample of size  n     =    r    =    20. We have 10,000 values 
of the ML estimates of the parameters from a population for which   η      =      β      =    1.0 
in two columns of a spreadsheet. We now add a third column consisting of 
10,000 random values of  x  drawn from the same population with unit param-
eters. Now form 10,000 values of  y  by dividing the  x  value in each row by the 
scale parameter estimate in that row and raising the quotient to a power equal 
to the estimated shape parameter in that row. Sorting the 10,000 values of  y , 
the 5th and 95th percentiles are found to be:

   y y0 05 0 950 0323 3 941. .. . .= =   

 Suppose that in a type II censored sample with  n     =    20 and  r     =    15, the estimated 
parameters were computed and happened to be the same as the population 
values assumed above. That is   ˆ .β = 2 0 and   η̂ = 500. The probability statement 
may now be written:

   0 0323
500

3 941
2 0

. . .
.

< ⎡
⎣⎢

⎤
⎦⎥

<x   

 Solving the inequalities for  x  gives the prediction interval:

   89 9 992 6. . .< <x   

 These limits are seen to be wider than the na ï ve interval (113.2, 865.4). The 
same approach could be used to predict the smallest value in a future sample 
of size  m . In this case the simulated  x  values should be drawn from the Weibull 
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distribution followed by the smallest member of a sample of size  m . When the 
population scale and shape parameters are 1.0 as they are in the output of the 
Pivotal program, the fi rst member of a sample of size  m  follows  W (m  − 1 , 1). The 
procedure remains as above with this modifi cation.  

   7.6    SUDDEN DEATH TESTS 

 The term sudden death is generally attributed to Leonard Johnson, who 
applied it to a strategy for conducting rolling bearing life tests which he 
claimed was more effi cient in terms of test time than the comparable conven-
tional life test (Johnson,  1964 ). In a sudden death test, one observes the fi rst 
failures that occur in a set of  g  testers each of which contains  m  test elements 
that undergo simultaneous testing. As practiced in the bearing industry, the 
number of samples within each group was generally dictated by the number 
of physical test heads on a test machine, a number generally set by the designer 
of the test equipment without regard to statistical effi ciency with respect to 
the purpose of the test. Sudden death tests were studied by McCool  (1970) , 
who showed how to compute confi dence limits for a Weibull quantile using 
ML estimates computed from the results of a sudden death test conducted 
with a given group size  m  and number of groups  g . The values of some per-
centage points of pivotal quantities needed for setting confi dence intervals 
were tabulated for various values of  m  and  g  along with the expected relative 
test duration for a conventional test on  n     =     mg  items tested until the  r     =     g  - th 
earliest failure occurs (McCool,  1974 ). Pascual and Meeker  (1998)  proposed 
a modifi ed form of sudden death testing in which testing continues beyond the 
fi rst failure in each group. 

 Consider once again a series system of  m  components each of which has an 
independent lifetime distribution that follows  W (  η  ,   β  ). The life,  y , of the system 
is the minimum of the component lives  x  1 ,  x  2 ,    . . .    ,  x m   .  and follows the distribu-
tion  W ( m   − 1/    β   η  ,   β  ). In Section  7.2  we based our confi dence limits on system life 
on the result of a test of component life. In analyzing sudden death tests we 
do the opposite. We treat the  g  fi rst failures in each group of  m  as the results 
of an uncensored test of size  g . We may estimate the shape parameter   β   
directly by the ML method since the fi rst failure distribution is Weibull with 
shape parameter   β  . We may also estimate the  p  - th quantile of the distribution 
of  y . As we have seen, the  p  - th quantile  y  p  of the series system is thus express-
ible in terms of the  p  - th quantile  x  p  of a component:

    y m xp p= ⋅−1/ .β     (7.31)   

 From an ML estimate   ̂yp of the  p  - th quantile of the series system, one may 
now estimate the  p  - th quantile  x  p  of the component as:

    ˆ ˆ ./ ˆ
x m yp p= ⋅1 β     (7.32)   
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 Suppose  y  p  is estimated from a complete sample of size  g  so that  n     =     r     =     g . 
Thus for the sudden death test the analog of Equation  7.9  is,
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 Rearranging gives:

    w g m p v m u g g p, , ln , , .( ) = −( ) + ( )1     (7.34)   

 Compare this expression to the Equation  7.10  for  u ( r ,  n ,  p ,  m ) in Section  7.2  
above. Remembering that ln(1/ m )    =     − ln( m ), it is apparent that  w ( g ,  m ,  p )    =     u ( g , 
 g , 1/ m ,  p ). To get the percentage points of  w ( g ,  m ,  p ) one has only to run the 
Pivotal code with  n     =     r     =     g , the number of groups in the test, and  m  equal to 
the reciprocal of the number m of test elements in each group. 

 Analogous to the analysis for conventional type II censored tests, percent-
age points of  w  may be used to set confi dence limits on the  p  - th quantile of a 
component in terms of the  p  - th quantile of a system of  m  components esti-
mated from an uncensored sample of  g  system lives.
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    (7.35)   

 A median unbiased estimate of  x p   is computed as

    ′ = −⎡
⎣
⎢

⎤
⎦
⎥ˆ ˆ exp ˆ

.x x
w

p p
0 50

β
    (7.36)   

 Example 
 Eight samples of size four each were generated from the Weibull population 
W(100, 1.5). The simulated results, sorted within each of the  g     =    8 groups, are 
shown in Table  7.2 .   

  Table 7.2    Simulated Sudden Death Test Data 

   Grp 1     Grp 2     Grp 3     Grp 4     Grp 5     Grp 6     Grp 7     Grp 8  

  88.2    23.5    121.7    32.1    28.4    27.2    63.2    16.3  
  98.2    41.0    150.0    33.4    104.7    85.6    151.5    50.8  

  143.1    51.7    193.5    94.0    132.8    114.9    254.7    160.1  
  154.2    113.6    222.2    98.3    161.2    117.2    257.8    181.1  
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     Figure 7.6     Weibull plot of group fi rst failures.  

Probability Plot of First Failures in Eight Groups of Size 4
Full Sample from W(100,1.5)
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 The following percentage points were found from running the Pivotal 
program with  m     =    1/4    =    0.25 and  n     =     r     =    8 and  p     =    0.632. 

     α        w  α   (8, 4, 0.632)      v  α   (8, 8)  

  0.05     − 1.60    0.721  
  0.50     − 0.189    1.129  
  0.95    0.468    2.019  

 Using the 5th and 95th percentage points for  v     =     v (8, 8) gives the following 
confi dence limits for the shape parameter:

   0 762
1 539
2 019

1 539
0 721

2 134.
.
.

.

.
. .= < < =β   

 The interval includes the true value of   β      =    1.5. 

 A Weibull plot produced by the Minitab software using the fi rst ordered 
lives in each group is shown in Figure  7.6 .   

 The box on the right side of the plot gives the ML parameter estimates of 
the shape and scale parameters. The Anderson - Darling statistic is also shown 
and the associated  p  value of 0.203 indicates that the Weibull model cannot 
be rejected for this data at any meaningful level of signifi cance. 
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 The median unbiased estimate of the shape parameter is:

   ˆ .
.

. .′ = =β 1 539
1 129

1 36   

 The estimate of the scale parameter of the distribution of fi rst failures is seen 
from the Weibull plot:

   ˆ ˆ . ..y0 632 56 18= =η   

 The estimated scale parameter of  x  is now computed as:
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 A 90% confi dence interval for   η      =     x  0.632  is:
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 This interval fails to include the true value of  x  0.632     =    100 as 10% of such inter-
vals will. The median unbiased estimate is:
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 Analogous to Equation  6.5 , a precision measure may be computed as the 
median ratio of the upper to lower 90% confi dence limits giving:
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    (7.37)   

 The precision measure for   β   is as before:
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.     (7.38)   

 This sudden death test had eight failures out of a total sample size of 32. A 
reasonable question is whether this test is any more precise than a conven-
tional type II censored test where 32 items are tested until the fi rst eight fail. 
A further question is how does the total time on test compare for the two 
strategies? For the sudden death test the measures of precision are:

   R = =2 019
0 721
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.
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 The values needed for the conventional type II censored test evaluation are 
tabled below:

     α        u  α   (8, 32, 0.632)      v  α   (8, 32)  

  0.05     − 2.247    0.680  
  0.50     − 0.278    1.182  
  0.95    0.551    2.351  

   R = =2 351
0 680

3 55
.
.

.  

   R0 50
0 551 2 247

1 182
10 7. exp

. .
.

. .β = +⎡
⎣⎢

⎤
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=   

 In this case we see that the sudden death test is superior with respect to esti-
mation of both the shape and scale parameters. Designing a sudden death test 
means selecting the value of  m  to best predict a certain percentile. A test that 
is optimum for predicting one percentile will not be optimum for predicting a 
different percentile. 

    It is possible to compute the optimum size of the subgroup  m  needed to esti-
mate a given quantile with the greatest precision (McCool,  2009 ). Calculating 
  R0 50.

β  for various values of  p  in complete samples of size  g , it was found 
that there is a value  p  *  for which the  p  - th quantile is estimated with 
maximum precision and  p  *  increases with sample size  g  over the range of 
about 0.6 to 0.75.  

   7.7    DESIGN OF OPTIMAL SUDDEN DEATH TESTS 

 Two Weibull populations are shown in the probability plot sketched in Figure 
 7.7 . One is the Weibull distribution about which interest is centered and the 
other is the distribution of smallest values in samples of size  m  drawn from 
that distribution.   

 Estimating  x  0.10  of the target population is the same as estimating  x p   in the 
distribution of fi rst - order statistics. 

 It is readily shown that  p  is expressible as:

    p m= −
−

⎡
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⎤
⎦⎥{ }1

1
1 0 10

exp ln
.

    (7.39)   

 We can therefore estimate  x  0.10  for the parent distribution by estimating the 
100 p  - th percentile of the fi rst failure distribution using the complete uncen-
sored sample of size  g  from that distribution obtained from a sudden death 
test. The value of  m  that makes  p     =     p  *  is then given by:
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     Figure 7.7     Weibull plot of a Weibull population and the associated distribution of the minimum 
of samples of size  m . From Journal of Testing and Evaluation, 37(4), copyright 2009 ASTM Inter-
national.  Reprinted by permission of ASTM International.   
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 The  m  values for optimum estimation of  x  0.10  for  g  varying from 3 to 20 were 
calculated in this way using  p  *  for each value of  g . The optimum m values 
rounded to the nearest integer are given in Table  7.3 . For each value of  g  and 
 m  the values of the logarithm of Equation  7.37  were computed by Monte Carlo 
sampling. Comparable values were computed from Equation  6.5  for the con-
ventional type II censored test having the overall sample size  n     =     mg  and total 
number of failures  r     =    g. The comparison could only be made for  g  values up 
to and including 16 because the simulation software was limited to  n     ≤    200. It 
is seen that for every case calculated, the precision of the sudden death test 
having optimal subgroup size was superior to the corresponding conventional 
test.   

 As noted in Section  7.2 , the fi rst failures in each subgroup follow the 
Weibull distribution with scale parameter  m   − 1/ β    η  . The fi rst failure times  y  i  of 
each subgroup are the order statistics of a sample of size  g  drawn from that 

distribution, that is, from   W m
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
βη β, . The total time on test for all specimens 

in a sudden death test is thus:
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  where  y  j:n  is the  i  - th order statistic in a sample of size  n . Because the sample 
is complete, the sum of the ordered sample is the same as the sum of a random 
sample, and hence the expected value of the sum is  gE ( y ). The expected total 
test time is therefore:

    E T m gs( ) = +⎛
⎝⎜

⎞
⎠⎟

−1
1

1
1β η
β

Γ .     (7.42)   

 For the conventional type II censored test the total time on test is:

    T x gm g xr i gm

i

g

g gm= + −
=
∑ : :( )

1

    (7.43)  

  where  x  refers to the distribution  W (  η  ,   β  ). 
 Harter  (1964)  has tabled the expected value of Weibull order statistics for 

sample sizes of up to 40 and with   β      =    0.5(0.5)2.0. This limit permits the evalu-
ation of the total expected test times for just the fi rst two cases in Table  7.2 , 
that is, the cases with  g     =    3 and  m     =    9 and  g     =    4 and  m     =    10. 

 The expected test times scaled by   η   are given in Table  7.4  for these two 
cases and with these shape parameter values.   

  Table 7.3    Comparison of the Precision in Estimating  x  0.10  with Optimum Sudden 
Death Tests and Corresponding Conventional Type  II  Censored Tests Having  n     =     gm  
and  r     =     g  

    g     =     r   
   Optimal  m  
(Rounded)      N     =     gm   

   Precision 
Sudden Death  

   Precision 
Conventional  

  3    9    27    3.11    3.48  
  4    10    40    2.28    2.41  
  5    10    50    1.88    2.00  
  6    11    66    1.66    1.76  
  7    11    77    1.44    1.54  
  8    11    88    1.33    1.41  
  9    12    108    1.23    1.32  

  10    12    120    1.17    1.22  
  11    12    132    1.09    1.17  
  12    12    144    1.03    1.07  
  13    12    156    0.988    1.03  
  14    12    168    0.935    0.989  
  15    12    180    0.917    0.948  
  16    12    192    0.891    0.907  
  17    12    204    0.857     –   
  18    12    216    0.818     –   
  19    12    228    0.794     –   
  20    12    240    0.780     –   

    From the  Journal of Testing and Evaluation  37(4), copyright 2009 ASTM International. Reprinted 
by permission of ASTM International.   
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 The sudden death test takes a greater total test time than the corresponding 
conventional test for β     <    1 and less time for  β     >    1. A comparable evaluation 
for many arbitrary sudden death sample sizes shows that this seems to be 
generally true for any sudden death test. 

 For  β     =    1 the times are equal and are shown by McCool  (2009)  to have a 
normalized value equal to the group size g . Thus, provided the hazard rate is 
increasing ( β     >    1), sudden death testing is more effi cient than the correspond-
ing conventional test with respect to test time. If the objective of the testing 
is to estimate a specifi c quantile as precisely as possible, the subgroup size  m
may be chosen so that the sudden death test achieves as great or greater preci-
sion than the equivalent conventional test. When the value of  m  is arbitrarily 
selected, the sudden death test may or may not have greater precision than 
the corresponding conventional test.   
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  Table 7.4    Comparison of Expected Test Times for Conventional and Sudden Death 
Tests for the Various Shape Parameter Values 

   Shape 
Parameter β

g     =    3,  m     =    9 and  r     =    3, 
n     =    27  

g     =    4,  m     =    10 and  r     =    4 
and n     =    40  

E ( Ts )/ η       E ( Tr )/ η       E ( Ts )/ η       E ( Tr )/ η

  0.5    0.667    0.456    0.8    0.527  
  1.0    3    3    4    4  
  1.5    5.633    5.988    7.78    8.342  
  2.0    7.976    8.58    11.21    13.717  
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  14.6375    66.9203    68.4248    69.2899    71.8208  
  77.4557    94.8249    100.317    101.453    104.603  

 EXERCISES 

       1.    A series system contains  m     =    3 identical components. An uncensored life 
test on a sample of  n     =    10 components resulted in the following set of 
observed lifetimes in hours:

    

 (To avoid redundant effort, this is the same data set that appears in 
exercises in Chapters  5  and  6 .) Use Pivotal.exe and compute 90% confi -
dence limits on the median ( y  0.50 ) of the system life.   

    2.    An uncensored sample of size 20 resulted in the raw ML estimates   η̂ = 85 
hours and   ˆ .β = 2 1. Using Figure  7.3 , graphically determine the 90% confi -
dence interval for the reliability at life 61.7 hours.   

    3.    For the same data sample referred to in problem 2, compute a 90% interval 
for a single future value from the same population.   

    4.    Using Monte Carlo simulation, generate  g     =    5 uncensored samples of size 
 m     =    4 from  W (100, 1.5). Construct an uncensored sample of size 5 using the 
fi rst - order statistics in each of the fi ve samples. Compute the ML estimates 
of the scale and shape parameters using this sample of fi rst - order statistics 
and then compute the raw ML estimate of the scale parameter of the popu-
lation from which the samples were drawn. Run Pivotal.exe using appropri-
ate values of  m ,  n , and  r  and compute a 90% interval and a median unbiased 
estimate for the population scale parameter.    
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Inference from Multiple Samples     

     In experimental investigations involving life tests or material strength, there 
are often one or more factors of concern, and tests are frequently run at 
several levels of those factors. This might include perhaps a set of lubricants, 
different design variations, heat treatment recipes, or chemical compositions. 
In any case, a project may involve a number of related life tests. Typically these 
tests are analyzed individually and then the results are compared in the hope 
of detecting differences ascribable to the factors under investigation. In con-
trast, in designed experiments with a response variable that is assumed to be 
normally distributed, it is the custom to analyze the data as a set using an 
estimate of the variability that results from pooling the variability in each of 
the individual tests. This is justifi ed by the assumption that the factor or factors 
under investigation affect the mean but not the standard deviation of the 
response variable and that the standard deviations in the tests at each factor 
level differ only due to sampling error. Careful experimenters may use one of 
several hypothesis tests of the validity of this assumption, which is often 
referred to as the homogeneity of variance , before proceeding. If the test fails 
to reject the assumption that the variance is the same at all levels of the factor 
or factors, experimenters will then assume that it is true.  

   8.1    MULTIPLE WEIBULL SAMPLES 

 In life testing with a two - parameter Weibull response, it is often tacitly assumed 
that the scale parameter may be affected by the factor levels but that the shape 
parameter is unaffected. This assumption is explicit in rolling bearing life dis-
tribution theory wherein the effect of an increased load is assumed to decrease 
the scale parameter while leaving the shape parameter unaffected. Although 
it is generally assumed to be true that the shape parameter estimates differ 

Using the Weibull Distribution: Reliability, Modeling, and Inference, First Edition. John I. McCool.
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only due to sampling error, this fact is seldom exploited to give an improved 
estimate of the underlying common shape parameter. We will show that 
pooling the information about the shape parameter in sets of tests will increase 
the precision with which the shape parameter can be estimated. Furthermore, 
the assumption need not be made blindly. Its validity may be tested. A shape 
parameter that is the same at every factor level does not result in homoge-
neous variance for the Weibull since the variance depends on both the shape 
and scale parameters. If the scale parameters vary with factor level so will the 
variance even if the shape parameter does not. The homogeneity of shape 
parameter assumption is therefore not equivalent to the homogeneity of vari-
ance assumption.  

   8.2    TESTING THE HOMOGENEITY OF SHAPE PARAMETERS 

 Consider a set of k uncensored or type II censored tests. We assume the sample 
size n  and number of failures  r  is the same for each test. This assumption is 
made for manageability in the calculation of tables and is not a restriction in 
theory. If the shape parameter is estimated by the method of maximum likeli-
hood (ML) for each sample, the  k  estimates may be sorted from low to high. 
Under the assumption of a common shape parameter β , the  k  ML shape 
parameter estimates could, in principle, be divided by  β  to give an ordered 
sample of k  values of the pivotal function  v ( r ,  n ). The ratio  w  of the largest 
value of v  to the smallest is a pivotal quantity since it is the ratio of two - order 
statistics in a sample of k  values of a pivotal function. Thus, we have,

w r n k
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v
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( )1
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  and the unknown true value of  β  cancels. The distribution of  w ( r ,  n ,  k ) under 
the null hypothesis that the k  groups have a common shape parameter may 
be estimated by Monte Carlo sampling by generating sets of k  samples all from 
the same Weibull population, estimating  β  for each sample and forming the 
ratio of the largest to the smallest value within each set. 

 In practice, a difference in the population shape parameters among the  k

groups will tend to manifest itself in a greater ratio   
ˆ

ˆ
max

min

β
β

 than if the groups 

all had the same population shape parameter value. We may therefore use 
an upper percentile value of the w  distribution as the critical value in a 
test for the homogeneity of shape parameter values. Table  8.1  lists the 90th 
percentile of the w  distribution for various  n ,  r  and  k . These values were 
determined in simulations of 10,000 sets of size k  for each combination of  n
and r .
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  Table 8.1    Values of  w  0.90 ( r ,  n ,  k ) for Various  r ,  n  and  k  

    n       r       k     =    2      k     =    3      k     =    4      k     =    5      k     =    10  

  5    3    5.45    8.73    11.0    13.4    22.2  
  5    5    2.77    3.59    4.23    4.69    6.56  

  10    3    6.04    9.93    12.5    15.4    26.8  
  10    5    3.21    4.35    5.16    5.69    7.98  
  10    10    1.87    2.23    2.47    2.61    3.16  
  15    5    3.20    4.48    5.28    5.90    8.39  
  15    10    2.02    2.44    2.69    2.90    3.56  
  15    15    1.65    1.87    2.05    2.16    2.45  
  20    5    3.31    4.54    5.28    6.24    9.05  
  20    10    2.11    2.50    2.80    3.00    3.69  
  20    15    1.72    1.96    2.15    2.30    2.70  
  20    20    1.52    1.70    1.80    1.90    2.14  
  30    5    3.28    4.47    5.38    6.11    8.95  
  30    10    2.11    2.54    2.90    3.10    3.88  
  30    15    1.78    2.05    2.27    2.40    2.82  
  30    20    1.61    1.82    1.95    2.06    2.40  
  30    30    1.41    1.53    1.61    1.67    1.84  

    From Analysis of Sets of Two-Parameter Weibull Data Arising in Rolling Contact Endurance 
Data in ASTM Technical Publication 771, copyright 1982. Reproduced by permission of ASTM 
International.   

 Example 
 The data in Table  8.2  are the ordered rolling contact fatigue lives measured in 
millions of revolutions in uncensored samples of size 10 using specimens made 
from each of fi ve different types of steel. The data were originally reported by 
Brown and Potts  (1977) , who give the full details of the test conditions and 
materials. Since those details are not relevant to our present illustrative 
purpose, we refer to the materials simply using the letters A – E. The last two 
rows of the table contain the ML estimates of the 10th percentiles and the 
shape parameter for each group of 10 tests.   

 To test the hypothesis that the population shape parameters are equal, we 
compute the ratio of the largest to smallest ML estimates of the shape 
parameter:

   w = = =
ˆ

ˆ
.
.

. .max

min

β
β

3 65
1 94

1 88   

 The critical value for   α      =    0.10 is found in Table  8.1  for  k     =    5,  n     =     r     =    10, to be 
2.61. Since 1.88    <    2.61, there is no cause to reject the supposition that the data 

 A software program called Multi - Weibull described in Section  8.8  can be 
used to compute, via simulation, 16 percentiles of the distribution of  w ( r ,  n ,  k ) 
for any choices of  r ,  n  and  k . 
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   8.3    ESTIMATING THE COMMON SHAPE PARAMETER 

 Having accepted the equality of the population shape parameters but allowing 
that the scale parameters may differ from among the  k  sampled populations, 
the model for the  i  - th population is:

    F x
x

i k
i

( ) = − −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =1 1exp ; .

η

β

…     (8.2)   

 Where   η   i  denotes the scale parameter for the  i  - th sample. The likelihood func-
tion for multiple samples is the product over the  k  samples of the likelihood 
function as previously expressed for a single sample. If the shape parameters 
are taken to be the same for each sample, the ML estimate of the common 
shape parameter, designated   β̂1, is the solution of the following nonlinear 
equation written for the general case where the values of  n  and  r  vary with 
the sample (cf. Schafer and Sheffi eld,  1976 ; McCool,  1979 ).

    
r

x r x xi

i

k

ij

j

r

i

k

i

i

k

ij ij

j

ni i

ˆ ln ln
ˆ

β
β

11 11 1 1

1

= == = =
∑ ∑∑ ∑ ∑+ ( ) − ( )

⎡

⎣
⎢⎢
⎢

⎤

⎦
⎥
⎥

=
=

∑/ .
ˆ

xij

j

ni
β1

1

0     (8.3)   

  Table 8.2    Rolling Contact Fatigue Data for Five Steel Compositions 10 6  Stress 
Cycles 

        A     B     C     D     E  

      3.03    3.19    3.46    5.88    6.43  
  5.53    4.26    5.22    6.74    9.97  
  5.60    4.47    5.69    6.90    10.39  
  9.30    4.53    6.54    6.98    13.55  
  9.92    4.67    9.16    7.21    14.45  

  12.51    4.69    9.40    8.14    14.72  
  12.95    5.78    10.19    8.59    16.81  
  15.21    6.79    10.71    9.80    18.39  
  16.04    9.37    12.58    12.28    20.84  
  16.84    12.75    13.41    25.46    21.51  

    ̂ .x0 10     5.06    2.60    4.72    3.49    8.83  
    β̂     2.59    2.32    3.13    1.94    3.65  

have a common shape parameter value. The observed ratio is, in fact, quite 
typical, since the median value of  w  for  k     =    5,  n     =     r     =    10 was found to be 1.84. 
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 It is assumed that within each sample the  r  i  failures are listed fi rst followed by 
the censored lives. The lives need not be ordered within the failed and cen-
sored sets.  x ij   denotes the  j  - th listed value within the  i  - th sample. The value of 
  β̂1 found as the solution of this equation is the valid ML estimate of the shape 
parameter irrespective of the nature of the censoring method. However, com-
putation of confi dence limits and tests of hypotheses discussed subsequently 
are valid only when the data are uncensored or type II censored. 

 The data from all of the samples contribute to the determination of this 
estimate of   β  . The effect is that the estimate is much more precisely deter-
mined than any one of the estimates from individual samples within the set. 

 Having computed   β̂1, the scale parameter and 100 p  - th percentile may be 
computed for the  i  - th sample as:

    ˆ /
ˆ

/ ˆ

η β

β

i ij i

j

n

x r
i

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=

∑ 1

1

1

1

    (8.4)  

    ˆ [ ] ˆ ./ ˆ
x kp i p i( ) = ⋅1 1β η     (8.5)   

 The scale parameter within each sample is computed using just the lives in the 
sample but with the shape parameter estimate based on the data in all of the 
groups. The estimate   β̂1 acts as a sort of average of the shape parameters within 
the groups. It is unaffected by any differences in the scale parameters among 
the groups. Multiplying the data within any group by a constant leaves the 
value of   β̂1 unchanged. 

   8.3.1    Interval Estimation of the Common Shape Parameter 

 It has been proven that when the samples are type II censored, the following 
function is pivotal when the  k  population shape parameters are the same 
(McCool,  1979 ):

    v1
1=

ˆ
.

β
β

    (8.6)   

 This function is a generalization of the pivotal function  v ( r ,  n ) introduced for 
single samples in Chapter  5 . The arguments have been suppressed for conve-
nience but in full generality  v  1  could be expressed as  v  1 ( r ,  n ,  k ). The distribu-
tion of  v  1  applicable when the sample size and censoring number are the same 
for each group were determined by Monte Carlo simulation for various 
choices of  n ,  r  and  k . Table  8.3  contains values of the 5th, 50th, and 95th per-
centiles of  v  1  for a range of values of  n  and  r  with  k  varying from 1 to 5. The 
table contains percentage points of several other random variables, which will 
be discussed subsequently. These percentage points of  v  1  are used in the same 
way as the single sample version in computing confi dence limits and correct-
ing bias.   
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 For the rolling contact fatigue data the ML estimate   β̂1 was found to be 
2.480. (A Mathcad module for performing this and other computations will be 
given subsequently.) Using the values of the 5th and 95th percentage points 
of  v  1  for  n     =     r     =    10 and  k     =    5, a 90% confi dence interval for the common shape 
parameter is computed as:

   1 88
2 480
1 319

2 480
0 8939

2 77.
.
.

.
.

. .= < < =β   

 The ratio  R  of the upper to lower ends of this confi dence interval is 1.47. This 
is superior to the ratio of 1.62 shown in Table  6.1  for an uncensored sample 
of size 30. The value of  R  for a single uncensored sample of size 10 is 2.49. The 
pooled shape parameter thus has the precision associated with a sample size 
larger than that of the individual samples. 

 The median unbiased estimate of the shape parameter is:

   β1
2 480
1 076

2 304= =.
.

. .     

   8.4    INTERVAL ESTIMATION OF A PERCENTILE 

 Analogous to  u ( r ,  n ,  p ) from Chapter  5 , we have  u  1 ( r ,  n ,  p ,  k ) defi ned as:

   u r n p k
x
x

p

p
1 1, , ,( ) = ⎛

⎝
⎜

⎞

⎠
⎟ˆ ˆ
.lnβ   

 The population value  x p   and its estimate refer to any group of the  k  sets of 
data. Confi dence intervals and median unbiased estimates for  x p   may be com-
puted for each group using percentage points of the  u  1  distribution just as in 
the single sample case. The ML estimates for each group are computed using 
  β̂1 as the shape parameter. The 5th, 50th, and 95th percentiles of  u  1  for  p     =    0.10 
are given in Table  8.3  for various  n ,  r  and  k . For group A in the rolling contact 
fatigue data set given in Table  8.2 , the 10th percentile estimate recomputed 
using   ˆ .β1 2 48=  gives the revised estimate   ̂ . ..x0 10 4 838=  Based on the tabled 5th 
and 95th percentiles for  n     =     r     =    10,  k     =    5, 90% confi dence intervals are com-
puted as:

   0 671
0 9899
2 480

0 10 0 10 0 10 0 10. ⋅ = −⎛
⎝⎜
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⎠⎟

< < − −ˆ ˆ exp
.
.

ˆ exp. . . .x x x x
00 5883
2 480

1 27 0 10
.
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. ˆ ..
⎛
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⎞
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= ⋅ x   

 The factors 0.671 and 1.27 apply to every group. So for group A:

   3 25 0 671 4 838 1 27 4 838 6 140 10. . . . . . ..= × < < × =x   
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  Table 8.4    Raw, Median Unbiased, and 
Interval Estimates of  x  0.10  for Each 
Material 

   Group       ̂ .x0 10       ̂ .′x0 10     90% Limits  

  B    2.811    2.645    1.89 – 3.56  
  C    3.798    3.574    2.55 – 4.82  
  A    4.873    4.553    3.25 – 6.13  
  D    4.838    4.586    3.27 – 6.18  
  E    6.342    5.968    4.25 – 8.04  

 A median unbiased estimate is computed as:

   ˆ ˆ exp
.
.

. ˆ .. . .′ = ⋅ −⎛
⎝⎜

⎞
⎠⎟

= ⋅x x x0 10 0 10 0 10
0 1519
2 480

0 941   

 For group A, we have 0.941    ×    4.838    =    4.550. Table  8.4  gives the computed 
or raw ML estimate of the 10th percentile, its median unbiased estimate, and 
90% confi dence limits in ascending order of the estimated 10th percentile 
value.   

 This ranking of the steels (BCADE) differs from the ranking based on the 
single test estimates, (BDCAE) although both rankings agree on the best and 
worst steels. 

 The precision measure   R0 50.
β  is computed as for single samples but using the 

multiple group analogs. Thus for the example:

   R0 50
0 9899 0 5883

1 076
4 34. exp

. .
.

. .β = +⎡
⎣⎢

⎤
⎦⎥

=   

 This precision is comparable to a complete sample of size 30 (4.22) and vastly 
superior to a single uncensored sample of size 10 (15.3). 

 Table  8.5  on the following pages gives the values of  R  and   R0 50.
β  for estima-

tion of  x  0.10  for the sample sizes given in Table  8.3 . For a given value of the 
number of tests in the set,  k , Table  8.5  can be used to select  n  and  r  to give a 
desired precision of estimation.   

 Figure  8.1  shows  R  plotted against the number of failures  r  for  n     =    30 for a 
single sample ( k     =    1), and for a set of fi ve ( k     =    5) samples.   

 For a single sample with  r     =    5, the precision is poor and improves dramati-
cally as  r  is increased. When  k     =    5 groups are considered, the precision is 
reasonably good at  r     =    5 and improves further as  r  increases. The benefi t of 
grouping samples, provided that the population shape parameters are equal, 
is quite evident. 

 The precision criterion   R0 50.
β  for estimation of  x  0.10  is shown in Figure  8.2 .   
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  Table 8.5    Precision Measures for Shape Parameter and 10th Percentile for Various 
Sample Sizes 

    k       n       r       R        R0.50
b   

  1    5    3    10.7    900  
  2    5    3    5.03    75.1  
  3    5    3    3.58    29.9  
  4    5    3    3    22.4  
  5    5    3    2.66    19.1  

  10    5    3    1.96    11.7  
  1    5    5    4.14    92.4  
  2    5    5    2.65    22.5  
  3    5    5    2.2    14  
  4    5    5    1.98    10.9  
  5    5    5    1.82    9.11  

  10    5    5    1.52    6.6  
  1    10    5    5.06    36.7  
  2    10    5    3.03    13.8  
  3    10    5    2.46    9.62  
  4    10    5    2.16    7.96  
  5    10    5    1.99    6.96  

  10    10    5    1.63    5.88  
  1    10    10    2.49    15.3  
  2    10    10    1.86    7.3  
  3    10    10    1.66    5.59  
  4    10    10    1.54    4.75  
  5    10    10    1.48    4.34  

  10    10    10    1.31    3.57  
  1    15    5    5.78    18.2  
  2    15    5    3.14    9.49  
  3    15    5    2.53    7.44  
  4    15    5    2.25    6.45  
  5    15    5    2.04    6.1  
  1    15    10    2.72    11.4  
  2    15    10    2.02    6.21  
  3    15    10    1.76    4.98  
  4    15    10    1.63    4.37  
  5    15    10    1.55    4.16  
  1    15    15    2.03    8.41  
  2    15    15    1.64    4.88  
  3    15    15    1.49    4.02  
  4    15    15    1.41    3.52  
  5    15    15    1.36    3.36  
  1    20    5    5.45    13.8  
  2    20    5    3.19    7.63  
  3    20    5    2.54    6.22  
  4    20    5    2.22    5.88  
  5    20    5    2.06    5.67  
  1    20    10    2.83    8.89  
  2    20    10    2.07    5.31  



interval estimation of a percentile 247

    k       n       r       R        R0.50
b   

  3    20    10    1.8    4.35  
  4    20    10    1.67    4  
  5    20    10    1.58    3.79  
  1    20    15    2.19    7.37  
  2    20    15    1.73    4.42  
  3    20    15    1.56    3.75  
  4    20    15    1.46    3.41  
  5    20    15    1.41    3.15  
  1    20    20    1.82    6.13  
  2    20    20    1.52    3.26  
  3    20    20    1.41    3.06  
  4    20    20    1.35    2.96  
  5    20    20    1.3    2.77  
  1    25    5    5.3    9.86  
  2    25    5    3.18    6.5  
  3    25    5    2.56    5.89  
  4    25    5    2.25    5.41  
  5    25    5    2.06    5.29  
  1    25    10    2.91    7.13  
  2    25    10    2.09    4.6  
  3    25    10    1.84    4.11  
  4    25    10    1.69    3.76  
  5    25    10    1.58    3.55  
  1    25    15    2.24    6.27  
  2    25    15    1.77    4.16  
  3    25    15    1.59    3.56  
  4    25    15    1.49    3.19  
  5    25    15    1.43    3.01  
  1    25    20    1.94    5.68  
  2    25    20    1.59    3.73  
  3    25    20    1.45    3.2  
  4    25    20    1.39    2.87  
  5    25    20    1.33    2.73  
  1    25    25    1.71    4.91  
  2    25    25    1.45    3.34  
  3    25    25    1.35    2.91  
  4    25    25    1.3    2.61  
  5    25    25    1.15    2.46  
  1    30    5    5.36    8.12  
  2    30    5    3.2    6.25  
  3    30    5    2.56    5.77  
  4    30    5    2.25    5.38  
  5    30    5    2.05    5.24  
  1    30    10    2.89    5.99  
  2    30    10    2.12    4.22  
  3    30    10    1.82    3.77  

Table 8.5 (Continued)

(Continued)



    k       n       r       R        R0.50
b   

  4    30    10    1.69    3.53  
  5    30    10    1.6    3.42  
  1    30    15    2.26    5.37  
  2    30    15    1.79    3.89  
  3    30    15    1.67    3.57  
  4    30    15    1.51    3.06  
  5    30    15    1.44    2.95  
  1    30    20    1.98    5.04  
  2    30    20    1.62    4.48  
  3    30    20    1.47    2.99  
  4    30    20    1.4    2.75  
  5    30    20    1.35    2.68  
  1    30    25    1.79    4.74  
  2    30    25    1.5    3.72  
  3    30    25    1.39    2.76  
  4    30    25    1.33    2.58  
  5    30    25    1.29    2.46  
  1    30    30    1.62    4.22  
  2    30    30    1.4    3  
  3    30    30    1.32    2.6  
  4    30    30    1.27    2.45  
  5    30    30    1.24    2.33  

    From Analysis of Sets of Two-Parameter Weibull Data Arising in Rolling Contact Endurance 
Data in ASTM Technical Publication 771, copyright 1982. Reproduced by permission of ASTM 
International.   

     Figure 8.1     Precision measure for shape parameter in censored samples of size  n     =    30;  k     =    1 and 
 k     =    5.  

R vs. r for n = 30 and k = 1 and k = 5

P
re

ci
si

o
n

 R
at

io
, R

Number of Failures, r

k
1
55

4

3

2

1
5 10 15 20 25 30

Table 8.5 (Continued)



testing whether the scale parameters are equal 249

 Figure  8.2  shows that although the precision is greatly improved using  k     =    5, 
the sensitivity to  r  appears to be about the same, as with  k     =    1; that is, the 
curves are roughly parallel.  

   8.5    TESTING WHETHER THE SCALE PARAMETERS ARE EQUAL 

 Having established that it is reasonable to assume that the populations from 
which the  k  samples are drawn have a common shape parameter, the next 
issue is whether the scale parameters differ. Formally the hypothesis is express-
ible as:

    H0 1 2:η η η η= = … = =k     (8.7)   

 The alternative hypothesis is that at least one of the shape parameters differs 
from the others. A test of this hypothesis is comparable to the one way analysis 
of variance (ANOVA) in normal distribution theory. In the one - way ANOVA, 
one tests for the equality of the population means having shown or assumed 
that the population variances do not differ. We consider two tests for the 
hypothesis that the scale parameters are equal. One of them we dub the  shape 
parameter ratio  ( SPR ) test. It has an intuitive graphical interpretation. The 
other is the classical likelihood ratio test. 

     Figure 8.2     Precision measure for 10th percentile in censored samples of size  n     =    30;  k     =    1 and 
 k     =    5.  
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   8.5.1    The  SPR  Test 

 Figure  8.3  shows three data samples plotted on a Weibull grid. The plots are 
nearly parallel, but it is clear from the lateral separation of the three plots that 
their scale parameters differ. Consider what happens graphically if the data 
are combined into a single sample. The group with the lowest scale parameter 
will tend to have the earliest lives in the combined sample and hence the 
lowest plotting positions on the vertical scale. The group with the highest scale 
parameter will tend to have the largest lives in the combined sample and the 
greatest plotting positions. It is seen that the plot of the combined sample has 
a lower slope and hence a lower shape parameter than each of the groups. The 
greater the scale parameter differences among the groups, the lower will be 
the shape parameter estimated from the combined data. Imposing the condi-
tion that both the scale and shape parameters are the same for each group is 
equivalent to assuming that the entire data set is a single sample from a single 
Weibull population. In this case the shape parameter estimate   β̂0 is given as 
the solution of the following equation:

    
r

x x x xi
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ij

j

r

i

k

ij ij

j

n

i

k

ij

i i

ˆ ln ln /
ˆ

β
β

01 11 11

0

= == ==
∑ ∑∑ ∑∑+ ( ) − ( ) ˆ̂

.β0

11

0
j

n

i

k i

==
∑∑ =     (8.8)     

 This is equivalent to the usual estimate from a single sample but expressed 
in double subscript notation. Having determined   β̂0, the scale parameter esti-
mate is:

     Figure 8.3     Weibull plots of three data samples separately and combined.  
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 The 100 p  - th percentile is, as usual,

ˆ [ ] ˆ ./ ˆ
x kp p( ) = ×0

1
0

0β η  (8.10)

β̂1 is unaffected by scale parameter differences, but   β̂0 is diminished by scale 
parameter differences. The two shape parameter estimates should be compa-
rable when all the scale parameters are equal. When there are scale parameter 

differences, however, the ratio   
ˆ

ˆ
β
β

1

0

 should increase. Large values of this ratio 

therefore argue against the equality of the scale parameters. This ratio is a 

pivotal function because   ˆ /β β0  is pivotal under the null hypothesis of equal 

shape parameters and   ˆ /β β1  is pivotal in any case. Thus, their quotient must be 
pivotal when the null hypothesis is true. Table  8.3  gives the 90th and 95th 

percentile values of   
ˆ

ˆ
β
β

1

0

 for a number of n ,  r  and  k  values computed using sets 

of k  samples for which the shape and scale parameters were equal. The 
Mathcad module below shows the computation of the two shape parameter 
estimates for the data in Table  8.2 . The computed ratio, 1.184, exceeds the 
upper 5% point of the shape parameter distribution, and thus we reject the 
hypothesis that the scale parameters are equal. 

 It has been shown (McCool,  1979 ) that the probability of accepting the 
shape parameters as equal when they are not can be expressed in terms of a 
single parameter ϕ1  given by:

φ β η η
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 (8.11)

 The function  ϕ1  is analogous to the noncentrality parameter of a fi xed effect 
ANOVA. It has the following properties:

1.     It is symmetric in   η β
i  and therefore the value of ϕ1  does not depend on 

the arbitrary numbering of the populations.  
2.     It is non - negative and reduces to zero when the  ηi  values are equal.  
3.     It is scale invariant; that is, its value is the same irrespective of the units 

in which   η β
i  values are expressed. Also, since  xp  is the same multiple of 

ηi  for every sample, the value of  ϕ1  will not change if some percentile is 
used in lieu of ηi . 

 The probability of accepting the scale parameters as equal is a decreasing 
function of ϕ1 .    
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 Figure  8.4  shows  P  a  as a function of   ϕ   1  for several pairs of  n  and  r  values 
with  k     =    2.   

 These operating characteristic curves depend primarily on  r  and only 
slightly on  n . Because the curves for the same  r  are so close, only one has been 
plotted. To design a test with  k     =    2 such that  P  a     =    0.10 if ( x  0.10 ) 1     =    3( x  0.10 ) 2  and 
using   β      =    1.3, we compute   ϕ   1 :

   φ1

1 3

1 3 1 3

1 3

1 3 1 3
1 3 3

3
3 1

1
2

1 3 1
1

3 1
= [ ]×

+
−⎡
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⎤
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+ [ ]×
+

−. ln . ln
.

. .

.

. .

11
2

0 437⎡
⎣⎢

⎤
⎦⎥

= . .   

 From the Figure  8.4  it appears that to within graphical accuracy,  r     =    10 with 
any choice of  n     >     r  will suffi ce.  

   8.5.2    Likelihood Ratio Test 

 The likelihood ratio is a classic way of testing statistical hypotheses (cf. Kendall 
and Stuart,  1961 ). In the present context the procedure is to compute the ratio 
  λ   of the likelihood function maximized under the hypothesis that the scale 
parameters are equal to the likelihood function maximized under the hypoth-
esis that they may differ. The shape parameter is taken to be constant in either 
case. The numerator has two unknown parameters since all groups are assumed 
to have the same shape and scale parameters. The denominator has  k     +    1 

     Figure 8.4     Acceptance probability as a function of   ф   1  for various sample sizes. From Analysis of 
Sets of Two - Parameter Weibull Data Arising in Rolling Contact Endurance Data in ASTM 
Technical Publication 771, copyright 1982.  Reproduced by permission of ASTM International.   
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parameters, a single shape parameter, and  k  scale parameters. When the 
hypothesis is true, that is, the scale parameters are the same, then in large 
samples, the quantity  - 2   ln     λ   will follow the chi - square distribution with degrees 
of freedom equal to the difference in the number of parameters namely, 
 k     +    1    −    2    =     k     −    1. In the general case of unequal sample sizes, the expression 
for ln     λ   may be written as:
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    (8.12)   

 Note that the leading term is just a monotonic function of the SPR test 

statistic   
ˆ

ˆ
β
β

1

0

. The distribution of  − 2   ln     λ   was also determined by Monte Carlo 

sampling, and the 90th and 95th percentile values are listed in Table  8.3 . They 
do not compare well with the corresponding percentage points of the chi -
 square distribution with  k     −    1 degrees of freedom. The expected value of a 
chi - square variable is equal to its degrees of freedom. Kendall has suggested 
that multiplying  − 2   ln     λ   by a constant  c  determined so that the expected value 
of  − 2 c    ln     λ   is equal to  k     −    1 gives a much improved fi t to the asymptotic distri-
bution. The value of  c  was accordingly computed as follows:

    c
k= −

−
1

2 ln
.

λ
    (8.13)  

  where   −2 lnλ  is the average value of  − 2   ln     λ  . Values of  c  are listed in Table  8.3  
for each combination of  n ,  r  and  k . 

 The last two columns of Table  8.3  show that when the 95th percentile of 
 − 2   ln     λ   is multiplied by  c  it compares favorably with the 95th percentile of the 
chi - square distribution with  k     −    1 degrees of freedom. 

 The probability of accepting the null hypothesis when it is false using the 
likelihood ratio test was found to depend on both   ϕ   1  and, to a lesser extent, 
on an additional function   ϕ   2  defi ned as follows:
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 When the scale parameters are all equal,   ϕ   2 , like   ϕ   1 , is zero. When the scale 
parameters are not equal,   ϕ   2     >    0. For combinations of scale parameter values 
that result in the same values of these two functions, the probability of accept-
ing the scale parameters as equal will be the same when using the likelihood 
ratio test. 

 A program called Weibest among the set of six disk operating system 
(DOS) programs on the author ’ s website will read the data for each of  k  sets 
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of test results. It computes the ML estimates of the parameters and several 
percentiles for each test, and then for the whole set it computes the ML 

estimates   β̂0 and   β̂1 and their ratio, the test statistic   w =
ˆ

ˆ
max

min

β
β

, and the likelihood 

ratio. A copy of the last screen of the output is shown as Figure  8.5  when it 
was run with the data of Table  8.1 .   

 The Mathcad module below summarizes the computations for the same 
data set. It is titled WeibullGroups.xmcd. The results are in agreement with 
the Weibest output. Small differences are attributable to differences in con-
vergence criteria in the iterative solutions for the shape parameter estimates. 
In both instances the value of  − 2   ln     λ   for the rolling contact fatigue data is 
computed to be 17.963. This is well beyond the upper 95th percentile of 10.55 
for  n     =     r     =    10 and  k     =    5. The  c  value for this case is 0.895 (Table  8.3 ). The cor-
rected value,  − 2 c    ln     λ      =    16.077, well exceeds the 95th percentile of the chi -
 square distribution with 4 degrees of freedom. It is in fact equal to the 99.7th 
percentile of the chi - square distribution and so is a value that would be 
exceeded by chance only 0.3% of the time. The scale parameters are clearly 
not equal. 

 The SPR and the likelihood ratio tests have been found to have compa-
rable power; that is, they have a comparable probability of rejecting the 
hypothesis of equal scale parameters when they are not equal. The SPR test 
appeared to be superior when all but one of the scale parameters are equal. 
The likelihood ratio test was somewhat superior when several scale param-
eters differed.

    Mathcad Module for Testing the Equality of  k  Shape Parameter Estimates    
   ORIGIN     =     1     

     Figure 8.5     Weibest output for data of Table  8.1 .  
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 This example is for  k     =    5 groups of size  n     =    10. The groups are uncensored 
so  r     =     n     =    10. The shape parameter   β   is estimated under the assumption that 
each group has a common shape parameter. The scale parameters and 10th 
percentile are estimated for each group using the common shape parameter 
estimate. 

 In the matrix  y , each column contains the lives in a group

   y :

. . . . .

. . . . .

. . .

=

12 51 4 69 9 40 8 14 14 72

3 03 3 19 3 46 5 88 6 43

5 53 4 26 5 22 6.. .

. . . . .

. . . . .

. . .

74 9 97

5 6 4 47 5 69 6 9 10 39

9 3 4 53 6 54 6 98 13 55

9 92 4 67 9 166 7 21 14 45

12 95 5 78 10 19 8 59 16 81

15 21 6 79 10 71 9 8 18 39

16

. .

. . . . .

. . . . .

.. . . . .

. . . . .

04 9 37 12 58 12 28 20 84

16 84 12 75 13 41 25 46 21 51

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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   x := yT   

 Transpose the data matrix so rows represent different groups:

   x =

12 51 3 03 5 53 5 6 9 3 9 92 12 95 15 21 16 04 16 84

4 69 3 19 4 26 4

. . . . . . . . . .

. . . .. . . . . . .

. . . . . . .

47 4 53 4 67 5 78 6 79 9 37 12 75

9 4 3 46 5 22 5 69 6 54 9 16 10 19 100 71 12 58 13 41

8 14 5 88 6 74 6 9 6 98 7 21 8 59 9 8 12 28 25 46

14

. . .

. . . . . . . . . .

.772 6 43 9 97 10 39 13 55 14 45 16 81 18 39 20 84 21 51. . . . . . . . .
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 Set sample size parameters

   n := 10  

   k := 5  

   r := 10   

 Defi ne the ML function
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 Initial guess at the root of the ML function

   β1 2: .=   
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 Solve

   β β β1 1 1: , .= ( )( )root f   

 Converged solution

   β1 2 48= . .  

   i k: ,= 1 2…   

 Compute the scale parameter estimates

   η
β β

i
i j
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n x
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 Compute the  x  10  estimates

   x i i10

1

0 1053 1: . .= ×β η  

   

i x i i= = =10
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 Compute the shape parameter estimate using all the data combined
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 Guess at solution using combined data

   β0 2: .=  

   β β β0 0 0: , .= ( )( )root g  
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 Combined group shape and scale parameter estimates

   β0 2 094= . .  

   η0 11 318= . .   
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 Compute ratio of shape parameter estimates

   z : .= β
β

1

0
 

   z = 1 184. .   

  Z  exceeds the upper 5% point of the null distribution (1.139 for  n     =     r     =    10, 
 k     =    5) so conclude that the scale parameters differ. 

 Compute minus the log of the likelihood ratio  λ 

   

minuslnλ β
β
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   2 17 963× =minuslnλ .  

  correction factor for chi - square distribution

   c : .= 0 895  

   c× × =2 16 077minuslnλ . .   

 A chi - square distribution with 4 degrees of freedom has a probability of 
0.003 of exceeding 16.077, supporting the conclusion that the scale parameters 
differ.   

   8.6    MULTIPLE COMPARISON TESTS FOR DIFFERENCES 
IN SCALE PARAMETERS 

 Once the SPR or likelihood ratio test indicates that there are differences 
between the scale parameters, interest centers on determining exactly which 
ones differ. A similar problem occurs in applications of the normal distribu-
tion. When the ANOVA indicates that the means differ, there are a number 
of procedures, often referred to as post hoc tests, to establish differences 
among the samples. 

 The procedure we are using is analogous to a test called Tukey ’ s test (Tukey, 
 1949 ). It focuses on the largest and smallest scale parameter estimates in the 
set of  k  such estimates. Interior values that differ by more than a value that 
would be unusual for the largest and smallest values are  a fortiori  considered 
to differ. 

 The test statistic is:

    t r n k1 1, ,( ) ≡ ⎛
⎝⎜

⎞
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β η
η

    (8.15)   
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 Since we are operating under the assumption that the samples have a common 
shape parameter, the percentiles for any sample are the same multiple of the 
scale parameter. Thus  t  1  could have been written in terms of any percentile 
and would have the same distribution, that is,

   t r n k
x
x

p

p
1 1, ,( ) ≡ ⎛

⎝
⎜

⎞

⎠
⎟ˆ [ ˆ ]

[ ˆ ]
.ln max

min

β   

 That  t  1  is a pivotal quantity under the hypothesis that the scale parameters 
are equal follows from forming  u  1  for each of the  k  samples. Sorting the 
 k  values of  u  1  and taking the difference between the largest and smallest 
leads to:

   u umax min− = ⎛
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 Differences of pivotal quantities are themselves pivotal. Under the hypothesis 
that every sample comes from the same population the scale parameters 
cancel. 

 Table  8.3  shows 90% and 95% points of the distribution of  t  1 . For the rolling 
contact fatigue data for which  n     =     r     =    10 and  k     =    5, the value of  t  1  appropriate 
for a 10% signifi cance level test is 1.26. If the value of  t  1  exceeds 1.26 for any 
pair of estimates and not just the most extreme, we can declare that they differ 
as well since a critical value for a pair of interior samples would be less than 
1.26. Knowing that   ˆ .β1 2 48= , we can compute the smallest ratio that would be 
signifi cant according to this criterion. Designating this value the least signifi -
cant ratio (LSR), we have:

   2 48 1 26. ln . .LSR( ) =   

 Solving for LSR,

   LSR = ⎛
⎝⎜

⎞
⎠⎟

=exp
.
.

. .
1 26
2 48

1 66   

 Thus, any two scale parameters, or percentiles, whose ratios exceed 1.66 may 
be declared to differ at a 10% experiment - wise level of signifi cance. Ordinar-
ily when a set of confi dence interval statements are made, each having, say, a 
90% chance of being true statements, the probability that  every  statement in 
the set is true is lower than 90%. In the present case, when we declare some 
set of scale parameters different, there is a 90% chance that the entire set of 
statements is correct. That is the meaning of the experiment - wise error signifi -
cance level or error rate. 

 Taking the ratios of the 10th percentile estimates computed using the esti-
mate of the common shape parameter, we can summarize which pairs differ, 
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that is, which pairs are in a ratio in excess of 1.66. Pairs that differ signifi cantly 
are noted in the two - way table below:

    
        B     C     A     D     E  

  B     *         Sig.    Sig.    Sig.  
  C         *             Sig  
  A             *           
  D                 *       
  E                     *   

 Another common way to summarize the results of a multiple comparison 
test of this type is to list the scale parameter values or just the group names 
in increasing order of estimated scale parameter value and draw a line under 
pairs which do not differ: 

     
B C A D E

 

 The results will often be only partially conclusive as in the present case. It 
would be desirable if, say, B and C formed a set and A, D, and E were a second 
set with no differences within each set but with every member of the fi rst set 
different from every member of the second. 

 One might ask: How can B not differ from C and C not differ from D and 
yet B differs from D? The answer is that these comparisons are not transitive. 
The results only summarize what cannot be distinguished in view of the vari-
ability or noise in the data. The values of the 10th percentile estimates for B 
and C are within the observed noise limits. C, A, and D are also within the 
observed noise limits as are A, D, and E. At this point the results serve to show 
where further testing may be best conducted. If our desire is to increase the 
life, we might consider further tests on A, D, and E. We should not be surprised 
if on further testing the materials rank in a different sequence.  

   8.7    AN ALTERNATIVE MULTIPLE COMPARISON TEST 
FOR PERCENTILES 

 It sometimes happens that one does not have access to the raw data from an 
investigation but does have a summary in terms of ML estimates of the shape 
parameters and some percentile such as the scale parameters  x  0.632  or the 
medians  x  0.50 . One also needs the knowledge that the tests are type II censored 
with the same values of  n  and  r . The following random variable is readily 
shown to be a pivotal function when the  k  samples have a common shape 
parameter and also equal values of the 100 p  - th percentile(McCool,  1975, 
1978 ).
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 Here the parameters are estimated using just the data within each of the  k  
samples. The average of the  k  estimated shape parameters is denoted   β̂ . (This 
function will still be a pivotal function if the harmonic mean is used instead 
of the arithmetic mean of the shape parameters. The harmonic mean is the 
reciprocal of the average reciprocals of the shape parameters.) 

 The statistic  t  1  defi ned in Equation  8.15  was independent of the percentage 
point  p  under consideration because the scale parameters were estimated 
using the same shape parameter estimate for each of the  k  samples. This caused 

the ratio   
ˆ

ˆ
max

min

x

x
p

p

[ ]
[ ]  to be the same no matter what  p  was at issue. 

 On the other hand, the distribution of  t  depends on the percentile  p  since 
the percentiles are not all estimated with the same shape parameter value. The 
critical values of  t  for a 10% level test of the equality of shape parameters are 
given in Table  8.6  for  p     =    0.10. Table  8.7  lists the corresponding values for 
 p     =    0.50. The software program Multi - Weibull.exe described in the next section 
may be used to generate critical values of  t ( r ,  n ,  k ,  p ) for any signifi cance level 
and percentile  p  and a broad range of  n ,  r  and k.   

 Once the test for a common shape parameter has failed to reject that 
hypothesis, one may calculate the quantity  t  above. We take the data on the 
fatigue lives of  k     =    5 materials given in Table  8.5  as an example. The data were 

  Table 8.6    Values of  t  0.90(   r   ,    n   ,    k   ,    p   )  for  p     =    0.10 and Various  n ,  r  and  k  

    n       r       k     =    2      k     =    3      k     =    4      k     =    5      k     =    10  

  5    3    6.18    8.74    9.84    10.78    12.8  
  5    5    3.48    4.36    4.92    5.29    6.29  

  10    3    5.33    7.02    8.19    8.98    10.8  
  10    5    3.00    3.84    4.33    4.61    5.59  
  10    10    1.97    2.52    2.81    3.02    3.64  
  15    5    2.53    3.35    3.80    4.02    4.74  
  15    10    1.82    2.33    2.58    2.82    3.34  
  15    15    1.55    1.93    2.20    2.36    2.79  
  20    5    2.31    2.98    3.36    3.61    4.32  
  20    10    1.67    2.06    2.29    2.46    2.94  
  20    15    1.44    1.82    2.02    2.20    2.63  
  20    20    1.31    1.62    1.81    1.95    2.32  
  30    5    1.98    2.53    2.90    3.11    3.63  
  30    10    1.38    1.73    1.95    2.09    2.49  
  30    15    1.25    1.54    1.78    1.90    2.23  
  30    20    1.18    1.46    1.63    1.76    2.08  
  30    30    1.03    1.28    1.42    1.53    1.84  
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already tested for a common shape parameter and that assumption was found 
to be plausible. The average shape parameter is calculated to be   ˆ .β = 2 726. The 
 t  statistic is calculated as:

   t 10 10 5 0 10 2 726
8 83
2 60

3 33, , , . . ln
.
.

. .( ) = ⎛
⎝⎜

⎞
⎠⎟

=   

 This exceeds the critical value  t  0.90     =    3.02 from Table  8.6 , so we may affi rm that 
the largest and smallest values differ. As before, any interior estimates whose 
ratios exceed that allowed for the extreme ratio may be declared to differ. 
Again, denoting the smallest signifi cant ratio as LSR, we may establish its 
value from the relation:

   2 726 3 02. ln . .LSR( ) =   

 From which the LSR is computed as:

   LSR = ⎛
⎝⎜

⎞
⎠⎟

=exp
.
.

. .
3 02
2 726

3 03    

   8.8    THE PROGRAM MULTI - WEIBULL.EXE 

 The software program called Multi - Weibull was written in the Visual Basic 
language to enable multiple comparisons for the Weibull shape parameter and 

  Table 8.7    Values of  t  0.90 ( r ,  n ,  k ,  p ) for  p     =    0.50 and Various  r ,  n  and  k  

    n       r       k     =    2      k     =    3      k     =    4      k     =    5      k     =    10  

  5    3    3.85    5.25    5.88    6.44    7.85  
  5    5    1.85    2.29    2.57    2.80    3.33  

  10    3    4.71    6.42    7.53    8.41    9.83  
  10    5    1.81    2.32    2.63    2.83    3.35  
  10    10    1.01    1.30    1.44    1.57    1.87  
  15    5    2.05    2.67    3.02    3.31    3.93  
  15    10    0.942    1.18    1.31    1.44    1.71  
  15    15    0.798    0.994    1.11    1.21    1.45  
  20    5    2.36    3.01    3.50    3.78    4.61  
  20    10    0.967    1.18    1.35    1.42    1.73  
  20    15    0.728    0.914    1.00    1.07    1.30  
  20    20    0.657    0.837    0.933    1.01    1.21  
  30    5    2.76    3.65    4.12    4.42    5.34  
  30    10    1.06    1.34    1.51    1.62    1.93  
  30    15    0.708    0.898    1.01    1.08    1.27  
  30    20    0.583    0.744    0.817    0.882    1.05  
  30    30    0.531    0.649    0.727    0.788    0.933  
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percentiles. A zipped fi le containing the software and a readme fi le may be 
downloaded from  http://www.personal.psu/mpt . 

 The software simulates from 100 to 10,000 sets of  k  type II censored Weibull 
samples, each comprising a sample size  n  with  r  failures. For each set the value 
of the ratio   w r n k k, ,( ) = ˆ / ˆ

( ) ( )β β 1  of the largest to the smallest ML estimate of 
the shape parameters is formed and 16 percentiles of the distribution are 
printed to the output screen. The statistic  w ( r ,  n ,  k ) has been shown to be a 
pivotal function; that is, its distribution is independent of the true population 
value of the shape parameter. An upper percentile of the distribution of  w ( r , 
 n ,  k ) may therefore be used to test the hypothesis that a set of data samples 
were drawn from populations having a common shape parameter. 

 A second function   t r n k p x xp k p, , , ln /( ) ( )( ) = [ ]β 1  is also formed consisting of 
the product of the average shape parameter estimate and the logarithm of the 
ratio of the largest to smallest ML estimate of a quantile  x p  . Given that the  k  
samples are drawn from populations having a common shape parameter, an 
upper percentage point of the distribution of  t ( r ,  n ,  k ,  p ) may be used to test 
whether the populations also have a common value of a specifi ed quantile. 

 The software accepts values of  k  ranging from 2 to 25, test group sample 
sizes  n  from 2 to 200, and number of failures ranging from 2 to  n . 

 The introductory program screen is shown in Figure  8.6 .   

     Figure 8.6     Introductory screen of Multi - Weibull.  
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 The following screen (Figure  8.7 ) appears when the user clicks the large 
button. The user then enters the number of groups, the sample size  n , the 
number of failures  r  if the data is type II censored, the quantile of interest and 
the number of sets of data to simulate. As shown, the input screen is set for 
the case  n     =     r     =    10,  p     =    0.10, and  k     =    5.   

 Clicking the calculate button produces 16 percentage points of the distribu-
tion of   w r n k k, ,( ) = ˆ / ˆ

( ) ( )β β 1  and   t r n k p x xp k p, , , ln( ) = [ ]β ˆ / ˆ( ) ( )1  as shown in 
Figure  8.8 . These values may be written to a text fi le at the user ’ s option. The 
values shown are for  k     =    5,  n     =     r     =    10, and  p     =    0.10.   

 As a further example of the use of MultiWeibull.exe, we use it to analyze 
a set of 13 test results analyzed using Pivotal.exe in conjunction with a spread-
sheet in McCool  (2000) . The fracture stress in four point bending was recorded 
on 10 specimens of each of 13 different composite matrix resins, typical of the 
materials used in dental restorations. The materials differed with respect to 
chemistry, degree of cure, and exposure to soaking in water. Weibull plots and 
formal tests affi rmed that the fracture data for all materials followed the two -
 parameter Weibull model. Table  8.8  lists the raw ML estimates of   η   and   β   for 
each material.   

     Figure 8.7     Input screen for program Multi - Weibull.  
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     Figure 8.8     Output screen for program Multi - Weibull.  

  Table 8.8    Maximum Likelihood 
Estimates of Weibull Parameters 

   Material       β̂        η̂   

  A    10.58    146.3  
  B    8.24    48.81  
  C    11.9    158.95  
  D    10.07    134.47  
  E    9.58    173.7  
  F    19.49    127.9  
  G    11.16    216.79  
  H    11.75    144.87  
  I    16.13    73.1  
  J    7.45    132.73  
  K    13.4    82.9  
  L    20.85    118.05  
  M    16    147.4  
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 Running Multi - Weibull with  n     =     r     =    10,  k     =    13, and  p     =    0.632 and using 
10,000 samples gave the following results:

    

  INPUT PARAMETERS  
  k    =    13  
  n    =    10  
  r    =    10  
  p    =    .632  
   w (10, 10, 13)  
   p      w   p    
  .025    1.696847  
  .050    1.792500  
  .100    1.908321  
  .150    1.985398  
  .200    2.061595  
  .250    2.132745  
  .300    2.192562  
  .400    2.321354  
  .500    2.456008  
  .600    2.593952  
  .700    2.764171  
  .750    2.878238  
  .800    2.995514  
  .900    3.389536  
  .950    3.781165  
  .975    4.158304  

   t (10, 10,632, 13)  
   p      t   p    
  .025    .712227  
  .050    .782060  
  .100    .865702  
  .150    .928024  
  .200    .974961  
  .250    1.014107  
  .300    1.052469  
  .400    1.131206  
  .500    1.207274  
  .600    1.280013  
  .700    1.366781  
  .750    1.411182  
  .800    1.467537  
  .900    1.624358  
  .950    1.765298  
  .975    1.896196  

 The ratio of the largest to smallest shape parameter estimate is 20.85/7.45    =    2.80. 
From the distribution of  w  above we see that the probability of a greater ratio 
due to chance exceeds 0.25. There is therefore no reason for concluding that 
the shape parameters differ.  

 Accepting that the 13 samples come from Weibull populations having the 
same shape parameter we may address the question of whether the scale 
parameters differ. For p    =    0.632, the following function is pivotal:

   t r n k, , , .0 632( ) = ⋅ { }ˆ ln ˆ / ˆ .(max) (min)β η η   

 Using a family error rate of 0.10, we may proclaim as differing in their scale 
parameters any ordered material pairs ( i ) and ( j ) ( i     >     j ) for which:

   ˆ ln ˆ / ˆ . .( ) ( )β η η× ( ) >i j 1 62   
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 The 90th percentile of the distribution of  t (10, 10, 13, 0.632)    =    1.62. The small-
est ratio for which a difference may be proclaimed, that is, the LSR may thus 
be computed as:

   LSR = ( )exp .1 62 ˆ .β   

 For the values in Table  8.8 ,   ˆ .β = 12 82, so that LSR    =    1.13. Thus, any two 
materials for which their   η̂ ratio exceeds 1.13 may be pronounced different. 
Material B is thus shown to have a signifi cantly smaller scale parameter than 
all the others, while the scale parameter for material G is signifi cantly larger 
than all the others. There are many other interior clusters. I and K do not differ 
from each other but do differ from all other materials. Other clusters exhibit 
overlap. For instance, there is no difference among L, F, J, and D, or among F, 
J, D, and H, but L and H may be said to differ. If the purpose of the testing 
was to fi nd the material with the largest scale parameter, the test has been 
successful. If the purpose was to fi nd a defi nitive ranking of the materials, 
additional testing is needed.  

   8.9    INFERENCE ON   P   (  Y      <      X  ) 

 The probability that one Weibull random variable  Y  is less than another inde-
pendent Weibull random variable  X  for the case where both  X  and  Y  have 
the same shape parameter was discussed in Section  4.3  where the following 
expression was cited:
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 We now consider the interval estimation of this probability based on random 
samples drawn from the distributions of  X  and  Y . For convenience we assume 
that both samples are of the same size  n  and, if type II censored, have the same 
number of failures  r . The material in this section is adapted from McCool 
 (1991) . 

 As noted in Chapter  4 , the problem of estimating and of drawing inference 
about the probability that a random variable  Y  is less than an independent 
random variable  X  arises in a reliability context. When  Y  represents the random 
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value of a stress that a device will be subjected to in service and  X  represents 
the strength that varies from item to item in the population of devices, then the 
reliability  R , that is, the probability that a randomly selected device functions 
successfully, is equal to  P [ Y     <     X ]. We will accordingly use  R  as the symbol for 
 P [ Y     <     X ] although it only represents reliability in the stress/strength context. 
The same problem also arises in the context of statistical tolerancing where  Y  
represents, say, the diameter of a shaft and  X  the diameter of a bearing that is 
to be mounted on the shaft. The probability that the bearing fi ts without inter-
ference is then  P [ Y     <     X ] and could be broadly interpreted as the reliability of 
the fi t. 

 Apart from these two application areas it is suggested by Wolfe and Hogg 
 (1971)  and by Enis and Geisser  (1971)  that in some cases the difference 
between two random variables is more naturally characterized by  P [ Y     <     X ] 
than by the more usual difference of their means (Enis and Geisser,  1971 ; 
Wolfe and Hogg,  1971 ). A case in point cited by Wolfe and Hogg arises in 
biometry wherein  Y  represents a patient ’ s remaining years of life if treated 
with drug  A , and  X  represents the patient ’ s remaining years when treated with 
drug  B . If the choice of drug is left to the patient, his or her deliberations will 
center on whether  P [ Y     <     X ] is less than or greater than 0.5. 

 Because  R  is monotonic in   ρ  , inference on   ρ   is equivalent to inference on 
 R . We hereafter confi ne attention to the parameter   ρ  . Large values of   ρ   cor-
respond to small values of  R . 

   8.9.1     ML  Estimation 

 Given random samples of size  n  type II censored at the  r  - th order statistic and 
drawn from the distributions of  X  and  Y , the ML estimate of the common 
shape parameter   β   is the solution of Equation  8.3  for the case that  k     =    2. Drop-
ping the subscript and specializing the notation to the situation we now con-
sider gives the equation:
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 This estimate pools the data from both samples and is therefore more precise 
than the estimator obtained using just one of the samples. The observations 
are assumed to be indexed so that  x i   and  y i   denote uncensored observations 
for  i     ≤     r , and  x i      =     x r   and  y i      =     y r   for  i     >     r . 

 As discussed in Section  8.1 , it has been shown that

    v = ˆ /β β     (8.20)  

  is a pivotal function whose distribution depends only on  n  and  r . 
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 The ML estimates of   η  x   and   η  y   are
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 Schafer and Sheffi eld show that when the  n  and  r  are the same for both 
groups,

    T u uy x= − .     (8.23)  

  is a pivotal function where
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  T  is symmetrically distributed about its mean  E ( T )    =    0. Schafer and Sheffi eld 
 (1976)  give percentage points of  T  determined by Monte Carlo sampling for 
uncensored samples of size  n     =    5(1)20(4)40(10)100. 

 The ML estimate of   ρ   is
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 Taking logarithms, adding, and subtracting   ˆ ln( )β ny  and   ˆ ln( )β nx  using Equa-
tions  8.24 ,  8.25 , and  8.20  and rearranging gives:

    ln ˆ
ˆ

ln ln( ).ρ β
β

η
η

ρ
β

= − +
⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝⎜

⎞
⎠⎟

= +u u T vy x
y

x

    (8.27)   

 The expected value of   lnρ̂ is:

    E E T E vln ˆ lnρ( ) = ( ) + ( )     (8.28)   



 Values of  E ( v ) obtained by Monte Carlo sampling as discussed further below 
are listed in Table  8.9  for 28 combinations of  n  and  r . For small samples,   lnρ̂ 
is a highly biased estimator of   lnρ̂, that is,  E ( v )    >    1.0. For  n     =     r     =    30, the bias 
is inconsequential.    

   8.9.2    Normal Approximation 

 The variance of   lnρ̂ is:

    var cov T vT vln ln lnˆ ˆ , .ρ σ ρ σ ρ( ) = + ( ) + × ( )2 2 2 2     (8.29)  

  where

   cov T v E Tv E T E v E Tv E u v E u vx y, .( ) = ( ) − ( )× ( ) = ( ) = ( ) − ( )   

 Since  u x   and  u y   are identically distributed as long as the sample sizes for  X  and 
 Y  are the same,  E ( T )    =    0 and  E ( u x v )    =     E ( u y v ). Thus,

   Cov T v, .( ) = 0   

 Assuming approximate normality for   lnρ̂, two - sided 100 (1    −     α )% probability 
limits for   lnρ̂ may be computed for fi xed   ρ   as,

    E v z T v( ) ± + ( )ln lnˆ [ ]ρ σ ρ σα
2

1
22 2 2
    (8.30)  

  where  z p   is the upper  p  - th percentage point of the standard normal distribu-
tion. Values of   σ  T   and   σ  v   obtained by Monte Carlo sampling are given in Table 
 8.9 . Approximate 100(1    −      α  )% confi dence intervals for   ρ   may be obtained by 
equating the observed value of   lnρ̂ to the upper and lower ends of the above 
interval and solving for  ρ . The upper and lower limits for ln     ρ   are thus found 
from the following expression:
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 Values of   σ  T   and   σ  v   have been obtained by Monte Carlo sampling. The values 
listed are the averages of two simulations of 10,000 cases each. 
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 Example 
 An uncensored sample of size  n     =    30 was drawn from the population  W (1, 1.5) 
to represent the random variable  X . Another uncensored sample was drawn 
from  W (0.630, 1.5) to represent  Y . The true value of   ρ   was:
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 And so the true value of  R     =    1/(1    +      ρ  )    =    0.67. 
 The common shape parameter was estimated by solving Equation  8.19  to be 
  ˆ .β = 1 57. The individual scale parameters were estimated to be:

   ˆ .ηy = 0 6511  

  Table 8.9    Values of  E ( v ),   σ  v  , and   σ  T   for various  r  and  n  

    n       r       E ( v )       σ  v         σ  T    

  5    3    1.6490    1.1651    1.8818  
  5    5    1.2782    0.4142    0.9090  

  10    5    1.5006    0.5213    0.9705  
  10    10    1.1150    0.2188    0.5196  
  15    5    1.3900    0.5313    0.9943  
  15    10    1.1420    0.2541    0.5355  
  15    15    1.0732    0.1655    0.4020  
  20    5    1.3988    0.5485    0.9900  
  20    10    1.1528    0.2676    0.5450  
  20    15    1.1210    0.2261    0.4131  
  20    20    1.0545    0.1378    0.3398  
  25    5    1.4079    0.5622    0.7821  
  25    10    1.1570    0.2701    0.5458  
  25    15    1.0941    0.1950    0.4110  
  25    20    1.0628    0.1524    0.3456  
  25    25    1.0421    0.1211    0.2988  
  30    5    1.4028    0.5644    1.0046  
  30    10    1.1634    0.2794    0.5434  
  30    15    1.0943    0.1972    0.4135  
  30    20    1.0673    0.1600    0.3466  
  30    25    1.0488    0.1316    0.3005  
  30    30    1.0343    0.1072    0.2708  
  40    10    1.1645    0.2833    0.5472  
  40    20    1.0714    0.1663    0.3437  
  40    40    1.0268    0.0921    0.2313  
  50    25    1.0556    0.1439    0.3027  
  50    50    1.0271    0.0813    0.2058  

  100    100    1.0103    0.0569    0.1444  



   8.9.3    An Exact Simulation Solution 

 It is possible to compute exact confi dence limits for   ρ   and hence for  R , but the 
method is cumbersome. In McCool  (1991) , simulation was used to compute 
percentage points of   lnρ̂ for various values of   ρ   using

   ln ˆ ln .ρ ρ= − +u u vy x   

 The simulation was carried out for   ρ      =    0.001, 0.01, 0.02, 0.05, 0.1(0.1)1.0, 2.0, 
5.0, 10.0, 20.0. 

 For   ρ      =    1.0 the distribution of   lnρ̂ reduces to the distribution of  T     =     u y      −     u x  . 
The program was run for 21 combinations of  n  and  r . The same values of  n  
and  r  were used for the samples of  X  and  Y , although the method is generally 
applicable. 

  and

   ˆ . .ηy = 0 8442   

 This gives the ML estimate of   ρ  :

   ˆ
ˆ
ˆ

.

.
. .

ˆ .

ρ η
η

β

= ⎛
⎝⎜

⎞
⎠⎟

= ⎛
⎝⎜

⎞
⎠⎟

=y

x

0 6511
0 8442

0 665
1 57

  

 The corresponding ML estimate of  R  is computed as 1/(1    +    0.665)    =    0.601. 
 From Table  8.9  for  n     =     r     =    30,  E ( v )    =    1.0343,   σ  v      =    0.1072, and   σ  T      =    0.2708. 
 For 90% limits use  z  0.05     =    1.645. The limits on ln     ρ   computed as the two roots 

of Equation  8.31  are:

   − < <0 849 0 187. ln . .ρ   

 So the limits on   ρ   are:

   0 428 1 205. . .< <ρ   

 Finally, using   R =
+
1

1 ρ
 the 90% limits for  R  become

   0 453 0 70. . ,< <R  

  which includes the true population value of  R     =    0.67. 
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     Figure 8.9     The 5th, 50th, and 95th percentiles of   lnρ̂ versus ln     ρ   for  n     =     r     =    30.  
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     Figure 8.10     Quadratic fi t to the 5 th , percentile of   lnρ̂ versus ln     ρ   for  n     =     r     =    30.  
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 Figure  8.9  shows the 5th, 50 th , and 95th percentiles of   lnρ̂ plotted against 
ln     ρ   for  n     =     r     =    30.   

 The 5th and 95th percentiles are well fi tted by quadratic functions as shown 
in Figures  8.10  and  8.11 .   

 The median is well fi tted by a straight line (Fig.  8.12 ):    



     Figure 8.11     Quadratic fi t to the 95th, percentile of   lnρ̂ versus ln     ρ   for  n     =     r     =    30.  
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     Figure 8.12     Linear fi t to the median of   lnρ̂ versus ln     ρ   for  n     =     r     =    30.  
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   8.9.4    Confi dence Intervals 

 Alternatively the 5th and 95th percentiles may be plotted against   ρ   (log scales 
recommended) and the interpolation carried out graphically. 

 For the example, the following interval is obtained by using the equations 
fi tted to the foregoing graphs:
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   − < <0 852 0 062. ln . ,ρ  

  which leads to the following interval for  R :

   0 484 0 701. . .< <R   

 This interval includes the true population value  R     =    0.67 corresponding to the 
populations from which the samples were taken. 

 This interval is somewhat tighter than the normal approximation, but the 
upper limit of both intervals are in excellent agreement.    
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 EXERCISES 

       1.    A set of  k     =    3 samples of size  n     =    10, type II censored at  r     =    5 were analyzed 
individually. The largest estimated shape parameter was 2.72 and the small-
est was 1.96. Test the hypothesis of a common shape parameter using an 
experiment - wise error rate   α      =    0.10.   



exercises 275

    β̂     4.606    3.538    2.857    4.156  
    η̂     893.8    471.9    408.4    403.9  

    2.    Following acceptance of the plausibility of a common shape parameter for 
the case described in exercise 1, the raw ML estimate of the common shape 
parameter was computed to be   ˆ .β1 1 68= . Compute a median unbiased 
estimate and 90% confi dence limits for the population value of the common 
shape parameter.   

    3.    If when the data described in problem 1 are combined into a single sample 
of size 30, the maximum likelihood estimate of the shape parameter is 
computed to be   ˆ .β0 1 10= , does the use of the SPR test with   α      =    0.05 indicate 
that the scale parameters differ?   

    4.    Continuing with the same case, if the largest and smallest of the three scale 
parameter estimates among the three samples are   ˆ .maxη = 44 0 and   ˆ .maxη = 11 0, 
using the appropriate critical value of  t  1  with   α      =    0.05, do the corresponding 
population scale parameters differ?   

    5.    Using Table  8.5  with  k     =    5 samples and a common sample size  n     =    15, how 
many failures  r  must be observed in each sample so that the precision 
measure  R  for shape parameter estimation is less than 2.0?   

    6.    Four uncensored samples of size  n     =     r     =    10 were tested at four different 
temperatures. The ML estimates of the shape and scale parameters were 
reported but the individual data values were not. The estimates are as 
follows:

    

 Use the Multi - Weibull software to test for the equality of the shape param-
eters and then the scale parameters.   

    7.    Samples of size  n     =    20, type II censored with  r     =    10 were drawn from each 
of two Weibull populations assumed to share a common shape parameter. 
Denoting the random variables as  X  and  Y  we assume  X     ∼     W (  η  x  ,   β  ) and 
 Y     ∼     W (  η  y  ,   β  ). The ML estimate of the common shape parameter was com-
puted to be   ˆ .β = 1 72. The ML scale parameter estimates using the common 
shape parameter were   ˆ .ηx = 84 1 and   ˆ .ηx = 36 6. Compute 90% confi dence 
limits on  R     =     P [ X     <     Y ] using Equation  8.31  and the appropriate values 
listed in Table  8.9 .    



  C H A P T E R   9 

Weibull Regression     

     In Chapter  8  we considered a multiple sample model in which the issue was 
whether the scale parameters were unaffected by the levels of an external 
factor or whether they varied in some unspecifi ed way with the level of the 
external factor. There was no systematic pattern proposed for the manner in 
which they differed if indeed they were not the same. If the factor were a 
quantitative one such as temperature or voltage, the scale parameters might 
vary systematically with the level of that factor and, if so, it would be of inter-
est to quantify that relationship for purposes of interpolating or extrapolating 
to factor levels not directly tested. One application of this approach is acceler-
ated testing wherein tests are run at levels of a factor such as load or tempera-
ture that are more  “ severe ”  than met under  “ use ”  conditions in order to hasten 
test completion. A fi tted relationship between the factor level and one or more 
parameters of the lifetime distribution is then used to predict the life distribu-
tion under generally milder  “ use ”  conditions. Nelson  (1990)  gives a broad 
survey of the many models and analyses related to accelerated testing. Our 
discussion is limited to a model often called the power law model. Exact infer-
ence for the power law model was considered by McCool and is the basis for 
the discussion that follows (McCool,  1980, 1986 ).  

   9.1    THE POWER LAW MODEL 

 Under the power law model, the variable that we generically call stress and 
designate by the symbol  s  is presumed to have a multiplicative effect on the 
Weibull scale parameter but no effect on the shape parameter. The cumulative 
distribution of life conditional on  s  may be expressed as:

    F x s
x
s

| exp
( )

.( ) = − −⎛
⎝⎜

⎞
⎠⎟

1
η

β

    (9.1)   
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 The effect of stress on the scale parameter is modeled as:

    η η γs s( ) = −
0 .     (9.2)   

 The parameter   η   0  is the scale parameter when  s     =    1. The constant   γ   is known 
as the stress - life exponent. When   γ   is positive, the scale parameter diminishes 
with  s . This is the usual case when  s  is an accelerating factor such as load and 
temperature. If  s  has a benefi cial effect such that larger values of  s  increase 
the scale parameter, then   γ   will be negative. The model is thus applicable more 
broadly than just as an accelerated test model. The variable  s  could be regarded 
as a covariate that is measured on each of the test elements and which has 
either a benefi cial or a detrimental effect as described by the power law model. 
On a log scale the power law model becomes a linear one:

    ln ln lnη η γs s( ) = −0     (9.3)   

 The stress - life exponent is the slope and ln  η   0  the intercept in the linear rela-
tionship between the dependent variable ln  η  ( s ) and the independent variable 
ln  s . This is the form of a simple linear regression model and hence the term 
Weibull regression. 

 The power law model for the scale parameter implies that the 100 p  - th 
percentile at stress  s  may be expressed as:

    x s k s k sp p p( ) = ( ) = −( ) ( ) .
1 1

0
β β γη η     (9.4)   

 The context we consider is where life tests are conducted at  k  levels of 
the stress variable, designated  s  1 ,  s  2     . . .     s k  . The tests at each level are type II 
censored. At stress level  s i   the sample size is  n i   and the number of failed items 
is  r i  . 

 Given the results of these tests, our objectives are:

   1.     To verify that the shape parameter does not vary with stress level. This 
is implemented by the same technique introduced in Chapter  8  based 
on the ratio of the largest to the smallest of the maximum likelihood 
(ML) shape parameter estimates computed at each stress level.  

  2.     To form ML estimates of the parameters   β  ,   η   0 , and   γ   and any percentile 
 x p   at a specifi ed stress  s .  

  3.     To calculate confi dence intervals for   β   and   γ  .  
  4.     To calculate confi dence intervals for  x p  ( s ) both for  s  values at which 

testing was performed and for values outside this range.  
  5.     To compute median unbiased estimates of   β  ,  x p  ( s ), and   γ  .  
  6.     To test the hypothesis that the scale parameter varies in accordance with 

a power law model against the alternative that the scale parameters do 
not have a monotonic relationship with the levels of  s .     



278 weibull regression

   9.2     ML  ESTIMATION 

 The likelihood function for the Weibull regression model is the same as for 
the model of Chapter  8 , except that   η  i   is replaced by:

    η η γ
i o is= − .     (9.5)   

 Setting the derivative of the log likelihood function with respect to   η  o   equal 
to 0 and solving for   η  o   results in the solution:
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    (9.6)  

  where,
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.     (9.7)   

 Setting to zero the derivatives of the log likelihood function with respect to   γ   
and   β  , and substituting the expression above for   η  o   leads, after considerable 
simplifi cation, to the pair of nonlinear equations given below. The ML esti-
mates of   β   and   γ   are the simultaneous solution of this pair of equations:
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    (9.9)   

 After solving these two equations simultaneously for   β̂  and   ̂γ  they are substi-
tuted into Equation  9.6  to compute   ̂η0. This pair of equations has the property 
that they are unchanged if the scale of the  s  variable is changed. So, for 
example, the solutions will remain the same whether  s  is expressed in the 
metric or English system of units. An advantage stemming from this fact is 
that stresses in their actual units could be rescaled by dividing by the smallest 
one, for instance, so that the smallest stress is 1.0 in the transformed system. 
For example, if  k     =    2 and  s  1     =    1000 and  s  2     =    1200 psi, they could be expressed 
as  s  1     =    1 and  s  2     =    1.2 without affecting the solution. The value of   ̂η0 will vary 
with the choice of units for stress but the estimate of   γ   will not. The equations 
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are also invariant with respect to the units in which the random variable is 
expressed, that is, hours, weeks, and so on, although again,   ̂η0 will vary with 
those units.  

   9.3    EXAMPLE 

 The three columns of data in Table  9.1  are sorted, simulated, uncensored 
samples of size 10 at each of three stresses,  s1     =    1,  s2     =    1.1, and  s3     =    1.2. At  s     =    1, 
the data were drawn from the Weibull population  W (56.46,1.3) for which it 
will be recalled that the 10th percentile x0.10  is 10.0. For the other stresses the 
scale parameter was computed using a power law model with γ     =    9.0. The  x0.10

values at s2  and  s3  are 4.24 and 1.94, respectively, computed using the 
relation:

x s x s0 10 0 10 0
9

. . .( ) = ( ) −

 The term ( x0.10 ) 0  refers to the population 10th percentile value at  s     =    1. Also 
shown in the table are the estimated values of the shape and scale parameters 
and the 10th percentile based on just the 10 lives at each stress. 

 To test whether the shape parameters are consistent with the common 
shape parameter assumption we form the ratio:

ˆ

ˆ
.
.

. .
β
β

max

min

= =1 31
1 03

1 27

  Table 9.1    Simulated Sample of Power 
Law Data;  n     =     r     =    10,  η0     =    56.46,  γ     =    9, 
β     =    1.3 

         s     =    1      s     =    1.1      s     =    1.2  

      0.213    4.41    2.36  
  7.09    6.70    3.14  

  24.4    14.8    4.79  
  26.9    19.6    6.53  
  29.8    23.6    7.38  
  34.8    27.1    8.15  
  44.3    32.0    9.95  
  56.3    33.0    11.1  
  96.4    64.5    19.9  
  97.1    90.1    49.9  

ˆ .x0 10   4.78    6.14    1.68  
η̂   42.16    34.37    12.88  
β̂   1.03    1.31    1.11  

    From  ASLE Transactions  29(1), copyright 1986. 
Reprinted with permission of STLE.   
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 From Table  8.1  in Chapter  8  the upper 5% critical value for  n     =     r     =    10 and 
 k     =    3 is 2.23 so we do not reject the common shape parameter hypothesis. 

 The 10th percentile estimate at  s  = 1.1 is seen to be larger than at  s     =    1.0. The 
estimated scale parameter is smaller at  s     =    1.1, but the greater shape param-
eter estimate at that stress resulted in a larger estimated 10th percentile. 

 The Mathcad module given at the end of this chapter solves for the common 
shape parameter and the stress - life exponent and then the estimated scale 
parameters and 10th percentiles at each stress level. The 10th percentiles 
computed using the estimated common shape parameter are now monotoni-
cally decreasing with stress: 6.591, 3.536, and 2.003. The common shape param-
eter was estimated to be 1.121 and the stress - life exponent was estimated to 
be 6.533. Discussion of the other numerical results in the Mathcad module is 
taken up in Section  9.8 .  

   9.4    PIVOTAL FUNCTIONS 

 A simulated value of the Weibull variable  x ij   appearing in the two simultane-
ous expressions for   β̂ and   ̂γ  can be computed in terms of a uniform random 
variable  u  as:

    x u s uij i ij i ij= = −η (ln ) (ln ) ./ /1
0

1β γ βη     (9.10)   

 The  u ij   are identically distributed uniform random variables over the interval 
(0,1) irrespective of the subscripts  i  and  j . Substituting this expression in Equa-
tions  9.8  and  9.9  reveals, after considerable algebraic manipulation, that the 
variables cluster into two groups, namely

    q =
β̂
β

    (9.11)  

  and

    w* = −( )ˆ ˆ .γ γ β     (9.12)   

 The solution of the two equations for  q  and  w  *  depends on the stress levels 
and the  u ij   but not on any of the Weibull parameters. Thus,  q  and  w  *  are pivotal 
functions whose distributions can be found by Monte Carlo sampling. Addi-
tionally one can show that the following function is also pivotal:

    u r n k p s
x s
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β     (9.13)   

 Where  x p  ( s ) is the true value of the 100 p  - th percentile at some arbitrary stress 
 s  and   ̂ ( )x sp  is its ML estimate. The stress does not have to be a stress at which 
the life tests were conducted.  
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   9.5    CONFIDENCE INTERVALS 

 With the distributions of  q ,  w  * , and  u  *  determined by Monte Carlo sampling 
for specifi ed  n ,  r ,  k ,  p , and  s , one may bias correct and compute confi dence 
intervals for   β   and  x p  ( s ) as before. The precision measures  R  and   R0 50.

β  are also 
computed as before. For the stress - life exponent   γ   we write the probability 
statement:

    Prob[ ] .0.05
*

0.95
*w w< −( ) < =ˆ ˆ .γ γ β 0 90     (9.14)   

 Solving the inequalities for   γ   results in the 90% confi dence interval:

    ˆ ˆ
ˆ
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β

γ γ
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− < < −
w w0 95 0 05     (9.15)   

 A median unbiased estimate of   γ   is:

    ˆ ˆ
ˆ ..
*

′ = −γ γ
β

w0 50     (9.16)   

 The precision measure for the stress - life exponent can be based on the differ-
ence  L  between the upper and lower confi dence intervals. For consistency we 
choose a 90% confi dence interval for this purpose, giving:

    L
w w

=
−0.95

*
0.05
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.
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    (9.17)   

  L  will vary from sample to sample since it depends on the shape parameter 
estimate. The median value of  L  will occur when the shape parameter estimate 
is equal to its median which is   β q  0.50 . Thus a reasonable precision measure for 
  γ   estimation is:

    βL
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    (9.18)   

 Where  L  0.50  denotes the median value of  L .  

   9.6    TESTING THE POWER LAW MODEL 

 As shown in Chapter  8 , the common shape parameter estimate   β̂1 is unaffected 
by differences in the scale parameters. On the other hand, the shape param-
eter estimate under the power law assumption tends to decrease when the 
power law model fails to hold. Intuitively the reason is that when data are 
constrained to follow a power law and they, in fact, do not, it requires a small 
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shape parameter estimate to  “ explain ”  the large apparent scatter relative to 
the fi tted relationship. (Recall that scatter increases as the shape parameter 
decreases.) A reasonable test of the power law relationship therefore is the 

ratio   
ˆ

ˆ
β
β

1  of the unconstrained shape parameter estimate to the value estimated 

under the power law model. If the data do not follow the power law, this ratio 

will tend to increase. An upper percentage point of the distribution of   
ˆ

ˆ
β
β

1  

obtained when the power law holds is the critical value for such a test. The 
test is inapplicable if  k     =    2 since a power law will always fi t when there are 
only two stresses. 

 An alternative to this shape parameter test is a likelihood ratio test. The 
numerator of the likelihood ratio is the likelihood function evaluated using 
the estimated parameters of the power law model. The denominator is the 
likelihood function evaluated under the model of Chapter  8  where there is no 
constraint on the scale parameters. In both cases the likelihood is computed 
assuming that the shape parameter is the same at all stress levels. When the 
power law model holds, the numerator and denominator should be close in 
value. When it does not hold, the ratio   λ   will be small and  − 2ln  λ   will be large. 
The numerator has three parameters,   η   0 ,   β  , and   γ  . The denominator has the  k  
values of   η  i   and   β  . For large enough samples,  − 2ln  λ   is approximately chi - square 
distributed with  k     +    1    −    3    =     k     −    2 degrees of freedom when the power law 
model holds. The computation of the shape parameter ratio and the likelihood 
ratio tests are carried out for the example data in the Mathcad model given 
at the end of this chapter. Our Monte Carlo computations discussed presently 
did not include computation of the likelihood ratio so the correction factor 
needed to produce greater agreement between  − 2ln  λ   and the chi - square dis-
tribution is not known for this application. Therefore, there is a distinct pos-
sibility that the uncorrected likelihood ratio may be misleading.  

   9.7    MONTE CARLO RESULTS 

 Simulations were conducted with  k     =    2 and 3 stress levels and uncensored 
samples of size 5, 10, 15, or 20 at each stress. In performing the simulations it 
is convenient to take   β      =    1,   η   0     =    1, and   γ      =    0. For  k     =    2 the stress levels were 
taken as  s  1     =    1 and  s  2     =    1.2. For  k     =    3 the stress levels chosen were  s  1     =    1, 
 s  2     =    1.1, and  s  3     =    1.2. The results are shown in Tables  9.2  and  9.3 , respectively. 
For each pivotal function fi ve percentage points are displayed, namely  α     =    
0.05, 0.10, 0.50, 0.90, and 0.95. For the  k     =    2 case these percentage points are 

displayed for   
ˆ

ˆ
β
β

max

min

,  q ,  w  * , and  u  *  for seven values of  s  and with  p     =    0.10. The 

seven stresses include the two stresses at which the life tests are run and 
fi ve others ranging from 0.5 to 0.9 in increments of 0.1. (This range could 
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conveniently be written in shorthand notation as 0.5(0.1)0.9.) Upper 

percentage points of   
ˆ

ˆ
β
β

max

min

 may be used to verify that the shape parameters are 

the same at every level. The same quantities are given in Table  9.3  for the  k     =    3 

case, except that this table also contains percentage points of   
ˆ

ˆ
β
β

1  for testing 

the validity of the power law model and the stress levels beyond the three at 
which testing is conducted are 0.6(0.1)0.9.    

   9.8    EXAMPLE CONCLUDED 

 We have already established that for the data of Table  9.1  the common shape 
parameter test holds. The shape parameter estimate   β̂0 which results when all 
the data points are combined into a single group of size 30 is 1.001. The esti

mate   β̂1 is 1.140 so   
ˆ

ˆ .
β
β

1

0

1 140=  and exceeds the 90th percentile 1.116 given in 

Table  8.3 a and is just slightly less than the 95th percentile . Thus, we reject the 
hypothesis that there is no difference among the scale parameters. The next 
question is whether the scale parameters vary in accordance with a power law 
model. The power law constrained estimate of the shape parameter is   ˆ .β =1 121. 

To test the power law model, we form the ratio   
ˆ

ˆ .
β
β

1 1 018= . This is well below 

the 90th percentile of 1.0697 given in Table  9.3 . The scale parameter differ-
ences are thus consistent with a power law model. This is confi rmed by the 
likelihood ratio test. The test statistic,  − 2ln  λ   is computed to be 1.08. Under the 
chi - square distribution with  k     −    1    =    1 degrees of freedom, there is a 30% 
chance of exceeding 1.08. 

 Having accepted the power law model, we can compute confi dence inter-
vals on   β  ,   γ  , and  x p  ( s ). 

 Using  q  0.050     =    0.8349 and  q  0.95     =    1.3675 from Table  9.3 , a 90% confi dence 
interval for the shape parameter is:

   0 820
1 121

1 3675
1 121

0 8349
1 34.

.
.

.
.

. .= < < =β   

 The interval just barely contains the true value of   β      =    1.3. A median unbiased 
estimate is computed as:

   ˆ .
.

. .′ = =β 1 121
1 0543

1 06   

 The validity of the interval for the shape parameter depends on the validity 
of the power law model. The interval computed in Chapter  8  is valid no matter 



286 weibull regression

how the scale parameters vary and is a viable alternate choice. In the former 
case three parameters are estimated from the data, namely   η   0 ,   β  , and   γ  . In the 
latter case  k     +    1 parameters are estimated, namely  k  values of   η  i  , and   β  . For 
 k     =    2 the number of parameters estimated is the same in both cases. Also when 
 k     =    2 the power law model must hold because with only two sets of data, a 
power law model can always be fi t. For  k     >    2, the number of estimated param-
eters is greater when the power law is not assumed and hence the confi dence 
limits for the shape parameter may not be as tight as under the power law 
model provided that the power law model is true. For  k     =    3 or 4 it may be 
preferable to use the methodology of Chapter  8  even though the power law 
model cannot be formally rejected. 

 A 90% interval for the stress - life exponent is calculated using   w0 05 4 62.
* .= −  

and   w0 95 4 41.
* .=

   2 56 6 53
4 41

1 121
6 53

4 62
1 121

10 65. .
.

.
.

( . )
.

. .= − < < −
−

=γ   

 This is a wide interval. It does contain the true value   γ      =    9.0. 
 A median unbiased estimate of   γ   is:

   ˆ .
.
.

. .′ = −
−

=γ 6 53
0 0473
1 121

6 57   

 A confi dence interval for  x  0.10  at  s     =    1.0 is calculated using   u0 05 0 6542.
* .= −  and 

  u0 95 1 0934.
* .= .

   2 49 6 59
1 093
1 121

1 6 59
0 652
1 121

0 10. . exp
.
.

. exp
.
.

.= −⎡
⎣⎢

⎤
⎦⎥

< =( ) <x s ⎡⎡
⎣⎢

⎤
⎦⎥

= 11 8. .   

 A median unbiased estimate of the 10th percentile at  s     =    1 is:

   ˆ . exp
.
.

. ..′ = −⎡
⎣⎢

⎤
⎦⎥

=x0 10 6 59
0 1023
1 121

6 02   

 In the same way, confi dence intervals and median unbiased estimates may be 
computed at each of the other stresses listed in Table  9.3 . The results are sum-
marized in Table  9.4  below. The last column shows the true value of  x  0.10  com-
puted from the population power law model used to generate the simulated 
data:   

 The true value of  x  0.10  is within the confi dence limits for all seven stresses. 
Figure  9.1  is a plot of the logarithms of the median unbiased estimates and 
the 90% confi dence limits as a function of the stress  s . The loss in precision 
due to extrapolation outside the stress range where the data were obtained is 
evident.    
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   9.9    APPROXIMATING  u  *  AT OTHER STRESS LEVELS 

 For any stress  s  the quantity   u
x s
x s

* 0.10

0.10

ln= ( )
( )

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ
β  may be expressed as:

    u
x s
x s

x s
x s

* 0.10

0.10

0.10

0.10

ln ln
1
1

= ( )
( )

⎛
⎝⎜

⎞
⎠⎟

=
=( )
=( )

⎛
⎝

ˆ ˆ ˆ ˆ
β β ⎜⎜

⎞
⎠⎟

− −ˆ( ˆ ) ( )β γ γ ln .s     (9.19)   

 The fi rst term is  u  *  at  s     =    1 and the second term is the product of  w  *  and ln( s ). 
For notational simplicity we write:

    u z z s* ln .= − ( )1 2     (9.20)   

  Table 9.4    90% Confi dence Intervals for  x  0.10  Computed at Seven Stress Levels 
under the Estimated Power Law Model 

   Stress       ˆ .′x0 10   
   Lower 

Confi dence Limit  
   Upper 

Confi dence Limit  
   True 
  x  0.10   

  0.60    169.1    12.8    1980    992.290  
  0.70    61.8    8.18    397    247.809  
  0.80    25.8    5.57    100.7    74.506  
  0.90    12.0    3.80    30.9    25.812  
  1.00    6.02    2.49    11.8    10.000  
  1.10    3.23    1.46    5.79    4.241  
  1.20    1.83    0.754    3.54    1.938  

    From  ASLE Transactions  29(1), copyright 1986. Reprinted with permission of STLE.   

     Figure 9.1     90% confi dence intervals for  x  0.10  versus stress level.  
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 Table  9.5  lists the mean of  z  1  and  z  2  along with their variances and covariance 
for each sample size for  k     =    2 and  k     =    3. These were determined as a by -
 product of the simulations that produced Tables  9.2  and  9.3 . The mean and 
variance of  u  *  may be written:

    E u E z E z s* ln( )( ) = ( ) − ( )1 2     (9.21)     

 and

    var u var z var s s cov z z* ln ln , .( ) = ( ) + ( ) ( )[ ] ( ) ( )−1 2
2

1 22z     (9.22)   

 Using a normal approximation to the distribution of  u  *  the 95th percentile is:

    u E u var u0 95
1 21 645.

* * * /. [ ] .= ( ) + ( )     (9.23)   

 The 5th percentile is calculated similarly but using  − 1.645 instead of  + 1.645. 
 As an example and to verify the accuracy of the approximation, we will 

approximate the percentage points at  s     =    0.6 for  k     =    3 and  n     =     r     =    20. 
 The mean is:

   E u* . . ln . . .( ) = − × ( ) =0 0716 0 0082 0 6 0 076   

 The variance is:

   var u* . . [ln( . )] ln . . . .( ) = + × − × ( )( ) =0 1274 3 386 0 6 2 0 6 0 3193 1 3372   

 The 5th percentile is approximated by  − 1.826. The 95th percentile is approxi-
mated by 1.978. These approximations compare to the values from direct 
simulation  − 1.76 and 2.01. Since the actual limits are wider than the approxi-
mate limits, the approximation is not conservative in this case.  

  Table 9.5    Means, Variances and Covariance of  z  1  and  z  2  for Various Values of  n ,  r , 
and  k  

    n       r       k       E (z  1  )      E ( z  2 )      Var ( z  1 )      Var ( z  2 )      Cov ( z  1 , z  2 )  

  5    5    2    0.5789    0.0405    1.414    24.14    1.121  
  10    10    2    0.2371     − 0.0322    0.4516    8.198    0.7156  
  15    15    2    0.1497     − 0.0103    0.2664    5.031    0.4577  
  20    20    2    0.1111    0.0104    0.1863    3.509    0.3169  
  5    5    3    0.3340    0.0030    0.7520    19.27    1.769  

  10    10    3    0.1467    0.0338    0.2869    7.518    0.6800  
  15    15    3    0.0971    0.0065    0.1787    4.632    0.4360  
  20    20    3    0.0716    0.0082    0.1274    3.386    0.3193  

    From  ASLE Transactions  29(1), copyright 1986. Reprinted with permission of STLE.   
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   9.10    PRECISION 

 Tables  9.6  and  9.7  list for  k     =    2 and  k     =    3, respectively, the precision measures 
 R  and   β L  0.50  at each of the four sample sizes along with the values of   R0 50.

β  at 
each of the seven stresses. Also shown for comparison are the values of  R  and 
  R0 50.

β  that would result if all  kn  items were tested at the single stress  s     =    1. For 
 k     =    2, the values of   R0 50.

β  differ slightly at the two stress levels probably due to 
sampling error. These values exceed the value of   R0 50.

β  corresponding to a single 
sample. It is conjectured that at  s     =    1.1, midway between the two stresses used 
in the life tests, the precision could be nearly comparable to the single sample 
precision. This is so for the  k     =    3 case where the precision at  s     =    1.1 compares 
favorably to the single sample values.   

 The uncertainty in estimation of   γ   is greatly affected by the closeness of the 
stress levels. For  k     =    2 and  n     =     r     =    5, an evaluation at  s  1     =    1 and  s  2     =    2 gave a 
value of   β L  0.50  of 3.49 compared with the value 13.3 for  s  1     =    1 and  s  2     =    1.2. As 
in ordinary regression, the precision with which the slope is estimated improves 
with the distance between the largest and smallest values of the independent 
variable. The hazard is that separating the stress levels by too large a margin 
may introduce a different failure mode than that under study and invalidate 
the stress - life model.  

   9.11    STRESS LEVELS IN DIFFERENT PROPORTIONS 
THAN TABULATED 

 If with  k     =    2 the stresses are not in the proportion 1   :   1.2 corresponding to the 
tabled values, it is possible to transform them to equivalent stresses that are 
in the required proportions. For example, if  s  1     =    1 and  s  2     =    2, one may fi nd a 
transformation:

    σ δ= s .     (9.24)   

 Such that   σ   1     =    1 and   σ   2     =    1.2. The defi ning relation is:

   1 2 2. .= δ   

 So that,

   δ δln ln . ;
ln .
ln

. .2 1 2
1 2
2

0 263= = =   

 The estimated power law in the transformed stress is:

   η η σ ηγ γ= =−
0 0

0 263� �( ) ..s   
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 Here   �γ  is the estimated stress - life exponent that results from using  s  2     =    1.2. 
The actual estimated stress - life exponent is then 0.263  �γ  or, in general,   ̂γ δγ= � . 
Using  s  2     =    1.2 instead of an actual value  s  only affects the stress - life exponent 
and not the shape parameter estimate. When life tests are conducted at  k     =    3 
stresses they can be mapped to 1, 1.1, and 1.2 only if they are spaced so that 
the same exponent transforms the two normalized larger stresses to 1.1 and 
1.2. In planning the tests it should be possible to select  s  2  so that a common 
exponent transforms the stresses to the proportions 1, 1.1, and 1.2. For example, 
suppose we wish to use  k     =    3 and have selected the largest and smallest 
stresses for testing to be 2000 and 1000. These are transformed to  s  1     =    1 and 
 s  3     =    2 by dividing by 1000. We also know that raising 2 to the power 0.263 will 
transform it to 1.2. We now seek the intermediate stress  s  2  so that the same 
exponent will transform it to  s  2     =    1.1. That is, we seek the stress  s  2  such that:

   s2
0 263 1 1. . .=   

 The solution is  s  2     =    1.436 or, in original units,  s  2     =    1436. This choice, only mod-
estly different from the midpoint choice of  s  2     =    1500, will allow the use of the 
tables of simulation results computed for  k     =    3.  

   9.12    DISCUSSION 

 The Weibull regression or power law model has been shown to be amenable 
to exact inference with readily calculated measures of precision wherefrom 
required sample sizes may be determined. Tabular values are limited as to 
sample sizes and stress levels. A software program comparable to the multi -
 weibull model discussed in Chapter  8  could be developed for the Weibull 
regression model to extend its applicability to a wider range of sample sizes, 
censoring and stress levels.  

   9.13    THE DISK OPERATING SYSTEM ( DOS ) PROGRAM  REGEST  

 The DOS program REGEST will compute the ML estimates of the parame-
ters   β   and   γ   under the power law model described in this chapter as well as 
the estimates of fi ve quantiles of the life distribution at each stress. The initial 
screen shown as Figure  9.2  asks the user for the number of sample groups and 
then asks in turn for the stress level for each group and the sample size and 
number of failures for the group. It then asks for the data pertinent to that 
group (not shown). When the data for all groups are entered, the program asks 
for initial guesses for the shape parameter and for the stress - life exponent. 
Figure  9.3  shows the computed results and several quantiles of the life distri-
bution at each stress level. The data used in this example are given in Table 
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 9.1 . The same data are used in the Mathcad module that follows and the results 
are seen to be in agreement.

   Mathcad Module for Weibull Regression      
 This Mathcad module is designed to estimate the Weibull parameters and 

the exponent of a power function relationship between the Weibull scale 
parameter and a quantitative independent variable such as stress. It also com-
putes the test statistics for assessing whether a power function relation is 
acceptable. 

Figure 9.2     Initial screen for DOS program REGEST.  

Figure 9.3     Final screen of DOS program REGEST.  
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 Set the number of levels  k , the sample size at each level,  n , and the number 
of failures at each stress level  r .  n  and  r  are vectors of dimension  k .

   k n r n r: : : .= =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

3

10

10

10

10

10

10
  

   s : .

.

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1

1 1

1 2
      the  s  vector gives the stress levels at which testing was 

performed. 
 The vector y contains the data in column form. Column 1 contains the data 

at the fi rst value of  s , column 2 the second, and so on.

   y :

. . .

. . .

. . .

. . .

.
=

0 213 4 41 2 36

7 09 6 70 3 14

24 4 14 8 4 79

26 9 19 6 6 53

29 8 23.. .

. . .

. . .

. . .

. . .

.

6 7 38

34 8 27 1 8 15

44 3 32 0 9 95

56 3 33 0 11 1

96 4 64 5 19 9

97 11 90 1 49 9. .

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

  

 Transpose the data into the matrix  x  so that each row corresponds to a value 
of  s .

   x := yT   

     x =

1 2 3 654 7 8 9

1
2

3

0.213 7.09 24.4 26.9 29.8 34.8 44.3 56.3 96.4
4.41 6.7 14.8 19.6 23.6 27.1 32 33 64.5

2.36 3.14 4.79 6.53 7.38 8.15 9.95 11.1 19.9

 

 Guess values for the exponent and shape parameter

   β γ: := =1 10   

 Defi ne  R  and  X 

   R r X x Xi

i

k

i j

j

r

i

k i

: : ln . .,= = ( ) =
= ==
∑ ∑∑

1 11

83 104   
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 Now solve for the power law model parameters

   η η γ= × −
0 s .   

 Given

   
1 11

β

β γ β

β γ
+ −

( ) × ( ) × ( )⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

( )

×

==

×

∑∑X
R

s x x

s

i i j i j
j

n

i

k

i

i

, ,ln

×× ( )⎡
⎣⎢

⎤
⎦⎥

=

== ∑∑ xi j
j

n

i

k i

,

.
β

11

0  

   r s
R s s x

i i

i

k i i i j
j

n

i

k i

× ( )( ) −
× ( ) × ( ) × ( )⎡

⎣⎢
⎤
⎦⎥

=

×

==∑ ∑∑
ln

ln ,

1

11

β γ β

ss xi i j
j

n

i

k i( ) × ( )⎡
⎣⎢

⎤
⎦⎥

=
×

== ∑∑ β γ β
,

11

0  

   β > 0  

   b : ,= ( )Find β γ  

   β γ: := =b b1 2  

   β γ= =1 121 6 533. . .   

 Compute the scale parameter at  s     =    1.0

   η
β γ β β

0 11

1

:
,

=
( ) ⋅ ( )⎡

⎣⎢
⎤
⎦⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⋅

== ∑∑ s x

R

i i j
j

n

i

k i

 

   η0 49 031= . .   

 Compute estimated scale parameters and 10th percentile at each  s  value

   i k:= 1…  

   η η γ
i i= ⋅( )−0 s  

   x i10 0 10536
1

: . .= ⋅β η   

 Compute the log likelihood under the power law model

   LL R X r
x

i i

i

k
i2 1

1

: ln ln= ⋅ ( ) + −( )⋅( )[ ] − ⋅ ⋅ ( )( )⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥ −

=
∑β β β η ,, j

ij

n

i

k i

η

β
⎛
⎝⎜

⎞
⎠⎟

==
∑∑

11

 

   LL2 127 084= − .   
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 Store scale parameter estimates under the power law model

   i k:= 1…  

   ui i:= η   

     

i =

1
1.1

1.2

Si =

1
2

3

ηi =

49.031

26.306

14.9

x10
i

6.591
3.536

2.003

 =

 

 Consider the case with no stress - related constraint placed on scale parameter 
values. 
 initial guess   β   1 :    =     b  1  

 Given 

     

s
i
 =

1

2

3

i =

1

1.1

1.2

u
i
 =

49.031

26.306

14.9

η
i
 =

43.454

32.864

13.07

   
1

1

1

1
1

1

1β

β

β
+ −

⋅( ) ⋅ ( )⎡⎣ ⎤⎦
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==
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r x x

R x

i i j i j
j
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, ,

,
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00  

   β1 0>  

   β β1 1:= ( )Find  

   β1 1 14= . .   

 Compute unconstrained scale parameter estimates

   i k:= 1…  

   η

β β

i

i j

j

n

i

x

r

i

:

,

=
( )⎡

⎣

⎢
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⎤
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⎥
⎥
⎥
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∑ 1

1

1

1

  

 Compare constrained and unconstrained estimates

   i k: .= 1…   

 The  u i   are scale parameter estimates under the power law model. 
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 The   η   i  are scale parameter estimates with no relation among levels. 
 Compare shape parameter estimates:

   
β
β1

0 983= . .   

 Compute log likelihood with no constraint on scale parameters
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   LL0 126 544= − .  

   T LL LL:= ⋅ −( )2 0 2  

   T = 1 08. .   

 T    =     − 2ln  λ   is approximately   χ  2 distributed with ( k     +    1)    −    3    =     k     −    2    =    1 degrees 
of freedom. It tests whether the power relation is reasonable.

   p T pchisq T k= > = − −Prob [ . ] ( , )1 08 1 2  

   p pchisq T k: ( , )= − −1 2  

   p = 0 299. .     
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 EXERCISES 

       1.    Three uncensored samples of size  n     =    5 were simulated at three stresses 
using   η   0     =    100,   γ      =    3, and   β      =    2. The data are tabled below:

    
   Stress (psi)     Lifetimes (hours)  

  1000    22.8686124    42.5531329    100.800217    117.730573    165.318143  
  1100    46.2908985    74.5227136    117.288484    123.728826    132.190278  
  1200    45.5254146    66.8071674    67.2936268    70.4535347    81.6412457  
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 Use the DOS program REGEST to estimate the regression model 
parameters. Use the DOS program WEIBEST to compute the common 
shape parameter estimate with no power law assumption. Use the tabulated 
percentage points in (9.3) to test for the validity of the power law model. 
Compute 90% confi dence limits for  x0.10  at stress  s     =    1000, the Weibull shape 
parameter, and the stress - life exponent.    



  C H A P T E R   1 0 

The Three - Parameter 
Weibull Distribution     

    10.1    THE MODEL 

 The introduction of a third parameter extends the fl exibility and usefulness of 
the Weibull distribution as a model for random phenomena. 

 Under the three - parameter version of the Weibull distribution the cumula-
tive distribution function (CDF) is written as:

    F x
x

x( ) = − −
−⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ >1 exp ; .

γ
η

γ
β

    (10.1)   

 The parameter   γ   is alternately known as the location parameter, the threshold 
parameter, or, when the random variable  x  represents a lifetime, the guarantee 
time. If indeed a random lifetime followed the three - parameter Weibull dis-
tribution it would be of great benefi t provided that   γ   were suffi ciently large 
because then the reliability function  R ( x ) could be claimed to be 1.0 for any 
lives  x  that were less than   γ  . 

 The three - parameter Weibull has been applied to model the distribution of 
the diameter of trees, (Bailey and Dell,  1973 ), the fatigue life of roller chains 
(Sun et al.,  1993 ), fretting fatigue life of an aluminum alloy (Poon and Hoeppner, 
 1979 ), and the volume of oil spills in the Gulf of Mexico (Harper et al.,  2008 ). 
It competes with the two - parameter Weibull as a model for fracture strength 
of brittle materials. (Alqam et al.,  2002 ; Lu et al.,  2002 ). 

 The expression for the probability density function  f ( x ) is the derivative of 
 F ( x ) in Equation  10.1 .
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    (10.2)   
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 Its appearance is identical to the ordinary two - parameter Weibull density, 
except it starts at  x     =      γ   rather than  x     =    0. The  p  - th quantile is expressed as:

    x p kp p= − −( ) + = +ln( ) ( ) ./ /1 1 1β βη γ η γ     (10.3)   

 This is the expression for the  p  - th quantile of the two - parameter distribution 
augmented by the location parameter   γ  . 

 It is sometimes convenient to write the Weibull CDF with a percentile as 
scale parameter. Solving Equation  10.3  for   η   and substituting in Equation  10.1  
gives:

    F x k
x
x

xp
p

( ) = − −
−
−

⎡

⎣
⎢

⎤

⎦
⎥ >1 exp ; .

γ
γ

γ
β

    (10.4)   

 The population mean or expected value of a three - parameter Weibull distribu-
tion is:

    E x( ) = + +⎛
⎝⎜

⎞
⎠⎟

γ η
β

Γ 1
1

.     (10.5)   

 Just as for the percentiles, the mean is the same as in the two - parameter case 
but with the addition of the location parameter. The variance is exactly the 
same as for the two - parameter Weibull. The additive constant of the location 
parameter does not affect the variance. 

 Inference for the three - parameter Weibull model is not so well developed 
as for the two - parameter case. 

 In particular, estimating the parameters by the method of maximum likeli-
hood (ML) is complicated by the fact that the likelihood equations may have 
no solution; that is, the likelihood function may have no stationary point. In 
other cases the solution of the likelihood equations may converge to a saddle 
point and not to the maximum of the likelihood function. (Lawless,  2002 ; 
Rockette et al.,  1974 ). 

 Exact interval estimation based on the ML estimates has not been addressed 
in the literature. 

 A simple method is given here for testing the two - parameter Weibull dis-
tribution against the three parameter alternative in type II censored samples 
(McCool,  1998 ). It is based on the ratio of (i) the ML estimate of the shape 
parameter calculated with the observations artifi cially censored at the  r  1  - th 
ordered value to (ii) the corresponding estimate using all  r  ( >  r  1 ) observed 
values in the type II censored sample of size  n  ( ≥  r ). Some critical values for 
conducting the test are given for 10    <     n     <    100 and various values of  r  and  r  1 . 
The values of  r  1  given in the table were chosen to maximize the power of the 
test. Software is described for generating the critical values for any choice of 
sample sizes. 
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 The acceptance region for the test can be translated into a lower confi dence 
interval estimate for the location parameter. Two numerical examples illus-
trate the calculations.  

   10.2    ESTIMATION AND INFERENCE FOR THE WEIBULL 
LOCATION PARAMETER 

 The procedure uses two ML estimates of the shape parameter: one based on 
the complete sample and one based on just the early - order statistics. The 
idea behind the procedure is readily grasped in the context of graphical 
estimation. 

 For the two - parameter Weibull distribution we have established that

    y x
F x

x( ) ≡
− ( )

⎡
⎣⎢

⎤
⎦⎥

= −ln ln ln ln .
1

1
β β η     (10.6)   

  y ( x ) is a linear function of ln x  having slope   β   and intercept  −   β  ln  η   and is the 
basis for the linearization of the Weibull CDF used in the construction of 
Weibull probability paper. For the three - parameter case:

    y x
F x

x x( ) ≡
− ( )

⎡
⎣⎢

⎤
⎦⎥

= −( ) − >ln ln ln ln ; .
1

1
β γ β η γ     (10.7)   

 The slope of a plot of  y ( x ) against ln x  in the three - parameter case is:

    
dy x

dx x
( )

.=
−
β

γ
    (10.8)   

 The slope is infi nite at  x     =      γ   and decreases monotonically with  x  thereafter to 
an asymptote of   β  . 

 If a data sample is drawn from a two - parameter Weibull distribution, the 
estimated function   ̂ ( )y x , plotted using estimated values of  F ( x ) at each ordered 
failure time, will tend to plot against the failure time logarithms as a straight 
line with a slope   β  . If   γ      >    0, that is, the population is a three - parameter Weibull 
distribution, the estimated CDF will tend to be a concave function of ln x  
approaching a constant slope   β   for large  x  values. 

 Figure  10.1  shows how a plot of   ŷ  ( x ) versus ln x  might appear for a sample 
drawn from a three - parameter Weibull distribution.   

 If these data were regarded as a two - parameter Weibull sample a graphical 
estimate of the shape parameter   β̂A could be found as the slope of the straight 
line that best fi ts the complete data sample. 

 If only a subset comprising the smallest ordered values were used in graphi-
cally estimating the shape parameter, the estimate   β̂L would be obtained. For 
three - parameter Weibull data   β̂L will tend to exceed   β̂A. On the other hand, 
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when the sample is drawn from a two - parameter Weibull population (  γ      =    0), 
  β̂A and   β̂L will be comparable in magnitude.  

   10.3    TESTING THE TWO -  VERSUS THREE - PARAMETER 
WEIBULL DISTRIBUTION 

 Rather than graphical estimation we consider ML estimation of   β   due to its 
precision and freedom from subjectivity. As we have seen in Section  5.6.3  for 
a sample of size  n , type II censored at the  r  - th ordered observation  x r  , the ML 
estimate of   β   for a two - parameter Weibull distribution is the solution of the 
nonlinear equation:
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.     (10.9)   

 Denoting the solution of Equation  10.9  as   β̂A and the solution with 

censoring at r 1     <    r, as   β̂L, the distribution of   w L

A

=
ˆ

ˆ
β
β

 will depend only upon  n , 

 r  1 , and  r  when the underlying distribution is indeed of the two - parameter 
Weibull form (  γ      =    0). When the underlying distribution is the three - parameter 
Weibull the mean value of   β̂  will tend to exceed the mean value of   β̂ . 

     Figure 10.1     Weibull plot of three - parameter Weibull data. From Journal of Quality Technology, 
copyright 1998, American Society for Quality.  Reprinted with permission. No further distribution 
allowed without permission.   
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 With the percentiles of  w  determined by Monte Carlo sampling for specifi ed 
 r  1 ,  r , and  n , one may reject the hypothesis that   γ      =    0 at the 100  α  % level if

    
ˆ

ˆ .
β
β

α
L

A

w> −1     (10.10)   

 Table  10.1  contains the 50 - th, 90 - th, and 95 - th percentage points of  w  for  n  
ranging from 10 to 100 and various choices of  r  1  and  r . The value of  r  1  was 
selected to give maximum power in detecting a nonzero location parameter 
for specifi ed  n  and  r . This is discussed further in Section  10.4 . These percentage 
points were obtained from 10,000 realizations of  w  computed from simulated 
two - parameter Weibull samples drawn from a population having a 10th per-
centile of 1.0 and   β      =    1.0.    

   10.4    POWER OF THE TEST 

 The ordered members  x  i  of a three - parameter Weibull sample are expressible 
in terms of the corresponding ordered members  y  i  of a sample from the stan-
dard exponential distribution as

    x yi i= +η γβ .     (10.11)   

 Substituting Equation  10.11  into Equation  10.9  and simplifying reveals that   β̂  
depends on   γ    through the ratio   γ   /  η  . The probability of accepting   γ      >    0 there-
fore depends on the true value of   γ   relative to the scale parameter or relative 
to any percentile of the two - parameter distribution which the data follow 
when   γ   is subtracted from each observation. 

 To examine the power of the test, the non - null distribution of  w  was found 
for various  n ,  r  1 , and  r  using 10,000 samples from the three - parameter Weibull 
distribution having a location parameter   γ      =    10, which is equal to the 10th 
percentile of the two - parameter distribution used to generate the null distribu-
tion of  w . The probability  P  a  of accepting the location parameter as zero in a 
10% signifi cance level test was then found by interpolation in the non - null 
distribution of  w . These acceptance probabilities are listed in Table  10.2 .   

 The power, (1    −     P  a ), is seen to increase with  r  for fi xed  n  and  r  1  and with  n  
for fi xed  r  and  r  1 . For a given value of  n  and  r , the best choice of  r  1  appears to 
be 5 for  n     ≤    30, 7 for  n     =    40 to 60, and 9 for  n     =    80 to 100.  

   10.5    INTERVAL ESTIMATION 

 Given that a random variable  x  is drawn from a three - parameter Weibull 
population having location parameter   γ  , the transformed variable  y     =     x     −      γ   



  Table 10.1    Percentage Points of  w  for Various  n, r,  and  r1

n       r1       r       w0.50       w0.90       w0.95

  10    5    6    0.988    1.488    1.789  
  10    5    7    1.035    1.730    2.132  
  10    5    8    1.077    1.902    2.352  
  10    5    9    1.116    2.022    2.517  
  10    5    10    1.138    2.126    2.683  
  15    5    10    1.141    2.094    2.579  
  15    5    15    1.223    2.408    3.055  
  20    5    6    0.990    1.498    1.759  
  20    5    10    1.137    2.073    2.582  
  20    5    12    1.172    2.198    2.784  
  20    5    15    1.210    2.345    2.974  
  20    5    18    1.238    2.417    3.135  
  20    5    20    1.254    2.491    3.188  
  25    5    10    1.146    2.118    2.622  
  25    5    14    1.199    2.321    2.924  
  25    5    15    1.211    2.238    2.850  
  25    5    18    1.237    2.460    3.087  
  25    5    20    1.250    2.515    3.148  
  25    5    25    1.278    2.540    3.278  
  30    5    6    0.990    1.467    1.734  
  30    5    10    1.139    2.079    2.602  
  30    5    15    1.213    2.340    2.915  
  30    5    20    1.256    2.457    3.119  
  30    5    25    1.278    2.544    3.224  
  30    5    30    1.294    2.600    3.279  
  40    7    15    1.098    1.755    2.074  
  40    7    20    1.136    1.888    2.240  
  40    7    25    1.157    1.937    2.299  
  40    7    30    1.172    1.984    2.364  
  40    7    40    1.198    2.039    2.430  
  50    7    25    1.152    1.941    2.292  
  50    7    30    1.165    1.995    2.342  
  50    7    40    1.182    2.049    2.420  
  50    7    50    1.191    2.070    2.466  
  60    7    30    1.167    2.014    2.406  
  60    7    40    1.183    2.062    2.470  
  60    7    50    1.199    2.097    2.527  
  60    7    60    1.203    2.128    2.564  
  80    9    40    1.122    1.771    2.054  
  80    9    50    1.133    1.793    2.091  
  80    9    60    1.140    1.824    2.108  
  80    9    70    1.146    1.844    2.121  
  80    9    80    1.150    1.850    2.143  

  100    9    50    1.132    1.787    2.087  
  100    9    60    1.140    1.809    2.101  
  100    9    70    1.147    1.827    2.129  
  100    9    80    1.151    1.837    2.152  
  100    9    90    1.152    1.840    2.146  
  100    9    100    1.155    1.846    2.173  

    From the  Journal of Quality Technology , copyright 1998 American Society for Quality. Reprinted 
with permission. No further distribution allowed without permission.   
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  Table 10.2    Probability of Accepting  γ     =    0 when  γ   =     x0.10

   n      r1       r       Pa

  10    2    10    0.822  
  10    5    10    0.788  
  10    6    10    0.797  
  10    7    10    0.809  
  10    8    10    0.833  
  20    5    10    0.740  
  20    6    10    0.750  
  20    7    10    0.770  
  20    8    10    0.800  
  20    9    10    0.830  
  20    5    15    0.680  
  20    6    15    0.700  
  20    7    15    0.710  
  20    9    15    0.740  
  20    10    15    0.760  
  20    5    20    0.630  
  20    7    20    0.650  
  20    9    20    0.680  
  20    10    20    0.700  
  20    15    20    0.760  
  30    2    20    0.703  
  30    5    20    0.555  
  30    7    20    0.582  
  30    8    20    0.616  
  30    10    20    0.649  
  30    2    30    0.674  
  30    5    30    0.477  
  30    7    30    0.498  
  30    9    30    0.536  
  30    10    30    0.547  
  40    2    20    0.662  
  40    5    20    0.512  
  40    7    20    0.507  
  40    8    20    0.556  
  40    10    20    0.594  
  40    5    40    0.360  
  40    7    40    0.340  
  40    9    40    0.370  
  40    11    40    0.390  
  40    13    40    0.430  
  50    5    50    0.250  
  50    7    50    0.240  
  50    8    50    0.240  
  50    9    50    0.260  
  50    10    50    0.270  
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will follow a two - parameter Weibull distribution with the same scale and shape 
parameters as the three - parameter distribution. Thus, if the true location 
parameter   γ   is subtracted from the observed data prior to calculating   β̂A and 
  β̂L from Equation  10.9 , the resulting ratio denoted,

    w L

A

γ β
β

( ) =
ˆ

ˆ ,     (10.12)  

  will follow the null distribution of  w  determined by Monte Carlo sampling 
from a two - parameter Weibull population for given values of  n ,  r  1 , and  r . 

 We may thus write the 100(1    −      α  )% probability statement:

    Pr [ ] .ob w wγ αα( ) < = −−1 1     (10.13)   

 We also need the fact that if an arbitrary amount   λ   (  λ      <     x  1 ) is subtracted from 
each observation in a given sample prior to calculating   β̂A and   β̂L, 

  w L

A

λ β
β

( ) =
ˆ

ˆ  will be a decreasing function of   λ  . 

 Accordingly, we may invert the inequality of Equation  10.12  to give a 
100(1    −      α  )% lower confi dence limit for   γ  , that is,

    γ γα α> ( ) =−
−w w1

1 .     (10.14)   

 The notation adopted here is to specify the   γ   value, which will be exceeded 
with 90% confi dence as   γ   0.10 . Figure  10.2  shows schematically a typical data -

   n      r  1       r       P  a   

  60    5    60    0.180  
  60    7    60    0.170  
  60    9    60    0.170  
  60    10    60    0.180  
  60    11    60    0.190  
  80    5    80    0.100  
  80    7    80    0.072  
  80    9    80    0.067  
  80    10    80    0.071  
  80    11    80    0.072  

  100    9    100    0.021  
  100    10    100    0.023  
  100    11    100    0.027  

Table 10.2 (Continued)
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 dependent function  w (  λ  ) plotted over the range of physically meaningful 
values of the location parameter, that is, (0,  x  1 ). The 90% lower confi dence 
limit for the location parameter value is shown as the value of   λ   for which the 
function  w (  λ  ) is equal to  w  0.90 . Correspondingly the median unbiased estimate 
of   γ   is the   λ   value for which  w (  λ  ) is equal to  w  0.50 . It is clear from the graph 
that unless  w (0) exceeds  w  1 −     α   ,   γ̂ α  will be negative and hence uninformative 
since we presuppose that   γ   is positive or 0. Accordingly, for negative solutions 
  ̂γ α  is taken to be zero.   

 In practice the inversion indicated by Figure  10.2  is readily accomplished 
using a golden section search procedure. This technique is implemented in the 
DOS program LOCEST illustrated in the next section using fatigue data on 
rolling chains obtained at a load of 5.5   kgf and given in Sun et al.  (1993) . 

 As an example we have modifi ed the sample of 10 observations fi rst intro-
duced in Chapter  5  and drawn from the two parameter Weibull distribution 
 W (56.46,1.3) by adding 50 to each observation. The sample thus became a 
random sample from a three - parameter distribution with   γ      =    50. Then the 
value of the ratio   w L A= ˆ / ˆβ β  was computed with  r     =    10 and  r  1     =    5 after sub-
tracting the quantity   λ   from each observation as   λ   varied over the range from 
0 to 64. The resultant plot is shown as Figure  10.3 .   

 The value of  w  0.50     =    1.13 intersects the  w (  λ  ) curve at a value close to 50. The 
median value was calculated using the software described next in Section  10.6  

     Figure 10.2     w(  λ  ) as a function of   λ  . From the  Journal of Quality Technology , copyright 1998, 
American Society for Quality.  Reprinted with permission. No further distribution allowed without 
permission.   
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to be 49.46. Since the value of  w (0)    =    1.459 is less than  w  0.90     =    2.126 the lower 
90% limit is taken to be zero.  

   10.6    INPUT AND OUTPUT SCREENS OF  LOCEST .exe 

 The input screen shown in Figure  10.4  asks the user to input a short title and 
then the values of  n ,  r  1 , and  r . It then asks for the median and 95th quantiles 
 w  0.50  and  w  0.95  associated with those values of  n ,  r  1 , and  r . The fi le input and 
output capabilities are useful if repeated runs are envisioned.   

 The output screen associated with this data set is shown as Figure  10.5 . The 
lower 95% confi dence limit for   γ   is shown to be 0. This means that  w (0) was 
less than  w  0.95 . The median estimate is 0.706. If  w  0.90  is input instead of  w  0.95  the 
value shown on the output as the lower 95% confi dence limit will be the lower 
90% limit. Similarly if any other percentage point of  w  1 −    p   is input the corre-
sponding output will be   ̂γ p.   

 Shown at the bottom of the screen are the Weibull parameters estimated 
after subtracting   ˆ .γ 0 50 from each data point.  

     Figure 10.3     w(  λ  ) for Weibull sample of size 10 with   η      =    56.46,   β      =    1.3,   γ      =    50;  r  1     =    5.  
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Figure 10.4     Input screen for LOCEST.exe.  
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Figure 10.5     Output screen for LOCEST.exe.  

   10.7    THE PROGRAM LocationPivotal.exe 

 A powerful program capable of generating percentage points of  w  for any 
choice of n ,  r1 , and  r  was developed by Christopher Garrell as a student project 
assignment. It can be used to evaluate the power of the hypothesis test on  γ . 
It is dubbed LocationPivotal.exe. It may be downloaded from the author ’ s 
website along with a copy of Christopher ’ s project report. 

 The input screen is shown as Figure  10.6 .   
 In addition to the values of the sample size characteristics  n ,  r1 , and  r , the 

user can select the Weibull population from which to develop the distribution 
of w . By varying the location parameter one may determine the probability of 
accepting γ     =    0 as a function of the true value of  γ . 

 Figure  10.7  shows the output screen corresponding to the input in Figure 
 10.6 . Sixteen percentage points of  w  are computed. (Only 11 are visible in 
the screen shot.) Under Tools the user may indicate which input and output 



Figure 10.7     Output screen for locationpivotal.  

Figure 10.6     Input screen for locationpivotal.  
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variables are of interest. These may be written to a fi le using  Save As  under 
the  File  menu.The percentage points of  w  displayed are consistent with those 
given in Table  10.1  for  n     =     r     =    10,  r  1     =    5.    

   10.8    SIMULATED EXAMPLE 

 As a second example, and to illustrate the methodology on data for which the 
distributional assumptions are known to apply, a sample of size 20 was drawn 
using simulation from the Weibull distribution having   η      =    100,   β      =    1.5, and 
  γ      =    100. Three - parameter data are easily simulated by fi rst drawing a two -
 parameter sample and then adding the location parameter to each 
observation. 

 The sorted sample is given in the Table  10.3 .   
 The shape parameter estimates obtained by censoring the data at  r  1     =    5 and 

 r     =    20 are   ˆ .β 5 31 97( ) =  and   ˆ .β 20 9 542( ) = . Using  w  0.50     =    1.254 in LOCEST gives 
the median unbiased estimate of the location parameter:

   ˆ . ..γ 0 50 110 34=   

 A lower 90% confi dence interval for   γ   is computed by inputting  w  0.90     =    2.491 
from Table  10.2  and results in:

   ˆ . ..γ 0 10 50 72=   

 Adjusting the data by subtracting   ̂ .γ 0 50 from every observation and re - estimating 
  η   and   β   gives   ˆ .β = 1 34 and   ̂ .η = 100 6. These  “ adjusted ”  ML estimates and   ̂ .γ 0 50 
are in good accord with the true population values.   
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 EXERCISES 

1.    An uncensored sample size of 20 when artifi cially censored at  r1     =    5 resulted 
in a raw ML shape parameter estimate of 7.25. The ML shape parameter 
estimate for the complete sample was 2.25. Test the hypothesis that the 
location parameter is 0.   

2.    Generate a sample of size 10 from  W (100,1.5). Add 100 to each observation 
in the sample. Use  r1     =    5 and the appropriate values in Table  10.1  as input 
to LOCEST and determine the median and 90% lower confi dence limit for 
the location parameter.   

3.    Use the LocationPivotal software to estimate the probability that  w     >    2.683 
for n     =    10,  r1     =    5 when the sample actually is drawn from the three - parameter 
Weibull population with  β     =    1.5,  η     =    100, and  γ     =    100.    
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Factorial Experiments with 
Weibull Response     

     Experiments conducted at all combinations of the levels of two or more factors 
are called factorial experiments. Factorial experiments have been shown to be 
more effi cient in exploring the effects of external factors on a response vari-
able than non - factorial arrangements of factor levels. In this chapter we 
present a methodology for the analysis of Weibull - distributed data obtained 
at all combinations of the levels of two factors. The response variable is 
assumed to follow the two - parameter Weibull distribution with a shape param-
eter that, although unknown, does not vary with the factor levels. The purpose 
of the analysis is (1) to compute interval estimates of the common shape 
parameter and (2) to assess whether either factor has an effect on the Weibull 
scale parameter and hence on any percentile of the distribution.  

   11.1    INTRODUCTION 

 Zelen  (1960)  considered the two - factor classifi cation for censored observa-
tions drawn from the one -  and two - parameter exponential distributions. He 
derived likelihood ratio tests for the signifi cance of main and interaction 
effects when those effects are multiplicative with the exponential scale param-
eter. He evaluated three alternative approximations for the small sample 
distribution of the likelihood ratio. 

 In work that was actually done subsequent to that reported in his 1960 
article, Zelen  (1959)  showed by means of Monte Carlo sampling experiments 
that the analysis he developed for the exponential distribution is not robust 
against Weibull alternatives He showed that a more robust approach is to treat 
the logarithmic transform of the scale parameter estimate formed using the 
data in the ( i,j ) - th cell, as a normal variate, and to use it as the response in an 
unreplicated factorial experiment. A drawback of this approach is that for the 

Using the Weibull Distribution: Reliability, Modeling, and Inference, First Edition. John I. McCool.
© 2012 John Wiley & Sons, Inc. Published 2012 by John Wiley & Sons, Inc.
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2    ×    2 design there are then no degrees of freedom left for error. Similarly, for 
most other designs of practical size, the error degrees of freedom would be 
too few for reasonable power. 

 An alternative approach, not discussed by Zelen, is to divide the sample in 
each cell of the layout into two or more subsamples to give replication. This 
could be done unambiguously for uncensored samples but becomes problem-
atic when censoring is present. With type II censoring, for example, if one 
divides a sample of size  n  into two groups each containing half of the  r  failures, 
it is possible that neither group would qualify as being a type II censored 
subsample. Apart from the problem of allocating censored units to subgroups 
it is not clear how many subsamples should be formed to provide optimum 
overall experimental precision. 

 In what follows we consider the two - way layout with Weibull response for 
the case where the shape parameter, though unknown, is common from cell 
to cell. This situation is more complex than the exponential situation inasmuch 
as data from  all  cells are used in the estimation of the shape parameter. This 
chapter is based on a dissertation and elaborations contained in three subse-
quent publications: McCool  (1993) ; McCool  (1996a) ; McCool  (1996b) ; and 
McCool and Baran  (1999) .  

   11.2    THE MULTIPLICATIVE MODEL 

 In the present chapter we examine the combined effect of two external factors 
such as load and speed on the distribution of a Weibull random variable. 

 Each factor occurs at a number of levels; for example, the factor tempera-
ture might be set at 100, 150, and 200 ° C. Data is taken at each combination of 
the factor levels, so that, for example, if one factor has three and the second 
factor has four levels, 3    ×    4    =    12 tests are performed. 

 We will discuss a methodology for analyzing such experiments to determine 
whether neither, one, or both factors have a signifi cant infl uence on the 
observed random variable. 

 If factor A has  a  levels and factor B has  b  levels, the cumulative distribution 
function (CDF) of the Weibull distribution at the conditions corresponding to 
level  i  of factor A and level  j  of factor B is taken to be:

    F x
x

ij

( ) = − −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1 exp .
η

β

    (11.1)   

 The 100 p  - th percentile  x p   life at that combination of conditions is thus:

    ( ) ( ) ./x kp ij ij p= η β1     (11.2)   

 One may think of the levels of factor A as forming the rows and the levels of 
factor B the columns of a two - way table or layout. 
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 We further express the scale parameter of   η  ij   in terms of a multiplicative 
row effect  a i   due to the  i  - th level of factor A, a column effect  b j   due to the  j  - th 
level of factor B, and an interaction effect  c ij   due to the particular synergy of 
the factor levels in row  i  and column  j , that is,

    η ηij i j ija b c i a j b= = =; ( , , ).1 1� �     (11.3)   

   η   is a base level scale parameter value. Introducing the additional 
constraints:

    ai
i

a

=∏ =
1

1     (11.4)  

    bj

j

b
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∏ =

1

1     (11.5)  

  and
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= =
∏ ∏= =

1 1

1.     (11.6)  

  serves to defi ne   η   as the geometric mean of the cell scale parameter values 
taken over all the cells; that is:

    η η=
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 Thus, for example, given the following 2    ×    2 table of scale parameter values:
    

    η   11     =    2      η   12     =    4  
    η   21     =    3      η   22     =    6  

 We have,

   η = =( ) ./2 4 3 6 121 4x x x   

 From the constraints:

   a
a

2
1

1
=  

   b
b

2
1

1
=  
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   c
c

c
c

11
12

22
21

1 1
= = = .   

 Equating the numerical values of   η  ij   to their multiplicative expressions 
gives:

   η11 1 1 11 12 2= =a b c  

   η12
1

1 11

1
12 4= =

a
b c

 

   η21
1

1 11

12 3= =
b

a c
 

   η22
11

1 1

12 6= =
c

a b
.   

 The solutions are:

   a a1 22 3 3 2= =/ ; /  

   b b1 21 2 2 1= =/ ; /  

  and

   c c c c11 12 21 22 1 0= = = = . .   

 In this instance, multiplicative row and column factors accounted for all the 
  η  ij   values. The cell specifi c  c ij   values were all unity. For the values in the table 
above it may be said that  “ interaction ”  is absent. 

 In general, if  c ij   is unity for all  i  and  j , we say that interaction does not occur. 
When interaction is absent, the data may be  “ explained ”  by the simpler 
 “ reduced ”  model wherein:

    η ηij i ja b i a j b= = =( , ).1 1� �     (11.8)   

 Similarly if, in addition, factor B has no effect,   η  ij   may be written,

    η η ηij i ia i a= = =( )1�     (11.9)  

  while if factor A has no effect,

    η η ηij j jb= = .     (11.10)   
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 Finally, if there are no row, column, or interaction effects the model simply 
reduces to:

    η ηij = .     (11.11)    

   11.3    DATA 

 A test is presumed to be conducted for each combination of factor levels. For 
simplicity we take the sample size  n  to be the same for each cell in the a    ×    b 
array. The  n  observations in each cell may be type II censored at the  r  - th 
ordered value. If so,  r  is also presumed to be the same for each cell. 

 The total sample size is thus  abn  and the total number of number of uncen-
sored observations is  abr . When the observed lifetimes within each cell are 
sorted from low to high the  k  - th ordered value is denoted  x ij   (   k   ) .  

   11.4    ESTIMATION 

 The method of maximum likelihood was applied to estimate the shape param-
eter and effects under each of the fi ve models described by Equations  11.3  
and  11.8 – 11.11 . The corresponding shape parameter estimates are denoted   β̂1 
to   β̂5, respectively. For model number 2,   β̂2 and the estimates of the effects  a i   
and  b j   must generally be found by the simultaneous solution of  a     +     b     +    1 non-
linear equations. However, for the special case of the 2    ×    2 layout ( a     =     b     =    2) 
  β̂2 maybe solved separately and then the effect estimates computed. In what 
follows we restrict consideration of model 2 to the case where  a     =     b     =    2. The 
estimates of the scale parameters   η  ij   are obtained by multiplying the base level 
scale parameter by the relevant effect estimates. 

 Table  11.1  lists the equations for estimating   β̂1 to   β̂5. The auxiliary quantities 
used in this table are defi ned as follows:
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 Also listed in Table  11.1  is the expression for the maximum likelihood estimate 
of the cell scale parameters raised to a power equal to the shape parameter 
estimate appropriate to that model. Thus, for example, to estimate   η  ij   under 
the last model of Table  11.1  one computes:

    ˆ / .η νij ij
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==

∑∑
11

    (11.19)   

 Except for model 2, the shape parameter estimates are special cases of the 
shape parameter estimate applicable to k groups of Weibull data under the 

  Table 11.1    Maximum Likelihood ( ML ) Estimation Equations for Factorial 
Experiments under Various Models 

   Model     ML Shape Parameter Found by Solving     Eq. for   ̂ ˆηβ
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assumption that the shape parameter is the same for all groups. This methodol-
ogy was presented in Chapter  8 . 

   β̂1 is the estimate obtained when each of the cells in the data array is taken 
as a group. In this case  k     =     ab .   β̂3 results when each row is taken as a group, 
that is, the columns are collapsed. In this case  k     =     a . Correspondingly,   β̂4 is 
obtained by collapsing rows and treating the data in each column as a group. 
This gives  k     =     b .   β̂5 results when all of the data in the array are treated as a 
single large group, that is,  k     =    1.0.  

   11.5    TEST FOR THE APPROPRIATE MODEL 

 The full model given by Equation  11.3  is the least restrictive. Under this model 
  η  ij   is estimated using only the data in the cell i – j along with the common shape 
parameter estimate   β̂1 obtained using all of the data in the entire array. Suc-
ceeding models are successively more restrictive with the last model   η  ij      =      η   
representing the case where the entire sample of  abn  items come from a single 
Weibull population. When a restrictive model is inappropriate, a consequence 
is that the shape parameter estimated under that model will tend to be smaller 
than it is when the appropriate model is used. 

 It has been shown that one may use the ratio of shape parameter estimates 
as the basis for a test of whether a more restrictive model is tenable. For 
example, if interaction is absent,   ˆ / ˆβ β1 2 should be about unity. If interaction is 
present, however,   β̂2 will be relatively smaller than   β̂1 and the ratio   ˆ / ˆβ β1 2 will 
therefore tend to be larger than unity. 

 In the language of hypothesis testing, our so - called null hypothesis would 
be that interaction is absent, that is,

   H all0 1 0: . ,c i jij = ( )   

 This hypothesis would be rejected with signifi cance level   α      =    0.05 if
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⎦
⎥     (11.20)   

   ( / )1 2 0.95
ˆ ˆβ β  represents the 95th percentile of the distribution of the ratio  

 ( / )1 2
ˆ ˆβ β  applicable when the hypothesis is true. It serves as a measure of the 

relative rarity of larger   ˆ ˆβ β1 2/  ratios. Only 5% of the time will a larger value 
be encountered due to chance alone when interaction is absent. If we encoun-
ter a larger value we proclaim that interaction exists and tolerate a 5% risk 
that our proclamation is wrong. If the hypothesis of no interaction were 
accepted one could proceed to test   ˆ ˆβ β1 3/  to see if the column effects are also 
negligible.  
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   11.6    MONTE CARLO RESULTS 

 Monte Carlo simulation was used to produce 10,000 simulated factorial experi-
ments of various sizes in which the data in all cells were drawn from a common 
Weibull population. This was done for values of sample size  n  and censoring 
number  r  ranging from  n     =     r     =    2 to  n     =     r     =    10 and for 2    ×    2, 2    ×    3, and 3    ×    3 
layouts. 

 For each simulated experiment the values   ˆ ˆβ β1 5−  were computed using the 
equations in Table  11.1 . (For the 2    ×    3 and 3    ×    3 experiments,   β̂2  was not 
calculated.) The ratios of   β̂1  to the other values of   β̂  were calculated for each 
experiment and sorted from low to high to determine the percentiles. 

 Tables  11.2 – 11.4  list the upper 90%, 95%, and 99% points of these ratios 
along with the 5%, 10%, 50%, 90%, and 95% points of

    v =
ˆ

.
β
β

1     (11.21)     

 These latter values are used for setting confi dence limits on the shape param-
eter   β   as in Chapter  8 . For 90% confi dence limits one uses:
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β β β1

0 95

1

0 05v v
< <     (11.22)    

   11.7    THE  DOS  PROGRAM  TWOWAY  

 A computer program named  “ TWOWAY ”  was written in the Basic language 
to analyze a factorial experiment using the methodology described here. For 
a 2    ×    2 experiment the program computes the roots of the nonlinear equations 
listed in Table  11.1  corresponding to each of the fi ve hypotheses on the scale 
parameters of the cells. The analysis employs a bisection technique to isolate 
the value of the roots within 0.00001. Having found   β̂k  corresponding to the 
hypothesis  H k  , the program proceeds to compute the ML estimates of the scale 
parameter   η  ij   applicable to each cell of the table using the appropriate formula 
in Table  11.1 . For other than 2    ×    2 experiments TWOWAY omits the computa-
tion of   β̂2  and the scale parameter estimates associated with H 2 .  

   11.8    ILLUSTRATION OF THE INFLUENCE OF FACTOR EFFECTS 
ON THE SHAPE PARAMETER ESTIMATES 

 To illustrate the analysis of a 2    ×    2 Weibull factorial experiment and to dem-
onstrate the discriminating power of the tests, a hypothetical 2    ×    2 experiment 
is considered for which no row, column or interaction effects are present. The 
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324 factorial experiments with weibull response

example data are analyzed and then successively reanalyzed after the intro-
duction of various effects. The data are shown below:

  1.0    1.0  
  2.0    2.0  
  3.0    3.0  
  4.0    4.0  

  1.0    1.0  
  2.0    2.0  
  3.0    3.0  
  4.0    4.0  

 Since each cell contains exactly the same four values, the comparisons to 
be made will be free of the random contribution of cell - to - cell variability. 

 An initial screen for TWOWAY asks for the number of rows and columns 
and the common value of the sample size n  and censoring number  r  for each 
cell. The following screen, shown as Figure  11.1 , then appears for the user to 
input the data values in each of the cells of the two - way array.   

 After all the data have been entered, the following screen (Figure  11.2 ) 
appears asking for a range of values within which all of the shape parameter 
estimates will lie. If the range that the user enters is not suffi ciently wide, the 

Figure 11.1     Input screen for the data in row 1 column 1.  



     Figure 11.2     This screen appears when all data have been entered.  

  0.5    0.5  
  1.0    1.0  
  1.5    1.5  
  2.0    2.0  

  2.0    2.0  
  4.0    4.0  
  6.0    6.0  
  8.0    8.0  

program will ask for a revised range. When the factor effects are large, a larger 
range will be required.   

 The output screen shown in Figure  11.3  gives the fi ve - shape parameter 
estimates and the ML estimates of the scale parameters under each model.   

 The analysis yields the following estimates of the shape parameter:

   ˆ ˆ ˆ ˆ ˆ . .β β β β β1 2 3 4 5 2 4532= = = = =   

 All of the estimates are seen to be equal when the data in each cell are 
identical. 

 A multiplicative row effect is now introduced by multiplying the data in 
row 1 by 1/2 and the data in row 2 by 2.0. The resultant data are tabled below:

    

illustration of the influence of factor effects 325



326 factorial experiments with weibull response

 The shape parameter estimates for these data are:

   ˆ ˆ ˆ .β β β1 2 3 2 4532= = =  

   ˆ ˆ . .β β4 5 1 2939= =   

 The multiplicative row effect has left   β̂1 to   β̂3 unchanged since they are unaf-
fected by multiplicative factors applied to the rows.   ˆ ˆβ β4 5=  and both refl ect 
the row effect to the same degree. The ratio   ˆ / ˆβ β1 4 1= .896 is well beyond the 
99 - th percentile of the null distribution as may be seen from the percentage 
points listed in Table  11.2 . 

 Adding a column effect by multiplying column 1 by 1/4 and column 2 by 4 
transforms the data to:

    

     Figure 11.3     The results screen for TWOWAY.  

  0.125    2.0  
  0.250    4.0  
  0.375    6.0  
  0.500    8.0  

  0.5    8.0  
  1.0    16.0  
  1.5    24.0  
  2.0    32.0  
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 The   β   estimates now become:

   ˆ ˆ .β β1 2 2 4532= =  

   ˆ . ˆ . ˆ . .β β β3 4 50 77832 1 2939 0 6744= = =   

 It is seen that   β̂2 is unchanged since this estimator allows for the presence of 
both row and column effects.   β̂3 is smaller than   β̂4, refl ecting the fact that the 
column effect that was introduced was twice as large as the row effect.   β̂5 is 
diminished by both the row and column multipliers and thus is smaller than 
both   β̂3 and   β̂4. The ratio   ˆ ˆ .β β1 3 3 151/ =  is highly signifi cant. The ratio 
  ˆ ˆ .β β1 4 1 896/ =  remains the same as before, indicating that the introduction of 
a column effect has not altered the signifi cance of the row effect. 

 Finally, transforming the original data by the factors   c c11 22
1
2= =  and 

  c c12 21 2= =  results in the following data representing a pure interaction effect. 
     

  0.5    2.0  
  1.0    4.0  
  1.5    6.0  
  2.0    8.0  

  2.0    0.5  
  4.0    1.0  
  6.0    1.5  
  8.0    2.0  

 The estimates are:

   ˆ .β1 2 4532=  

   ˆ ˆ ˆ ˆ . .β β β β2 3 4 5 1 2939= = = =   

 It is seen that   β̂1 is unchanged and that each of the other   β   estimates is affected 
in the same amount. The individual tests are all highly signifi cant, but a signifi -
cant interaction effect makes row and column effect tests immaterial inasmuch 
as each cell must be separately interpreted when interaction exists.  

   11.9    NUMERICAL EXAMPLES 

 To illustrate the analysis on data which are known to conform to its inherent 
assumptions, a 2    ×    2 array was developed using simulation. Two uncensored 
samples of size n    =    5 were generated from a Weibull population having  η     =    2 
and  β     =    2. These data were used to form the fi rst row of the 2    ×    2 layout. Two 
further samples of size n    =    5 were drawn from the Weibull population having 
 η     =    1/2 and  β     =    2 to form the second row. The sorted data are tabled below:
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 In terms of the model, these data represent the case where the base scale 
parameter   η      =    1, there is a row effect  a  1     =    2 and  a  2     =    1/2 but no column or 
interaction effect ( b  1     =     b  2     =     c  11     =    1). 

 The computed estimates of the shape parameter are listed below:

   ˆ .β1 2 358=  

   ˆ .β2 2 325=  

   ˆ .β3 2 222=  

   β4 1 362= .  

   β5 1 354= .   

 The ratios   ˆ / ˆβ β1 k are tabled below for  k     =    2 – 5, along with the associated  P  
values as estimated from the tabular Monte Carlo distributions of the various 
ratios as determined under the null hypothesis. 

     

  0.6297    1.021  
  0.7960    1.107  
  0.9468    1.502  
  2.208    1.945  
  2.147    2.727  

  0.1117    0.1999  
  0.2361    0.3451  
  0.3038    0.6332  
  0.3310    0.7275  
  0.6333    0.7447  

   Effect     Shape Parameter Ratio      p   

  Interaction      ˆ / ˆ .β β1 2 1 014=     0.59  

  Column      ˆ / ˆ .β β1 3 1 061=     0.50  

  Row      ˆ / ˆ .β β1 4 1 731=      < 0.01  

  All      ˆ / ˆ .β β1 5 1 741=      < 0.01  

 It is seen that the analysis has correctly detected the row effect and, also, 
correctly failed to show a signifi cant column or interaction effect. The ratio for 
 “ ALL ”  will react to all signifi cant effects. The fact that its magnitude is close 
to the magnitude of the ratio for the row effect further refl ects the fact that 
only the row effect is real. The estimated parameters, assuming only row effects 
are meaningful, are:

   ˆ / ˆ .a a1 21 1 847= =  

   ˆ .η = 0 9082  
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   ˆ . .β = 2 358   

 A 90% confi dence interval for   β   may be estimated from Equation  11.22  using 
the percentage points of   v = ˆ /β β1  listed in Table  11.2 .

   1 40 2 358 1 683 2 358 0 859 2 75. . / . . / . . .= < < =β   

 It is noted that this interval includes the true value   β      =    2.0. A median unbi-
ased estimate of the shape parameter is computed using the median value,  v  0.50 , 
of   v = ˆ /β β1  listed in Table  11.2  as:

   ˆ . / . . .′ = =β1 2 358 1 179 2 0   

 It is seen that in an unusual coincidence, the median unbiased estimate is 
exactly equal to the true value of   β  . 

 It is of interest to analyze these same data by means of the two - way analysis 
of variance (ANOVA) after fi rst applying a logarithmic transformation. As 
discussed in Section  3.3 , this is a reasonable approximate approach inasmuch 
as the transformed data will satisfy the additivity and constant variance 
assumptions of the analysis of variance if the untransformed data follow the 
multiplicative Weibull model. 

 After transforming the data by taking natural logarithms, the computed 
ANOVA table is as follows:

    

   Source     Degrees of Freedom     SS     MS     F      p   

  Rows    1    8.635    8.635    28.2    0.0  
  Columns    1    0.813    0.813    2.65    0.12  
  Interaction    1    0.079    0.079    0.288    0.62  
  Error    16    4.90    0.306          

  0.162    0.440    0.301  

   − 1.28     − 0.748     − 1.01  

   − 0.558     − 0.155      

 It is seen that the analysis correctly assesses the signifi cance of the the row 
effect and the absence of interaction. The  p  value for the column effect is small 
enough, however, to mislead many experimenters into accepting that the 
column effect is real. The shape parameter ratio test, on the other hand, gave 
no indication of a column effect. The cell and marginal means of the trans-
formed data are shown below and seem to suggest a spurious column effect. 
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 An example of a 2    ×    2 factorial experiment with rolling contact fatigue life 
as the response variable is given in McCool  (1996b) . 

 As a second example of the methodology we will analyze a 2    ×    2 experi-
ment in which the shear strengths of 10 specimens of a polymer material used 
in dental restorations were measured at all four combinations of the levels of 
two factors: (1) the presence and absence of silanation, a treatment designed 
to bond the silica fi ller to the polymer matrix. and (2) whether or not the 
specimens had been soaked to saturation in a 50:50 mixture of ethanol and 
water. The raw data and Weibull plots are reported in an article by McCool 
and Baran  (1999) . The ML estimates of the shape parameters for the four 
individual samples are displayed below:

    

        Unsoaked     Soaked  

  Silanated    25.4    17.9  
  Unsilanated    17.1    18.5  

 To test whether the data are consistent with a common shape parameter 
assumption we compute:

   w max

min

10 10 4
25 4
17 1

1 49, , .( ) = = =
ˆ

ˆ
.
.

.
β
β

  

 Running the Multi - Weibull software described in Chapter  8 , the 30th percen-
tile of  w (10,10,4)    =    1.50. There is thus no reason to reject the common shape 
parameter hypothesis ( p     ≈    0.70). 

 The fi ve estimates of the shape parameter obtained under the fi ve models 
were computed to be as follows:

   ˆ .β1 19 018=  

   ˆ .β2 6 421=  

   ˆ .β3 2 327=  

   ˆ .β4 6 419=  

   ˆ . .β5 2 111=   

 The various ratios and the upper 0.90, 0.95, and 0.99 points of their null dis-
tribution are tabled below:
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ˆ ˆβ β1 2/  is signifi cant, indicating that the interaction effect is real. When the 
data exhibit a signifi cant interaction effect the other tests become irrelevant. 
Each cell of the matrix must be separately estimated subject to the commonal-
ity of the shape parameter. The shape parameter used to test for a column 
effect,   β̂3, is reduced in magnitude both by the interaction effect and by the 
column effect, if there is one. Likewise the row effect shape parameter is 
reduced in magnitude both by the interaction effect and by the actual row 
effect, if any. From the table above the shape parameter ratio for testing the 
row effect is numerically about the same (2.96) as the ratio for the interaction, 
indicating that the row effect itself is not large. Adopting model 1 as the most 
appropriate characterization of the data, the estimated scale parameters are 
calculated to be:

   Unsoaked     Soaked  

  Silanated   42.8    21.84  
  Unsilanated    62.1    16.1  

 The interaction is evident in this tabulation. When silanated specimens are 
soaked, the strength is reduced by roughly half. When unsilanated specimens 
are soaked, the strength is reduced by to about a fourth of its unsoaked value.   
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  Ratio of Shape Parameter Estimates    0.90    0.95   0.99

ˆ / ˆ .β β1 2 2 96=   1.053    1.073    1.1125  
ˆ / ˆ .β β1 3 8 17=   1.085    1.112    1.1171  
ˆ / ˆ .β β1 4 2 96=   1.085    1.112    1.1171  
ˆ / ˆ .β β1 5 9 013=   1.115    1.114    1.215  



332 factorial experiments with weibull response

 EXERCISES 

1.    A 2    ×    2 experiment was conducted with two factors A and B. For each 
combination of factor levels n     =    5 uncensored life tests were run. The results 
are shown in the table below. Use the TWOWAY program to analyze the 
data and test for a row, column, and interaction ef fect. 

        A1     A2  

  B1  

  13.95    22.41  
  89.72    135.40  

  103.28    149.38  
  104.65    178.08  
  118.09    219.12  

  B2  

  25.40    21.97  
  50.76    29.61  
  80.59    41.53  

  162.03    191.90  
  163.49    239.63  

2.    In a 2    ×    2 experiment with  η0     =    100 and  a1     =    2 and  b2     =    3, compute the scale 
parameters for each combination of factor levels assuming there is no 
interaction.    
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