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a b s t r a c t

A novel zinc complex was prepared by the reaction of one equivalent of a bidentate Schiff base, N,N0-
bis(2-chlorobenzylidene)-2,2-dimethylpropane-1,3-diamine, L with one equivalent of zinc chloride in
methanol, and characterized by elemental analyses, NMR, IR and single crystal X-ray crystallography. The
crystallographic studies revealed that the zinc ion in the complex is coordinated to two imine nitrogen
atoms of L and two chloride ions of zinc chloride. Furthermore, to obtain insights into the structure and
bonding, density functional theory (DFT) calculations were performed. The obtained results were found
to be similar with the results obtained from the experimental findings. In addition, the anti-
inflammatory activity of the studied zinc complex was also evaluated. The results obtained showed
the studied complex could be a good candidate in treatment of inflammatory disorders.

© 2019 Published by Elsevier B.V.
1. Introduction

Over the years, zinc based complexes have shown diverse me-
dicinal applications such as anti-inflammatory, anticonvulsant,
antimicrobial, antidiabetic, antioxidant and anti-proliferative ac-
tivities [1e10]. In addition, several zinc complexes are used as a
major ingredient of the medicine used in the treatment of skin
diseases [11], and find significant use as a catalyst in various cata-
lytic reactions [1]. In last few decades, Schiff bases have emerged as
strong chelating ligands in coordination chemistry [12] due to their
ease in synthesis, structural variation [13] and several biological,
catalytic and industrial applications [14e16]. The zinc complexes
res@yahoo.com (M. Azam),
derived from Schiff bases are extensively studied due to their wide
applications in material and biological science [17,18]. In recent
years, the pioneer work of Chai and co-workers have explored
various transition metal complexes based on Schiff bases and their
applications [19e25].

Non-steroidal anti-inflammatory drugs (NSAIDs) are the
frequently used analgesic, anti-inflammatory and antipyretic
medicines [26]. However, the use of these medicines is associated
to several side effects [26e28]. Therefore, to overcome these
problems, there are many reports showing that the therapeutic
behavior of the drug is improved upon coordination to the metal
ions as the metal complexes have higher lipophilicity enabling
them to pass quickly from cell membrane to exert their effect [29].
Therefore, considering the medicinal and biological properties of
Schiff base and zinc ion, we are reporting here a novel zinc complex
derived from L and its characterization by elemental analyses,
Infrared spectroscopy (IR), Nuclear Magnetic Resonance (NMR)
spectroscopy and single crystal X-ray crystallography. Furthermore,
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Table 1
Crystal and structure refinement data of Zn (II) complex.

Compound 1

Empirical formula C19H20Cl4N2Zn
Formula weight 483.54
Crystal system, space group monoclinic, P21/c (No.14)
Unit cell dimensions [Å, �] a¼ 10.0761 (3)

b¼ 15.4015 (5)
c¼ 13.8575 (4)
b¼ 103.1180 (10)

Volume [Å3] 2094.39 (11)
Z, Calculated density [Mg/m3] 4, 1.534
F(000) 984
Crystal size [mm] 0.075, 0.069, 0.066
q range for data collection [�] 4.356 to 72.572
Index ranges �12� h� 12, �18� k� 19, �17� 1�17
Reflections collected/unique 23219/4142 [R(int)¼ 0.0241]
Completeness [%] 99.9 (to q¼ 67�)
Data/restraints/parameters 4142/0/237
Goodness-of-fit on F2 1.136
Final R indices [I> 2s(I)] R1¼ 0.0229, wR2¼ 0.0559
R indices (all data) R1¼ 0.0230, wR2¼ 0.0559
Largest diff. Peak and hole [e�Å�3] 0.396, �0.297

Table 2
Selected bond distances and angles for Zn(II) complex [Å,
�].

Zn1eN2 2.0611 (12)
Zn1eN1 2.0682 (12)
Zn1eCl4 2.2130 (4)
Zn1eCl3 2.2140 (4)
C7eN1 1.275 (2)
N1eC8 1.4752 (18)
C12eN2 1.4745 (19)
N2eC13 1.276 (2)

N2eZn1eN1 92.23 (5)
N2eZn1eCl4 115.83 (4)
N1eZn1eCl4 103.85 (4)
N2eZn1eCl3 101.78 (4)
N1eZn1eCl3 118.43 (4)
Cl4eZn1eCl3 121.378 (17)

Table 3
Hydrogen bond lengths and angles forZn(II) complex [Å, �].

DdH���A d (D-H) d (H���A) d (D���A) <(DHA)

C7eH7/Cl1 0.95 2.71 3.0197 (16) 99.5
C13eH13/Cl2 0.95 2.70 3.0180 (16) 100.6
C13eH13/Cl4i 0.95 2.70 3.4534 (15) 136.2
C16eH16/Cl3ii 0.95 2.64 3.5792 (17) 168.0

Symmetry transformations used to generate equivalent atoms: (i) x, -yþ1/2, zþ1/2;
(ii) x-1, y, z.
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to obtain insights into the structure, theoretical studies of the
complex are also carried out. In addition, we are also reporting the
anti-inflammatory efficacy of the studied Zn(II) complex.

2. Experimental

2.1. Materials and methods

All the chemicals used in the experiment were procured from
commercial sources. The bidentate Schiff base ligand, L was pre-
pared as cited in the literature [30].

Synthesis of bis(chloro)-(N,N'-(2,2-dimethylpropane-1,3-diyl)
bis(1-(2-chlorophenyl)-methanimine))-zinc(II).

Zinc chloride (90mg, 0.66mmol) was added gradually into the
methanolic solution of L (229mg) [30] in equimolar ratio followed
by the stirring of the resulting reaction mixture for 3 h [Scheme 1].
Slight turbidity appeared, which was removed by filtration. The
colorless prismatic crystals were obtained by slow evaporation of
filtrate at room temperature.

Yield 65%, mp 165 �C; Molecular Formula C19H20Cl4N2Zn;
Analytical Calc.: C, 47.19; H, 4.17; N, 5.79; Found: C, 47.11; H, 4.13; N,
5.75%; 1H NMR (DMSO‑d6): (ppm): 8.63 (2H, s, eCH]N), 7.99e7.46
(8H, m, AreH), 3.51 (4H, s, eCH2), 0.99 (6H, s, (CH3)2C-); 13C NMR
(DMSO‑d6): (ppm) 157.3 (-CH]N), 133.8 (-C-CH]N), 132.7 (-C-Cl),
132e127.5 (AreC), 69.4 (-CH2-N), 36.6 (CH2)2eC-, 24.4 (-C(CH3)2).

2.2. Crystal structure determination

The single crystal for the complex was measured at 100.0 (1) K
in the environment of helium using Bruker APEXII automatic
diffractometer with CCD detector using graphite monochromated
CuKa (l¼ 1.54178) radiation. The crystal details are specified in
Tables 1e3. The Lorentz, polarization and numerical absorption
[31,32] corrections were performed during the data reduction.
SHELXS [32], SHELXL [33] and SHELXTL programs [34] were used in
solving the structure.

2.3. Computational studies

Geometry optimizations of the free ligand and its Zn(II) complex
were performed using density functional method employing
mPW1PW91 functional [35a] and TZVP basis sets [35b] with the aid
of Gaussian 09 program package [36]. Atomic charges were calcu-
lated using the built in NBO 3.1 program [37] in the Gaussian 09
software. Moreover, atoms in molecules (AIM) topological param-
eters were computed [38] using Multwfn program [39,40].

2.4. Hirshfeld surface analysis

Crystal Explorer 3.1 software [41] was used to perform the
Hirshfeld surface analysis [42e45]. The fingerprint (FP) plot [46]
was used to summarize the intermolecular contacts in the crystal
Scheme 1. Synthesis of Zn(II) complex.



Fig. 1. A ortep view with 50% probability of displacement ellipsoids showing (a) atoms
connectivity (hydrogen atoms are drawn as spheres of arbitrary radii) (b) ligand
conformation (hydrogen atoms are omitted for clarity).
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[20,22,47].

2.5. Pharmacodynamics studies in wistar rats

Pharmacodynamics studies in terms of anti-inflammatory effi-
cacy were carried out on studied zinc(II) complex, and its results
were compared with that of the standard diclofenac drug by the
“Carrageenan-induced hind paw edema method” [48]. For these
studies, eighteen male Wistar rats (200e250 g of weights) were
taken from “Animal Care and Use Center of College of Pharmacy at
King Saud University, Riyadh, Saudi Arabia” and kept under stan-
dard laboratory conditions of “temperature and relative humidity”
in plastic cages (n¼ 6.0 rats in each cage), and fed to the “standard
laboratory pellet diet and water ad libitum”. The animals were
divided into 3 groups (n¼ 6/group). The animals of group I were
given Carrageenan only, and considered as control group. However,
the animals of groups II and III were given the standard diclofenac
and the studied Zn(II) complex, respectively. The doses for standard
diclofenac and the studied Zn(II) complex were 4mg/kg and 10mg/
kg, respectively. Paw edema in all three groups was induced by
injecting 0.1ml suspension of Carrageenan (1% w/v). It was induced
in right paw. Both compounds were administered orally 30min
before induction of paw edema. The initial and final paw volumes
for each animal were estimated regularly at 1, 2, 3, 4, 5 and 6 h after
injection using an electronic “Plethysmometer (Ugo Basile, Italy)”.
The anti-inflammatory efficacy in terms of % inhibition for the
standard diclofenac drug and the studied zinc(II) complex treated
groups was estimated as proposed in literature [48,49]. The results
of anti-inflammatory efficacy were analyzed statistically by
applying student t-set using MS Excel 2010 program. The value of P
at 5% level of significance (P< 0.05) was proposed as significant
value.

3. Results and discussion

X-ray analysis revealed that the studied complex exits in 1:1
metal ligand stoichiometric ratio, which is contrary to the work of
Chai et al. [19,20,22e24]. A perspective view of studied zinc(II)
complex is shown in Fig. 1. The compound possesses complex
molecules formed from bis(chloro)-(N,N'-(2,2-dimethylpropane-
1,3-diyl)bis (1-(2-chlorophenyl)methanimine)) ligand, the Zn2þ

cation and two chloride anions and adopts slightly distorted
tetrahedral geometry [50]. Oppositely to the work of Chai et al.
[19e25], the two chloride ions are bonded to zinc ion in the studied
complex. However, similar to the work of Chai et al. [19e25], zinc
ion is coordinated to the imine nitrogen atoms in the title complex.
The sum of interbond angles centred at metal atom is 653.5�, which
is close to the sum of these angles ideal tetrahedron (657�) and
differs from ideal values for square planar geometry (720�) and t-
shape geometry (630�). The 1-(2-chlorophenyl)methanimine)
moieties are distinctly distorted from planarity (N]C-CPh-CPh tor-
sion angles are �32.9 (2) and �35.4 (2)�), oppositely to the similar
compound inwhich analogousmoieties are planar [51]. The general
molecular geometry of coordination moiety is similar to cadmium
compound [30], however, the intermolecular interaction scheme is
distinctly different in these compounds. In addition, the studied
complex shows the coordination of two chloride ions to zinc ion.
Nevertheless, similar to the work of Chai et al., zinc ion in this
complex is coordinated to two imine nitrogen atoms [19e25].

The molecules of the studied complex are linked by two struc-
turally different weak CeH/Cl intramolecular hydrogen bonding
interactions [52] (Table 3) to the hydrogen bonded layers extending
along crystallographic (010) plane (in above mentioned cadmium
coordination compound, there are no distinguishable intermolec-
ular hydrogen bonds, even theweak ones), and form the C (5) and C
(8) motifs of lowest degree of the unitary graph set [53,54].
3.1. Density functional theory (DFT) studies

The optimized molecular geometry of the ligand and its Zn(II)
complex are shown in Fig. 2. The cartesian coordinates of the
optimized structures are given in Supplementary data. The calcu-
lated ZneCl (2.221 Å) and ZneN (2.133 Å) bond distances are
slightly higher than the experimental findings (Table 2) by
0.007e0.008Å and 0.065e0.072 Å, respectively. However, the
ligand configuration changed very slightly due to its coordination
to Zn(II) ion, indicating that the complexation between the ligand
and zinc(II) ion produced slight lengthening in C]N bonds which
doesn't exceed 0.007 Å (Table 2). The CeN bonds of the ligand
optimized structure were calculated to be 1.264 Å while it was
found to be 1.275 Å (calc. 1.271 Å) for the complex. However, the
most noticeable changes occurred for the phenyl moieties attached
to C]N groups. The N2eC13eC14eC19 and N1eC7eC1eC6 dihe-
dral angles are only 4.8� in the free ligand. However, the value
increased significantly to 37.0� (exp. 32.9e35.4�) in the complex. It
is clear that the complexation with zinc chloride produced signif-
icant twist for the phenyl moieties via free rotation around the
C13eC14 and C7eC1 bonds, respectively to minimize the steric
repulsion obtained due to the complexationwith zinc ion, and leave
enough space for zinc(II) ion to bindwith the donor atoms of ligand.

The atomic charges computed using NBO method are given in
Table 4. The charge of the Zn(II) ion is reduced to 0.97 e due to its
coordination with the ligand, and this value is very close to the
value obtained from the single crystal X-ray structure (exp. 0.94 e).
The two chloride anions reduced its charge by 0.75 e while the
organic ligand transferred 0.27 e (exp. 0.31 e) to Zn(II) ion. More-
over, the charges of the donor atoms are shifted to higher negative



Fig. 2. The optimized molecular geometry of the free ligand and its Zn(II) complex.

Table 4
Natural atomic charges in the free ligand and its Zn(II) complex.

Atom Zn(II) complexa Free ligand

Zn1 0.9725 (0.9412) e

Cl1 �0.6233 (�0.6244)
Cl2 �0.6234 (�0.6231)
N1 �0.4640 (�0.4444) �0.3847
N2 �0.4640 (�0.4465) �0.3847
Ligand 0.2742 (0.3063) e

a Values inside parentheses at the experimental geometry.
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charge of 0.079 e due to the complexation between zinc(II) ion and
the ligand. Another significant observation noticed is the large
change in the dipole moment of Zn(II) complex in comparison to
the free ligand. The former has dipole moment of 4.53 D compared
to 1.15 D for the latter. Electron density mapped over molecular
electrostatic potential (MEP) maps for the studied compounds
showing the orientation of the dipole moment vector are shown in
Fig. 3.

The frontier molecular orbitals of the studied compounds are
shown in Fig. 4. The highest occupied molecular orbital (HOMO)
and Lowest unoccupied molecular orbital (LUMO) of the free ligand
are distributed over its delocalized p-system, and their calculated
energies are �7.076 and �1.596 eV, respectively. In case of Zn(II)
complex, the LUMO is almost the samewhile the HOMO is localized
over the coordinated chloride ion. Both of the HOMO (�7.178 eV)
and LUMO (�2.087 eV) frontier molecular orbitals are stabilized in
the complex compared to the free ligand. It is clear that the
Fig. 3. MEP maps of the free lig
complexation between Zn(II) ion and the ligand reduced the
HOMO-LUMO energy gap from 5.467 eV to 5.091 eV.
3.2. AIM study

AIM topological parameters were applied to predict the nature
and strength of ZneN and ZneCl bonds by using the electron
density (r(r)), its laplacian (V2r(r)), the total energy density H(r),
and the ratio of electron potential to kinetic energy density (jV(r)j/
G(r)) (Table 5). It is worth mentioning that the r(r) values are
around 10�2 a. u for the ZneN and ZneCl bonds in the studied
complex, suggesting the dominance of closed shell interactions
[55]. Furthermore, these values agree with the positive V2 r(r) ones
[56]. Thus, it can be concluded that all the ZneN and ZneCl bonds
have positive H(r) values and jV(r)j/G(r)˂1 [40]. In addition, values
of the interaction energies [57] listed in table 5 conform that the
studied complex has almost two equivalent ZneN and two equiv-
alent ZneCl interactions.
3.3. The hirshfeld surfaces analyses

The results of the Hirshfeld analysis are shown in Fig. 5. The
decomposed FP plots were employed to quantitatively investigate
the intermolecular interactions (Fig. 6). The results shed the light
on the significance of H/H (40.2%), C/H (12.8%), Cl/H (34.2%)
and Cl/C (8.3%) contacts. The shortest contact distances for these
interactions are 2.347, 3.476, 2.515, and 3.532 Å, respectively. The
non-covalent bonding interactions have shorter contact distances
in comparison to the sum of the van der Waals radii of C1 …. H
and and its Zn(II) complex.



Fig. 4. The frontier molecular orbitals of the studied compounds.

Table 5
The topological data at the bond critical points for the ZneN and ZneCl interactions.

Bond r(r)a G(r)a V(r)a H(r)a V2r(r) jV(r)j/G(r) Eintb

ZneN 0.0512 0.1029 �0.0985 0.0044 0.4291 0.96 30.91
ZneN 0.0523 0.1053 �0.1010 0.0042 0.4380 0.96 31.70
ZneCl 0.0427 0.0914 �0.0841 0.0073 0.3947 0.92 26.39
ZneCl 0.0428 0.0917 �0.0844 0.0073 0.3959 0.92 26.49

a a.u.
b Eint¼-V(r)/2 in kcal/mol.
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hydrogen bonding interactions and displayed as red dots on the
dnorm map and gave sharp spikes in the fingerprint plot of the
studied compound. Intermolecular contacts such as H / H and Cl
Fig. 5. Hirshfeld surfaces and decomposed fingerprint plots of the mos
/ C have interaction distances somewhat higher than the sum of
the van der Waals radii of the two elements and appear in the
corresponding dnorm map as white regions. The interactions
occurring in the blue regions of the dnorm map represent weak C/
H interactions, and have considerably greater contact than the vdW
radii sum of the C and H atoms. The p-p stacking interactions that
occur in aromatic rings in general are not specified by the use of
shape index and curvature maps.

1H NMR spectrum of Zn(II) complex revealed the presence of
imine proton at 8.63 ppm. The proton resonances attributed to
methyl and methylene protons were found at 0.99 and 3.51 ppm,
respectively. The multiplet due to aromatic protons (m, 8H, AreH)
is noticed at 7.46e7.99 ppm. The 13C NMR spectrum exhibited the
t important intermolecular interactions in the studied compound.



Fig. 6. All possible intermolecular contacts and their percentage.
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carbon signal due to -CH]N at 157.35 ppm [Supporting Informa-
tion Fig. S1]. The carbon signals due to Ar-C-Cl and Ar-C-CH]N
appeared at 132.7 ppm and 133.8 ppm, respectively, while the
remaining aromatic carbon signals appeared at 132, 129.8, 128.2
and 127.5 ppm. The appearance of signal at 69.4 ppm is assigned to
eCH2 carbon. Furthermore, the quaternary and methyl carbon
signal appeared at 36.6 ppm and 24.4 ppm, respectively [Support-
ing Information Fig. S2].

The anti-inflammatory efficacy of the studied Zn(II) complex
was compared with that of the standard diclofenac drug and their
Fig. 7. In vivo anti-inflammatory effects of studied Zn(I
results are given in Fig. 7. The anti-inflammatory efficacy of the
standard diclofenac drug increased (82.31%) with respect to time
for up to 5 h. However, after 5 h, there was noticed slight decrease
in the anti-inflammatory efficacy of the standard diclofenac drug
(Fig. 7). On the other hand, the studied zinc complex showed in-
crease in the anti-inflammatory efficacy for up to 6 h as shown in
Fig. 7. But this is worth to mention that the increase in the anti-
inflammatory efficacy of the zinc(II) complex was significant for
up to 4 h (P< 0.05). However, after 4 h, the enhancement in anti-
inflammatory efficacy of the studied zinc(II) complex was not sig-
nificant (P> 0.05). Thus, it can be concluded that the anti-
inflammatory efficacy of the standard diclofenac was significant
on comparing with that of the studied Zn(II) complex at each time
interval (P< 0.05). Although, the anti-inflammatory efficacy of
studied Zn(II) complex was not statistically significant as compared
with that of the standard diclofenac drug (P> 0.05), but the studied
compound showed good anti-inflammatory efficacy in Wistar rats,
which is likely due to the inhibition of various inflammatory me-
diators. However, on comparing the anti-inflammatory efficacy of
the studied zinc complex with that of ketoprofen complexed with
Zn(II) ions after 3 h of oral administration [58], we found that the
anti-inflammatory efficacy of the studied Zn(II) complex was 42.8%
at 10mg/kg dose, whereas the Zn(II) ion complexed with keto-
profen showed 62.5% at 10mg/kg dose [58], thus suggesting the
low anti-inflammatory efficacy for the studied zinc complex than
that of the ketoprofen-Zn(II) complex.
4. Conclusion

A novel zinc(II) complex with slight distorted tetrahedral ge-
ometry derived from a bidentate Schiff base ligand was investi-
gated. The studied complex exhibited good in vivo anti-
inflammatory activity when tested in Wistar rats.
I) complex and standard diclofenac in Wistar rats.
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