Lab sheet #3

Quantitative determination of serum iron, unsaturated iron binding capacity (UIBC), and total iron binding capacity (TIBC)

Method:

-Prepare 6 test tubes, the divide them in to two group one for each test (3 test tube for each test)

	Serum Iron test		
	Blank	Standard	Test
Iron buffer (pH 4.5)	2.5 ml	2.5 ml	2.5 ml
Iron Standard		0.2 ml	
Sample			0.2 ml
Water	0.2 ml		

	UIBC test		
	Blank	Standard	Test
UIBC buffer	2 ml	2 ml	2 ml
Iron Standard		0.2 ml	0.2 ml
Sample			0.2 ml
Water	0.4 ml	0.2 ml	

Mix. Read the Abs. of Std. and test (IRON) at 565 nm against their blank, this is (A⁰) Also read the Abs. of Std. and test (UIBC) at 565 nm against their blank, this is (A') Then add:

 Iron color reagent
 0.05 ml
 0.05 ml
 0.05 ml
 0.05 ml
 0.05 ml
 0.05 ml

Mix and incubate at 37 °C for 10 min. Read the Abs. of Std. and test (IRON) at 565 nm against their blank, this is (A¹). Also read the Abs. of Std. and test (UIBC) at 565 nm against their blank, this is (A²).

Results:

	Before adding the iron color reagent	Abs. at 565nm
(IRON)	Absorbance of (Standard)	
(A°)	Absorbance of (Test)	
(UIBC)	Absorbance of (Standard)	
(A')	Absorbance of (Test)	

	After adding the iron color reagent	Abs. at 565nm
(IRON)	Absorbance of (Standard)	
(A¹)	Absorbance of (Test)	
(UIBC)	Absorbance of (Standard)	
(A'')	Absorbance of (Test)	

Calculations:

Serum UIB	C in test $(\mu g/dl) =$	
Std. iron co	$nc \{ [(A'' - A') \text{ test/}(A') \}$	' – A') std] x Std. iron conc.}
Serum TIB	C in test $(\mu g/dl) = Seru$	m iron + Serum UIBC
	and the second s	iron concentration/ TIBC] x 1
The sta t	ron conc. = 500 µg/dl	

Normal range:

- Serum iron (50 -160 μg/dl)
- TIBC (250 450 μg/dl)
- Transferrin saturation (20 55 %)