
CSC 215
Procedural Programming
Introduction and Course

Logistics

Dr. Achraf El Allali

About the course
Instructor: Dr. Achraf El Allali aelallali@ksu.edu.sa
TA: Mr. Abdurahman Shamriri akalshememry@ksu.edu.sa
Office Hours: Sun-Tue-Wed 9-11 am room 2119
 Tue 2pm -5pm
Course Time: Section 37635 Sun-Tue, 11 am to 11:50 am

 Section 37633 Sun-Tue, 1 pm to 1:50 pm
Course Website: http://fac.ksu.edu.sa/aelallali/node/44209

Grading Policy
● POP Quizzes 10%

● Labs: 15%

● Lab Exam: 5%

● Exam 1: 15%

● Exam 2: 15%

● Final Exam: 40%

● Attendance: Extra credit

Textbook

http://net.pku.edu.
cn/~course/cs101/2008/resource/The_C_Progr
amming_Language.pdf

Programming Languages
● Many programming languages exist, each with a

specific purpose
● None is the best language
● Choose the right tool for the job based on:

○ problem scope,
○ target hardware/software,
○ memory and performance considerations,
○ portability,
○ concurrency.

Procedural programming

● The program is divided up into subroutines or
procedures

● Allows code to become structured
● The programmer must think in terms of actions:

○ decide which procedures and data structures you
want

Object Oriented programming

● Very useful to organize large software
projects

● The data is broken into ‘objects’ and the
sequence of commands becomes the
interactions between objects:
○ Decide which classes you need, provide a full set of

operations for each class, and make commonality
explicit by using inheritance.

Procedural Languages

● Procedural languages include:
○ Fortran
○ BASIC
○ Pascal
○ C

http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/Fortran
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/BASIC
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/Pascal_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)
http://en.wikipedia.org/wiki/C_(programming_language)

Why C

● Provides low -level access to memory

● Provides language constructs that map
efficiently to machine instructions

C Strengths
● Efficiency: intended for applications where assembly

language had traditionally been used.
● Portability: hasn’t splintered into incompatible dialects;

small and easily written
● Power: large collection of data types and operators
● Flexibility: not only for system but also for embedded

system commercial data processing
● Standard library
● Integration with UNIX

C Weaknesses
● Error-prone:

○ Error detection left to the programmer
● Difficult to understand

○ Large programmes
○ Difficult to modify

● Memory management
○ Memory management is left to the programmer

Similarities with Java
● /* Comments */
● Variable declarations
● if / else statements
● for loops
● while loops
● function definitions (like methods)
● Main function starts program

Differences between C and Java
● C does not have objects

○ There are “struct”ures
● C is a procedural programming language
● C allows pointer manipulation
● Input / Output with C

○ Output with printf function
○ Input with scanf function

● C requires memory management

C vs. Java

 C Java
Procedural Object Oriented

Compiled Interpreted

No Memory Management Memory Management

Pointers References

Error Codes Exceptions

Let’s multiply two number

 a = 3;
 b = 2;

Let’s multiply two number

 a = 3;
 b = 2;
 c = a * b;

Let’s multiply two number

 int a, b, c;
 a = 3;
 b = 2;
 c = a * b;

Let’s multiply two number

 int a, b, c;
 a = 3;
 b = 2;
 c = a * b;
 printf(“The product is %d”, c);

Let’s multiply two number

main()
{
 int a, b, c;
 a = 3;
 b = 2;
 c = a * b;
 printf(“The product is %d”, c);
}

Let’s multiply two number
#include<stdio.h>
main()
{
 int a, b, c;
 a = 3;
 b = 2;
 c = a * b;
 printf(“The product is %d”, c);
}

Let’s multiply two number
#include<stdio.h> /*header file*/
main()
{
 int a, b, c; // variable declaration
 a = 3;
 b = 2;
 c = a * b;
 printf(“The product is %d”, c);
}

Compile and execute

● To compile “product.c”
○ gcc -o product product.c

■ “-o” place the output in file product
■ “product” is the executable file

● To execute the program
○ ./product

C statements

● Variable declaration
○ int a;
○ int b, c;

● Assignment
○ a = b + 2;
○ a = b + c;

● Function call
○ printf(“CSC 215”);

Variables

● Hold values
● Must be declared before use
● Naming rules

○ Made up of letters (upper and lower case) and digits.
○ The underscore character ("_") is also permitted.
○ Must not begin with a digit
○ Must not be a special keyword
○ x = 1; /*x is a variable*/

Basic data types

● The int type
○ int a; /* Integer value like 1, 10 and -5 */

● The char type
○ char c; /* Character value like a, b, c, $ and \n */

● The float type
○ float f; /* Decimal fraction value like 0.1, 1.5 */

● The double type
○ double d; /* Decimal fraction value like 0.1, 1.5 */

int

● 4 Bytes (compiler dependent)
○ 2^32 values total
○ -2^31 to 2^31-1

● Variants
○ short int a; /* 2 bytes */
○ long int a; /* 8 bytes */
○ unsigned int a; /* Only positive numbers */

■ 0 to 2^32--1

char

● 1 byte
○ A total of 2^8 values
○ Example char x = ‘d’;

● ASCII representation
○ Ascii value of 'a' is 97
○ Ascii value of 'b' is 98
○ http://www.asciitable.com/

float

● 4 bytes
○ IEEE format
○ -3.4e ^ 38 to 3.4e ^ 38

● Example
 float a;
 a = 2.54;

double

● Twice the memory as float
○ 8 bytes (generally)

What about the boolean type

 ?

Summary of Data types

sizeof

#include<stdio.h> /*Header file*/
main() /* The main function */
{
 int x = 7; /*Variable Declaration*/
 printf ("x is %d bytes", sizeof(x));
}

Casting

● Cast a variable to a different type than its
actual type
int x;
float y;
x = 3;
y = (float) x; /* Explicit casting */
y = x; /* Implicit casting */

Function printf

printf(control_string, arg1, arg2, …);
• control_string is the control string or
conversion specification.
• Consists of the character % followed by
optional minimum width and precision as well
as a required conversion control character

printf

printf

Example

printf(”The product of %d and %d is %d”, a,b,c);

● Ouput

The product of 3 and 2 is 6

Placeholders
● %d - int (same as %i)
● %ld - long int (same as %li)
● %f - float
● %lf - double
● %c - char
● %s - string
● %x - hexadecimal

Precision

New line, tabs and escape character

scanf

scanf(control_string, arg1, arg2, …);

• Control_string governs the conversion, formatting, and printing of the

arguments

• Each of the arguments must be a pointer to the variable in which the result is
stored.

• So:

scanf(“%d”, &var); is a correct one, while

scanf(“%d”, var); is not correct

Spaceholders

Example
#include<stdio.h> /*Header file*/
main() /* The main function */
{
 int a, b, c; /*Variable Declaration*/
 printf(”Enter a:”);
 scanf(”%d”, &a); /* Wait for input */
 printf (”Enter b:”);
 scanf (”%d”, &b); /* Wait for input */
 c = a * b;
 printf ("The product is %d", c);
}

