

ESTIMATION OF INORGANIC PHOSPHATE IN SOFT DRINK

OBJECTIVE

Estimation of organic phosphate in milk and soft drink

PHOSPHATE IN FOOD

► Phosphate occurs naturally in the form of organic esters in many kinds of food, including meat, potatoes, bread, and milk.

► Phosphate also used as a food additive (inorganic phosphate) as a preservative, a flavor or color enhancer, extend shelf life, and retain moisture..

➤ Soft drinks are complex mixtures containing a variety of substances such as colouring compounds, flavoring agents, acidifiers, sweeteners, preservatives, and caffeine.

► The most common acidifier used in soft drinks is phosphoric which gives a tangy taste in the mouth.

▶ Phosphoric acid can also acts as a preservative, keeping the contents of the

bottle fresh.

▶ Due to the use of phosphoric acid, cola is a actually more acid than vinegar which no body can drink straight. But a ton of sugar, dyes and flavoring are added to mask the acidity.

PRINCIPLE:

- ▶ Phosphoric acid is colorless, they cannot be directly determined using visible-light spectrophotometry
- Instead,we will quantitatively convert them into a colored substance, whose absorbance can be easily measured
- Inorganic phosphate reacts with ammonium molybdate in an acid solution (ammoniu molybdate prepared in sulphoric acid in this experiment) to form phosphomolybdic acid
- 2. phosphomolybdic acid is then reduced by a reducing agent (3% ascorbic acid) to give molybdenum blue a green/ blue color but does not affect the uncombined molybdic acid.

METHOD

	Standard	Milk sample	Soft drink sample	Water	Ammonium molybdate	Ascorbic acid
Blank						
3 ppm	2					
4.5 ppm	2				0.5 ml	0.5 ml
6 ppm	2					
12 ppm	2					
15 ppm	2					
MI		0.5		1.5		
M2		I		I		
SDI			0.5	1.5		
SD2			1	I		

METHOD

- Mix throughly after each addition .
- ▶ Allow to stand for 10 min
- ► (a deep blue/green colour should develop).
- ▶ Measure the absorbance at 650 nm.

Caculation:

Inorganic phosphate=dilution factor used x concentration

- RESULTS AND CALCULATIONS:

- ▶ Plot a graph between absorbance and concentration of phosphate in various standard solutions and obtain the calibrated curve.
- ► From the curve determine the amount of phosphate in the test solution.