
An FPGA-Based Implementation of HW/SW architecture for CFAR Radar
Target Detector

Ridha Djemal�, Kais Belwafi�, Walid Kaaniche2 and Saleh A. Alshebeili�
1- Electrical Engineering Department College of Engineering

King Saud University, Box 800 CP 11421 KSA
2 - ENISO, Avenue 18 Janvier 1952 Sousse Tunisia

rdjemal@ksu.edu.sa

Abstract— This paper presents an efficient HW/SW Codesign
FPGA-based architecture of B-ACOSD CFAR target detector in
log normal distribution for radar system. All CFAR system
modules are analyzed in order to identify the critical ones to be
optimized so that the detection process will be conducted in real-
time. To compel the design optimization of CFAR Architecture,
we have considered the custom instruction approach offered by
Altera environment. Furthermore HW/SW architecture of the
CFAR detector is carried out where the NIOS II execute the
software part and communicate via the Avalon switch fabric with
the hardware modules represented by the custom logic
components, on-chip memories, UART and JTAG interfaces.
The proposed system-on-chip is validated and tested using the
Stratix IV EP4SGX230KF4C2 of Altera operating at 250MHz.
Using the HW/SW approach for our embedded target detection
system, we improved the performance of the architecture
compared to the pure software one with a total delay of 0.45 µs.

I. INTRODUCTION
The received signal in a radar system is computed to

extract necessary information on the targets related to the
object type (target or clutter) and the locations of the identified
objects. If the echo is associated with a clear or empty
background, it can be simply compared with a fixed threshold
and the target is detected whenever the signal exceeds this
threshold. However, in real cases, the echo is accompanied
with clutter that varies in time and position, and therefore, in
the extraction of the target, the threshold should be calculated
dynamically from the local background noise/clutter power
and not be a constant. In this respect, adaptive signal
processing with a variable detection threshold is required to
decide if the cell under test represents a target [1].

Several constant false alarm rate (CFAR) techniques

used for radar systems have been proposed in the literature,
such as the application of cell averaging (CA) and ordered
statistics (OS) [2,3]. For example, the OS-CFAR detector, for
which an appropriate reference cell is used to estimate the
background noise power level, has been proposed [4]. The
OS-CFAR detector has a small additional detection loss over
the CA-CFAR detector for homogeneous backgrounds but can
resolve closely spaced interferences. However, it requires a
longer processing time than the CA-CFAR detector, and in
these terms, the CA-CFAR technique is the optimum CFAR
approach for homogenous environments.

Other well-developed OS algorithms, such as the

Greatest-of-CFAR (GO-CFAR) algorithm and the Smallest-
of-CFAR (SO-CFAR) algorithm [5], the Censored Mean-

Level Detector (CMLD) [6], and other OS algorithms [7,8],
have been studied for different scenarios. However, the
assumption of a homogenous environment is no longer valid
when the number of targets changes. In such situations, the
performance of the CA-CFAR processor is seriously degraded.
Various classes of CFAR techniques have been proposed to
enhance robustness against a non-homogeneous environment
for different applications [9, 10] according to the background
distribution. However, these implementations were pure
software without any real-time analysis.

By contrast, a major concern in radar signal processing

is to maintain the false alarm rate at a desired constant value.
To achieve a CFAR, the processed target signal is compared
with the cell under test with an adaptive threshold detector
requiring good knowledge of the statistics (Rayleigh
distribution, Weibull distribution, K-distribution or lognormal
distribution) of the clutter. Another concern is to carry out
target detection within a limited delay to satisfy real-time
constraints, especially for high-resolution target detection. To
accomplish this task, a design exploration of the solution space
should be carried out for the CFAR detector.

Although the theory of CFAR radar detection has been

well established, the hardware implementation for a real-time
environment is still beyond currently available high-
computational signal processing operations. Owing to the real-
time constraints of target detection by a high-resolution radar
system, system-on-chip (SoC) architecture is an attractive
solution for the real-time CFAR processor. In SoC
architecture, all components of a computer, such as the
processor, glue logic and memories, are integrated onto a
single chip and operate in an organized manner. Recent
advances in field programmable gate array (FPGA)
technology have made SoC fabrication faster and easier.

In this paper, a Nios II processor FPGA-based platform

is used to implement Backward Automatic Censored Ordered
Statistics Detector (B-ACOSD) CFAR algorithm. This
detector should be able to operate robustly to detect
automatically a target and to determine the number of
interferences close to the target for a lognormal clutter
distribution. The SoC architecture of the CFAR detector is
implemented on an Altera Stratix IV board with HW/SW
configuration based on the integration of the NIOS II core
processor and custom logics described in VHDL language.
The Avalon switch fabric is also integrated within the same
FPGA to interconnect the system-on chip components detailed

978-1-4577-2209-7/11/$26.00 ©2011 IEEE

in section IV. The proposed CFAR system is a typical
HW/SW example built in such way to achieve a processing
delay of less than 500 ns, which is suitable for high-resolution
radar applications in a desert environment [11].

The rest of this paper is organized as follows. In

Section 2, the fundamentals of CFAR theory and related
research on hardware realization for some types of CFAR
algorithms are described. Section 3 presents mathematical
formulas and algorithms for B-ACOSD. The SoC HW/SW
FPGA-based design architecture for the detectors is explained
in Section 4. Section 5 presents the co-simulation results and
the realization of the target detection embedded system. In
section 6, conclusions and future research plans are discussed.

II. RELATED WORK

For a radar system, a detection method is needed to

determine the power threshold above which any return can be
considered as coming from a target. If the threshold is too low,
then more targets are detected, but the number of false alarms
is high. Conversely, if the threshold is too high, then fewer
targets are detected but the number of false alarms is low. For
most radar detectors, the threshold is set to realize a required
probability of a false alarm Pfa. If the background of noise,
clutter, and interference are constant in time and space, then a
fixed threshold level that provides a specified probability of a
false alarm can be chosen. However, under natural conditions,
unwanted clutter and interference sources affect the noise level
spatially and temporally. In this case, an adaptive threshold
can be used, where the threshold level is raised and lowered to
maintain a constant probability of a false alarm. This is called
CFAR detection.

A typical CFAR processor is shown in Fig. 1. The input

signals are set serially in a shift register. The content of the
cells surrounding the cell under test (X0) are processed using a
CFAR processor to obtain the adaptive threshold T. The value
of X0 is then compared with the threshold to make the
decision. The cell under test is declared a target if its value
exceeds the threshold value.

 Fig. 1. Block diagram of a typical CFAR algorithm

The first and simplest CFAR detector is the CA-CFAR
detector [3], for which the adaptive threshold is obtained from
the arithmetic mean of the reference cells. Many CFAR

algorithms have been recently developed. We can categorize a
CFAR algorithm into one of three models according to the
clutter power distribution and the interfering targets.

� When there is transition in the clutter power distribution,

we can use, for example, greatest-of-selection logic for
the CA-CFAR detector (GO-CFAR) [12] to control the
increase in the probability of a false alarm. If one or more
interfering targets are present, the GO-CFAR detector
performs target detection poorly and it is suggested that
an SO-CFAR algorithm employing smallest-of-selection
logic is used instead for the CA-CFAR detector [13].

� When the clutter background is composed of
homogeneous white Gaussian noise plus interfering
targets, the CMLD can be used as a target detector. The
CMLD censors target samples and estimates the noise
level from the remaining noise sample. In addition, the
trimmed mean-level CFAR (TM-CFAR) detector [4]
implements trimmed averaging after ordering the samples
in the window. When the number of interfering targets is
not known a priori, the generalized CMLD (GCMLD), for
which the number of interfering targets is determined and
their corresponding samples are then sampled, can be
used as well as the OS-CFAR detector, which chooses
one ordered sample to represent the estimated noise level
in the cell under test. If there is not only transition in the
clutter power distribution but also interfering targets, a
commonly used technique is the generalized two-level
CMLD (GTL-CMLD) [14], which uses an automatic
censoring algorithm of the unwanted samples when both
interfering targets and extended clutter are present in the
reference window of the cell under test.

� The last category deals with non-Gaussian clutter
distribution. The lognormal distribution, Weibull
distribution, gamma distribution, and K-distribution have
been used to represent the envelope-detected non-
Gaussian clutter distribution. Works on CFAR detection
for Weibull clutter have been reported. For example, the
maximum-likelihood CFAR (ML-CFAR) algorithm has
been presented [15] and its performance has been
analysed for the case in which both the scale and shape
parameters are unknown. Furthermore, the optimal
Weibull CFAR (OW-CFAR) algorithm where statistics
test are expressed according to the estimate of the mean
power of the Weibull clutter, has been proposed [16].

Theoretical developments of CFAR detection are not

followed by hardware implementation. There are few attempts
considering hardware implementations of CFAR processors
have been reported. In particular, configurable hardware
architecture for adaptive processing of noisy signals for target
detection based on CFAR algorithms has been presented in
[16-18]. The architecture has been designed to deal with
parallel/pipeline processing and to be configured for Max,
Min, and Cell-Average (CA) CFAR algorithms. OS-CFAR
was implemented using parallel structure in [19]. In [20], CA-
CFAR and OS-CFAR are combined and implemented in
FPGA. In [21], TM-CFAR algorithm has been realized using
FPGA. However, all these implementation were for simple
CFAR algorithms and only suitable for Gaussian distribution
type of clutter.

X(1) X(N/2) X((N/2)+1) X(N)

F(X(1), X(2), …, X(N))

Guard cells

Comparator

Envelope
Detector Input

Signal

Decision

Alsuwailem et al. [22] implemented an automatic
censoring CFAR detector called Automatic Censored Cell
Averaging (ACCA) ODV CFAR. However, the
implementation does not consider the real time aspects where
an offline validation is done without allowing interactive
interaction with the architecture. Furthermore not standard
interface is given in order to facilitate the communication with
the Radar System environment. Winkler et al. [23] used SoC
with reconfigurable processor inside for an automotive radar
sensor. The processor is responsible for controlling the custom
logic and IO tasks.

Recent automatic censoring detectors called ACOSD
CFAR have introduced by Almarshad et al. [24]. The
algorithm is able to make automatic censoring of unknown
number of interfering targets in log-normal clutter. Because of
increase in radar resolution, the log-normal distribution
becomes more reliable to represent the amplitude of clutter
than Rayleigh distribution. Meanwhile, the automatic
censoring algorithms developed for Rayleigh clutter as
presented in [11] and [22] cannot straightforwardly be
extended to the case where clutter samples are drawn from
log-normal distribution. In the rest of this paper, we will
consider the ACOSD-CFAR proposed in [24] Algorithms for
SoC Implementation

III. THE ACOSD DETECTION ALGORITHMS
In ACOSD CFAR algorithms, the detection consists of

two steps: removing the interfering reference cells (censoring
step) and the actual detection (detection step). Both steps are
performed dynamically by using a suitable set of ranked cells
to estimate the unknown background level and set the adaptive
thresholds accordingly. This detector does not require any
prior information about the clutter parameters nor do they
require the number of interfering targets. In a CFAR
processor, the radar outputs { are stored in a
tapped delay line. The cell with the subscript is the cell
under test, where it contains the signal which should be
detected as a target or not. The last surrounding cells are the
auxiliary cells used to construct the CFAR procedure. In the
ACOSD CFAR, the surrounding cells are ranked in
ascending order according to their magnitudes to yield

 (1)
After sorting, the sorted cells are then sent to detection stage.

In this stage B-ACOSD and F-ACOSD have different
algorithm. In the B-ACOSD algorithm, sample is then
compared with the adaptive threshold defined as

 (2)

Where is the largest sample and is a constant
chosen to achieve the desired probability of false censoring
(). It is found that values of yield reasonable good
performance in detection [26]. If , the algorithm
decides that corresponds to a clutter sample without
interference, and it terminates. If, on the other hand,

, the algorithm decides that the sample is a return
echo from an interfering target. In this case, is censored
and the algorithm proceeds to compare the sample
with the threshold:

Fig. 2. Block diagram of the B-ACOSD algorithm

 (3)
to determine whether it corresponds to an interfering target or
a clutter sample without interference.

At the step, the sample is
compared with the threshold and a decision is made
according to the test,

; (4)

Where .

Hypothesis represents the case where ,

and thus the subsequent samples ,
, … , correspond to clutter samples with interference,

while denotes the case where is a clutter sample
without interference. The successive tests are repeated as long
as the hypothesis is declared true. The algorithm stops
when the cell under investigation is declared homogeneous
(i.e., clutter sample only) or, in the extreme case, when all the

 highest cells are tested; that is, . Fig. 2 shows
the block diagram of the B-ACOSD algorithm.

In detection step, the cell under test is compared

with the threshold to decide whether a target is present or
not according to

 ; (6)

X(1) . . . X(N/2) X((N/2)+ . . . X(N)

X(1) < X(2) < … <X(N)

Guard Cells

X(1) < … < X(p) < … < X(n-k) < … <

Censoring Algorithm

Set Value Design of
Set
Set

While and
 Select to satisfy

 Check:

 If , set
 Else

End

…

x

 Set

Select to satisfy design

Design

Comparator

Envelope
Detector Input

Signal

Decision

Hypothesis denotes the presence of target in the test cell,
while hypothesis denotes there is no target.

In B-ACOSD CFAR, the threshold is defined as,
 (7)

(), and is the number of
interfering targets found in censoring step.

Threshold Values

The threshold selection is a key element in the

algorithms [26]. These thresholds should be selected in order
to reach low probability of hypothesis test error in a
homogeneous environment. Monte Carlo simulation with
500,000 independent runs was employed to obtain the
threshold values by maintaining low value of and .
Table 1 gives the threshold parameters and obtained
using B-ACOSD with and .

Table 1: Threshold parameters for B-ACOSD (
and)

(N,p)

1 2 3 4 5 6

(16,12)
 2.596 2.038 1.709 1.443 - -
 1.635 1.889 2.12 2.37 2.64 -

IV. HW/SW FPGA BASED DESIGN OF THE B-ACOSD
CFAR ARCHITECTURE

A. Generic HW/SW Architecture for Radar System

The B-ACOSD algorithm is implemented using the Stratix IV
board of Altera integrating an FPGA in which we have
embedded the Nios II processor in its fast version to execute
the software modules described in ANSI C, where the
hardware modules have been developed using the VHDL code
through the custom instruction approach. In fact, to accelerate
time-critical software algorithms, we proceed by adding
custom instructions to extend the embedded Nios II processor
instruction set. Custom instruction approach allow the
designer to reduce a complex sequence of standard instruction
to a single instruction implemented in hardware and
represented as custom logic component adjacent to ALU of
the Nios II processor. Furthermore, Custom instruction is
used to optimize software inner loops and computation-
intensive related to the CFAR application. In addition the
custom instruction gives us the ability to tailor the system-on-
chip architecture integrating Nios II core processor to meet the
critical time requirements related to the B-ACOSD
architecture.

The embedded CFAR architecture integrates the following
devices as depicted in Fig.3.
� A software fast Nios II core processor with a 32-bit data

path and 8-KB data cache, 16-KB instruction cache and a
Master port.

Fig.3. B-ACOSD Nios II-based embedded System:

� Custom logics hardware modules described in HDL

language at RTL level and including only slave ports to
communication with the Avalon bus of our embedded
system.

� System Interconnect Fabric (SIF) which consists on the
Avalon Memory Mapped bus to interconnect the custom
instruction, NIOS II processor and all others interfaces
within the same system-on-chip.

� JTAG UART interfaces with simplified configuration
allowing target connection downloaded software and
having an interface for on-chip trace data.

� On-chip memories with a size of 128kx32 and 64 kx16
and additional timers to monitor all timing aspect with
regards to the CFAR architecture.

B. HW/SW Design flow

To design the B-ACOSD System on Chip, we propose to
follow a typical HW/SW design flow as shown in Fig. 4.

Fig.4. Typical HW/SW Design Flow

1. The first step consists on the design of a pure software
architecture using a High Level Language (HLL) like
ANSI C. The code is running over the Nios II processor
within the FPGA using microC/OS II operating system in

System Interconnect Fabric (with arbiter)

Nios II

Custom
Logic 1

Custom
Logic 2

JTAG
UART

MS S

S S

S

S

On-Chip
Data

On-Chip
Ins. Mem

On-Chip
Look-up

Mem

So
ft

w
ar

e

H
ar

dw
ar

e

HLL Code
(ANSI C)

Simulation
Partionning

Software Module
(Nios II processor)

Create a custom
Instruction/Logic

Call the custom
instruction

Import the
Custom Logic

Cosimulation&
prototyping

order to identify the critical component to be exported as
hardware modules.
 2. Create the custom instruction modules in HDL
language such as VHDL or verilog and simulate before
their integration within the design process.
3. Import the custom instructions into the design by adding
them to the SOPC as an internal instruction accessible by
the Nios II processor. These custom instructions can be
called using ANSI C or assembly languages.
 4. Co-simulate the system including Nios II, custom
logics, and embedded memories with additional interfaces
as depicted in Fig.3 using the stratix IV prototyping Board.

V. EXPERIMENTAL IMPLEMENTATION AND VALIDATION
The B-ACOSD CFAR architecture has been built around an

FPGA single chip, with bloc diagram architecture similar than
the one presented in Fig.3 where the architecture is mapped
onto a HW/SW configuration. In this respect, the non critical
tasks of our algorithms are executed over the Nios II core
processor where the critical ones are exported as custom logic
described in VHDL. First, we have implemented the
architecture as a pure software core running over the Nios II
processor and we have extracted the execution time for the
three main components such as sorting, censoring and detection
modules. In the second step, we have exported the critical
components as a hardware architecture described in VHDL and
interconnected to the Nios II processor via the Avalon
interface. The following table gives the execution time of each
component of the B-ACOSD architecture as a pure solution
embedded into the Stratix IV board.

Table 2: Software Execution Time of B-ACOSD module

B-ACOSD Modules Delays in µs
Sorting module 18
Censoring module 104
Detection module 21
Total delay 143

According to the computation results, we have found that

the critical point is located in computing Tck and Tak which
represents the threshold computation belonging to the
censoring module and a part of the detection one. The sorting
module represents also a critical task. We decide to export two
custom instructions to integrate the sorting module and the
censoring module with a part of the detection. The rest of the
algorithm is dedicated for the Nios II core processor. In the
mean time we tried to optimize the sorting technique as well as
the look up table organization by approximating the resolution
and decreasing the on-chip memory resources without
increasing the constant false alarm rate of the B-ACOSD
during the computation of the log function.

In terms of hardware, computation of the exponential

equation (5) and (7) is hard and high cost, especially when
related with floating point calculation. To reduce the hardware
complexity and computational time, equation (5) and (7) are
converted respectively into logarithmic form as follows:

 (8)
 (9)

In this form, power computation becomes a simple
multiplication, and the multiplication becomes an addition. In
addition, because the logarithmic computation in hardware is a
complex and slow task, the logarithmic computation is
simplified using a look-up table. The look-up table contains
range of a lognormal distribution with and as
suggested in [26], based on real radar input data measurement.
The proposed LUT support up to 2000 values of log for our
implementation which allow a resolution following the
number representation change to logarithmic form, test cell
value was also converted accordingly. This logarithmic
conversion also performed using the same look-up table
mentioned above. The look-up table resides on 32K on-chip
ROM inside FPGA. The data distribution resolution in the
32K on-chip ROM is 0.0610. MATLAB fixed-point B-
ACOSD CFAR simulation with this resolution gives censoring
results as good as its real-number simulation.

To accelerate the execution time, we have replaced the bubble
sorting technique by a Parallel Range Computing (PRC)
technique because it gives a reduced delay in software
implementation, as depicted in table 3, and its hardware
implementation allows s high degree of parallelism and an
interesting timing.

Table 3: Execution time over the Nios II processor of
different sorting techniques
Sorting technique Bubble Even/Odd PRC
Nios II Execution
time

18 µs 10 µs 1.28 µs

After integrating the overall architecture including the
hardware and the software modules, we have simulated the
design and evaluated their complexity before and after adding
the custom instruction. In table 4, we presented the complexity
of only the Nios II core processor downloaded within the
FPAG to execute the A-COSD detector. Where table 5,
indicated resources of the total system with their hardware and
software parts in terms of combinational LUTs, dedicated
logic registers and On-chip memories. We note the complexity
of the design is increased reasonably by adding the custom
logics as hardware components. However, the processing time
is decreasing from 143�s to 0.45 �s which is a big delay
saving.

Table 4: Nios II processor resources (pure software solution)
 Without Custom Inst. With Custom Inst.
Comb.LUTs 1474 (0.8%) 1683 (1%)
Logic Reg. 1254(0.7%) 1257 (0.7%)
On-chip Memory 94528 (7%) 94528 (7%)

Table 5: B-ACOSD SoC resources (HW/SW Solution)
 Without Custom Inst. With Custom Inst.
Comb. LUTs 3368 (2%) 4723 (3%)
Logic Reg. 2486(1%) 3074 (2%)
On-chip Memory 4547584 (31%) 4547400 (31%)

The FPGA implementation result for SoC with

and shows that the NIOS processor can achieve a
maximum operating frequency of 250 MHz. After a software
implementation of the B-ACOSD, we have experienced a

design exploration by exporting the critical components in
terms of delays to custom logic blocs connected to the Nios II
processor via the Avalon interface. The time delay of the total
architecture decreases up to 0.45 �s. This processing time is
below the real-time requirements 0.5 �s [24]. For
demonstration purposes, the default configuration of the
proposed system-on-chip employs 16-bit data samples, 16
reference cells, and 2 guard cells. The HW/SW architecture
has been tested and verified by generating 256 data samples
drawn from an exponential distribution. The data set is down
loaded to 16 X 256 ROM. The output result is saved in 1 X
256 RAM.

VI. CONCLUSION
In this paper, a hardware software implementation of

B-ACOSD CFAR target detector for lognormal clutter is
reported. This proposed system on chip system has the
advantages of being simple, and fast with low development
cost. The performance of the prototype hardware setup proved
the concept of the co-design within a reasonable time of
design. We have considered the custom instruction approach
to export and design the hardware components having critical
delays. The proposed FPGA implementation integrates NiosII,
custom logics, on-chip memories, Avalon switch fabric and
additional interfaces. The proposed architecture allows the
detection of each cell under test within a delay of 0.45 �s,
below the real-time requirement of 0.5�s. The proposed
architecture has been synthesized and validated using the
Stratix IV development Kit (EP4SGX230KF4C2 device) over
which we have measured all timing constraints.

REFERENCES
[1] M. Barkat, Signal Detection and Estimation. Norwood, MA: Artech

House, 2005.

[2] R.S. Johnson H.M. Finn, "Adaptive detection mode with threshold
control as a function of sampled clutter-level estimates," RCA Review,
vol. 29, pp. 414-463, Sept. 1968.

[3] H. Rohling, "Radar CFAR thresholding in clutter and multiple target
situations," IEEE Trans. Aerospace and Electronics Systems, vol. 19, no.
4, pp. 608-621, Jul. 1983.

[4] S.A. Kassam P.P. Gandhi, "Analysis of CFAR processors in
nonhomogenous background," IEEE Trans. Aerospace and Electronics
Systems, vol. 24, no. 4, pp. 427-455, July 1988.

[5] H.A. Meziani and F. Soltani, "Performance analysis of some CFAR
detectors in homogenous and non-homogenous Pearson-distributed
clutter," Signal Processing, vol. 86, pp. 2115-2122, April 2006.

[6] G.M. Dillard J.T. Rickard, "Adaptive detection algorithms for multiple
target situations," IEEE Trans. Aerospace and Electronics Systems, vol.
13, no. 4, pp. 383-343, Jul. 1977.

[7] A. Mezache and F. Soltani, "A novel threshold optimization of ML-
CFAR detector in Weibull clutter using Fuzzy-neural networks," Signal
Processing , vol. 87, pp. 2100-2110, Feb. 2007.

[8] M. Barkat T.Larouissi, "Performance Analysis of order-statistic CFAR
detectors in time diversity systems for partially correlated chi-square
targets and multiple target situations," Signal Processing, vol. 86, no. 7,
pp. 1617-1631, July 2006.

[9] M.A. Khalighi and M. H. Bastani, "Adaptive CFAR processor for
nonhomogenous environemnt," IEEE Trans. Aerospace and Electronics
Systems, vol. 36, no. 3, pp. 889-897, Jul. 2000.

[10] P. Henttu, and M. Juntti H. Saarnisaari, "Iterative multidimensional
impulse detectors for communications based on the classical diagnostic

methods," IEEE Trans. Communication, vol. 53, no. 3, pp. 395-398, Mar.
2005.

[11] S. Alshebeili, S.M. Alhumaidi, and A. M. Obied Y.M. Seddiq, "FPGA-
Based Implementation of a CFAR Processor using Batcher's sort and
LUT arithmetic," in 4th International Design and Test Workshop (IDT),
Riyadh-KSA, 2009, pp. 1-6.

[12] J.H. Sawyers V. G. Hansen, "Detectability loss due to greatest of
selection in a cell-averaging CFAR," IEEE Trans. Aerospace and
Electronics Systems, vol. 16, pp. 115-118, Jan. 1980.

[13] M. Weiss, "Analysis od some modified cell-averaging CFAR processors
in multiple target situations," IEEE Trans. Aerospace and Electronics
Systems, vol. 15, no. 1, pp. 102-114, Jan. 1982.

[14] S. D. Himonas, and P. K.Varshney M. Barkat, "CFAR detection for
multiple target situations," IEE Proceeding, Part F: Radar and Signal
Processin, vol. 136, no. 5, pp. 193-210, Oct.1989.

[15] R. Ravid and N. Levanon, "Maximum-likelihood CFAR for Weibull
background," [16] R. Ravid and N. Levanon, “Maximum-likelihood
CFAR for Weibull background,” IEE Proceeding, Part F: Radar and
Signal Processing , vol. 139, no. 3, pp. 256-264, Jun. 1992.

[16] V. Anastassopoulos and G. Lampropoulos, "Optimal CFAR detection in
Weibull clutter," [17] V. Anastassopoulos and G. Lampropoulos,
“Optima IEEE Trans. Aerospace and Electronic System, vol. 31, no. 1,
pp. 52-64, Jan. 1995.

[17] C. Torres, and S. Lopez R. Cumplido, "A configurable FPGA-based
Hardware Architecture for Adaptive Processing of Noisy Signals for
Target Detection Based on Constant False Alarm Rate (CFAR)
Algorithms," in Global Signal Processing Conference, Santa Clara CA,
2004, pp. 214-218.

[18] M.L.Bencheikh B. Magaz, "An Efficient FPGA Implementation of the
OS-CFAR Processor," in International Radar Symposium, Wroclaw,
2008, pp. 1-4.

[19] R. Cumplido, C. Uribe and F. Del Campo R. Perez, "A versatile
hardware architecture for a constant false alarm rat processor based on a
linear insertion sorter," Digital Signal Processing, vol. 20, pp. 1733-1747,
2010.

[20] J. K. Ali, and Z. T. Yassen T. R. Saed, "An FPGA-based implementation
of CA-CFAR processor," Asian Journal of Information Technology, vol.
6, no. 4, pp. 511-514, 2007.

[21] A. M. Alsuwailem, S. A. Alshebeili, and M. Alamar, "Design and
implementation of a configurable real-time FPGA-based TM-CFAR
processor for radar target detection," Journal of Active and Passive
Electronic Devices, vol. 3, no. 3-4, pp. 241-256, 2008.

[22] A. M. Alsuwailem, M.H. Alhowaish, S. A. Alshebeili, and S.M Qasim,
"Field programmable gate array-based design and realization of
automatic censored cell averaging constant false alarm rate detector
based on ordered data variability," IET Circuits, Devices & Systems, vol.
3, no. 1, pp. 12-21, Feb. 2009.

[23] J. Detlefsen, U. Siart, J. Buchlert, and M. Wagner V. Winkler, "FPGA-
based signal processing of an automotive radar sensor," in First European
Radar Conference, Amsterdam, 2004, pp. 245-248.

[24] M. Barkat, and S. A. Alshebeili M. N. Almarshad, "A Monte Carlo
simulation for two novel automatic censoring techniques of radar
interfering targets in log-normal clutter," Signal Processing, vol. 88, no.
3, pp. 719-732, Mar. 2007.

[25] R. Djemal, "A real-time FPGA-based implementation of target detection
technique in non-homogenous environement," in Design and Technology
of Integrated System in Nanoscale Era (DTIS), Hammamet- Tunisia,
2010, pp. 1-6.

[26] R. Djemal and S. Alshebeili I. Rosyadi, "Design and Implementation of
Real-time Automatic Censoring Systen on Chip for Radar Detection," in
World Academic of Science, Engineering and Technology (WASET),
Penang - Malaysia, 2009, pp. 318-324.

