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Abstract— This paper presents an efficient HW/SW Codesign 
FPGA-based architecture of B-ACOSD CFAR target detector in 
log normal distribution for radar system. All CFAR system 
modules are analyzed in order to identify the critical ones to be 
optimized so that the detection process will be conducted in real-
time. To compel the design optimization of CFAR Architecture, 
we have considered the custom instruction approach offered by 
Altera environment. Furthermore HW/SW architecture of the 
CFAR detector is carried out where the NIOS II execute the 
software part and communicate via the Avalon switch fabric with 
the hardware modules represented by the custom logic 
components, on-chip memories, UART and JTAG interfaces.  
The proposed system-on-chip is validated and tested using the 
Stratix IV EP4SGX230KF4C2 of Altera operating at 250MHz. 
Using the HW/SW approach for our embedded target detection 
system, we improved the performance of the architecture 
compared to the pure software one with a total delay of 0.45 µs. 

I. INTRODUCTION 
The received signal in a radar system is computed to 

extract necessary information on the targets related to the 
object type (target or clutter) and the locations of the identified 
objects. If the echo is associated with a clear or empty 
background, it can be simply compared with a fixed threshold 
and the target is detected whenever the signal exceeds this 
threshold. However, in real cases, the echo is accompanied 
with clutter that varies in time and position, and therefore, in 
the extraction of the target, the threshold should be calculated 
dynamically from the local background noise/clutter power 
and not be a constant. In this respect, adaptive signal 
processing with a variable detection threshold is required to 
decide if the cell under test represents a target [1].  

 
Several constant false alarm rate (CFAR) techniques 

used for radar systems have been proposed in the literature, 
such as the application of cell averaging (CA) and ordered 
statistics (OS) [2,3]. For example, the OS-CFAR detector, for 
which an appropriate reference cell is used to estimate the 
background noise power level, has been proposed [4]. The 
OS-CFAR detector has a small additional detection loss over 
the CA-CFAR detector for homogeneous backgrounds but can 
resolve closely spaced interferences. However, it requires a 
longer processing time than the CA-CFAR detector, and in 
these terms, the CA-CFAR technique is the optimum CFAR 
approach for homogenous environments.  

 
Other well-developed OS algorithms, such as the 

Greatest-of-CFAR (GO-CFAR) algorithm and the Smallest-
of-CFAR (SO-CFAR) algorithm [5], the Censored Mean-

Level Detector (CMLD) [6], and other OS algorithms [7,8], 
have been studied for different scenarios. However, the 
assumption of a homogenous environment is no longer valid 
when the number of targets changes. In such situations, the 
performance of the CA-CFAR processor is seriously degraded. 
Various classes of CFAR techniques have been proposed to 
enhance robustness against a non-homogeneous environment 
for different applications [9, 10] according to the background 
distribution. However, these implementations were pure 
software without any real-time analysis.  

 
By contrast, a major concern in radar signal processing 

is to maintain the false alarm rate at a desired constant value. 
To achieve a CFAR, the processed target signal is compared 
with the cell under test with an adaptive threshold detector 
requiring good knowledge of the statistics (Rayleigh 
distribution, Weibull distribution, K-distribution or lognormal 
distribution) of the clutter. Another concern is to carry out 
target detection within a limited delay to satisfy real-time 
constraints, especially for high-resolution target detection. To 
accomplish this task, a design exploration of the solution space 
should be carried out for the CFAR detector. 

 
Although the theory of CFAR radar detection has been 

well established, the hardware implementation for a real-time 
environment is still beyond currently available high-
computational signal processing operations. Owing to the real-
time constraints of target detection by a high-resolution radar 
system, system-on-chip (SoC) architecture is an attractive 
solution for the real-time CFAR processor. In SoC 
architecture, all components of a computer, such as the 
processor, glue logic and memories, are integrated onto a 
single chip and operate in an organized manner. Recent 
advances in field programmable gate array (FPGA) 
technology have made SoC fabrication faster and easier.  

 
In this paper, a Nios II processor FPGA-based platform 

is used to implement Backward Automatic Censored Ordered 
Statistics Detector (B-ACOSD) CFAR algorithm. This 
detector should be able to operate robustly to detect 
automatically a target and to determine the number of 
interferences close to the target for a lognormal clutter 
distribution. The SoC architecture of the CFAR detector is 
implemented on an Altera Stratix IV board with HW/SW 
configuration based on the integration of the NIOS II core 
processor and custom logics described in VHDL language. 
The Avalon switch fabric is also integrated within the same 
FPGA to interconnect the system-on chip components detailed 
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in section IV. The proposed CFAR system is a typical 
HW/SW example built in such way to achieve a processing 
delay of less than 500 ns, which is suitable for high-resolution 
radar applications in a desert environment [11]. 

 
The rest of this paper is organized as follows. In 

Section 2, the fundamentals of CFAR theory and related 
research on hardware realization for some types of CFAR 
algorithms are described. Section 3 presents mathematical 
formulas and algorithms for B-ACOSD. The SoC HW/SW 
FPGA-based design architecture for the detectors is explained 
in Section 4. Section 5 presents the co-simulation results and 
the realization of the target detection embedded system. In 
section 6, conclusions and future research plans are discussed. 

 

II. RELATED WORK 
 
For a radar system, a detection method is needed to 

determine the power threshold above which any return can be 
considered as coming from a target. If the threshold is too low, 
then more targets are detected, but the number of false alarms 
is high. Conversely, if the threshold is too high, then fewer 
targets are detected but the number of false alarms is low. For 
most radar detectors, the threshold is set to realize a required 
probability of a false alarm Pfa. If the background of noise, 
clutter, and interference are constant in time and space, then a 
fixed threshold level that provides a specified probability of a 
false alarm can be chosen. However, under natural conditions, 
unwanted clutter and interference sources affect the noise level 
spatially and temporally. In this case, an adaptive threshold 
can be used, where the threshold level is raised and lowered to 
maintain a constant probability of a false alarm. This is called 
CFAR detection. 

 
A typical CFAR processor is shown in Fig. 1. The input 

signals are set serially in a shift register. The content of the 
cells surrounding the cell under test (X0) are processed using a 
CFAR processor to obtain the adaptive threshold T. The value 
of X0 is then compared with the threshold to make the 
decision. The cell under test is declared a target if its value 
exceeds the threshold value. 

 

  Fig. 1. Block diagram of a typical CFAR algorithm 

The first and simplest CFAR detector is the CA-CFAR 
detector [3], for which the adaptive threshold is obtained from 
the arithmetic mean of the reference cells. Many CFAR 

algorithms have been recently developed. We can categorize a 
CFAR algorithm into one of three models according to the 
clutter power distribution and the interfering targets. 

 
� When there is transition in the clutter power distribution, 

we can use, for example, greatest-of-selection logic for 
the CA-CFAR detector (GO-CFAR) [12] to control the 
increase in the probability of a false alarm. If one or more 
interfering targets are present, the GO-CFAR detector 
performs target detection poorly and it is suggested that 
an SO-CFAR algorithm employing smallest-of-selection 
logic is used instead for the CA-CFAR detector [13]. 

� When the clutter background is composed of 
homogeneous white Gaussian noise plus interfering 
targets, the CMLD can be used as a target detector. The 
CMLD censors target samples and estimates the noise 
level from the remaining noise sample. In addition, the 
trimmed mean-level CFAR (TM-CFAR) detector [4] 
implements trimmed averaging after ordering the samples 
in the window. When the number of interfering targets is 
not known a priori, the generalized CMLD (GCMLD), for 
which the number of interfering targets is determined and 
their corresponding samples are then sampled, can be 
used as well as the OS-CFAR detector, which chooses 
one ordered sample to represent the estimated noise level 
in the cell under test. If there is not only transition in the 
clutter power distribution but also interfering targets, a 
commonly used technique is the generalized two-level 
CMLD (GTL-CMLD) [14], which uses an automatic 
censoring algorithm of the unwanted samples when both 
interfering targets and extended clutter are present in the 
reference window of the cell under test.  

� The last category deals with non-Gaussian clutter 
distribution. The lognormal distribution, Weibull 
distribution, gamma distribution, and K-distribution have 
been used to represent the envelope-detected non-
Gaussian clutter distribution. Works on CFAR detection 
for Weibull clutter have been reported. For example, the 
maximum-likelihood CFAR (ML-CFAR) algorithm has 
been presented [15] and its performance has been 
analysed for the case in which both the scale and shape 
parameters are unknown. Furthermore, the optimal 
Weibull CFAR (OW-CFAR) algorithm where statistics 
test are expressed according to the estimate of the mean 
power of the Weibull clutter, has been proposed [16]. 

 
Theoretical developments of CFAR detection are not 

followed by hardware implementation. There are few attempts 
considering hardware implementations of CFAR processors 
have been reported. In particular, configurable hardware 
architecture for adaptive processing of noisy signals for target 
detection based on CFAR algorithms has been presented in 
[16-18]. The architecture has been designed to deal with 
parallel/pipeline processing and to be configured for Max, 
Min, and Cell-Average (CA) CFAR algorithms. OS-CFAR 
was implemented using parallel structure in [19]. In [20], CA-
CFAR and OS-CFAR are combined and implemented in 
FPGA. In [21], TM-CFAR algorithm has been realized using 
FPGA. However, all these implementation were for simple 
CFAR algorithms and only suitable for Gaussian distribution 
type of clutter. 
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Alsuwailem et al. [22] implemented an automatic 
censoring CFAR detector called Automatic Censored Cell 
Averaging (ACCA) ODV CFAR. However, the 
implementation does not consider the real time aspects where 
an offline validation is done without allowing interactive 
interaction with the architecture. Furthermore not standard 
interface is given in order to facilitate the communication with 
the Radar System environment. Winkler et al. [23] used SoC 
with reconfigurable processor inside for an automotive radar 
sensor. The processor is responsible for controlling the custom 
logic and IO tasks.  

Recent automatic censoring detectors called ACOSD 
CFAR have introduced by Almarshad et al. [24]. The 
algorithm is able to make automatic censoring of unknown 
number of interfering targets in log-normal clutter. Because of 
increase in radar resolution, the log-normal distribution 
becomes more reliable to represent the amplitude of clutter 
than Rayleigh distribution. Meanwhile, the automatic 
censoring algorithms developed for Rayleigh clutter as 
presented in [11] and [22] cannot straightforwardly be 
extended to the case where clutter samples are drawn from 
log-normal distribution. In the rest of this paper, we will 
consider the ACOSD-CFAR proposed in [24] Algorithms for 
SoC Implementation 

 

III. THE ACOSD DETECTION ALGORITHMS 
In ACOSD CFAR algorithms, the detection consists of 

two steps: removing the interfering reference cells (censoring 
step) and the actual detection (detection step). Both steps are 
performed dynamically by using a suitable set of ranked cells 
to estimate the unknown background level and set the adaptive 
thresholds accordingly. This detector does not require any 
prior information about the clutter parameters nor do they 
require the number of interfering targets. In a CFAR 
processor, the radar outputs {  are stored in a 
tapped delay line. The cell with the subscript  is the cell 
under test, where it contains the signal which should be 
detected as a target or not. The last  surrounding cells are the 
auxiliary cells used to construct the CFAR procedure. In the 
ACOSD CFAR, the  surrounding cells are ranked in 
ascending order according to their magnitudes to yield 

 (1) 
After sorting, the sorted cells are then sent to detection stage. 
 
In this stage B-ACOSD and F-ACOSD have different 
algorithm. In the B-ACOSD algorithm, sample  is then 
compared with the adaptive threshold  defined as 

 (2) 
 
Where  is the  largest sample and  is a constant 
chosen to achieve the desired probability of false censoring 
( ). It is found that values of  yield reasonable good 
performance in detection [26]. If , the algorithm 
decides that  corresponds to a clutter sample without 
interference, and it terminates. If, on the other hand, 

, the algorithm decides that the sample  is a return 
echo from an interfering target. In this case, is censored 
and the algorithm proceeds to compare the sample  
with the threshold: 

 
 

Fig. 2. Block diagram of the B-ACOSD algorithm 
 

 (3) 
to determine whether it corresponds to an interfering target or 
a clutter sample without interference. 

At the   step, the sample  is 
compared with the threshold  and a decision is made 
according to the test, 

;  (4) 

 
Where . 

  
Hypothesis  represents the case where , 

and thus the subsequent samples , 
, … , correspond to clutter samples with interference, 

while  denotes the case where  is a clutter sample 
without interference. The successive tests are repeated as long 
as the hypothesis  is declared true. The algorithm stops 
when the cell under investigation is declared homogeneous 
(i.e., clutter sample only) or, in the extreme case, when all the 

 highest cells are tested; that is, . Fig. 2 shows 
the block diagram of the B-ACOSD algorithm. 

 
In detection step, the cell under test  is compared 

with the threshold  to decide whether a target is present or 
not according to 

 ;  (6) 
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Hypothesis  denotes the presence of target in the test cell, 
while hypothesis  denotes there is no target. 
 

In B-ACOSD CFAR, the threshold  is defined as, 
 (7) 

( ), and  is the number of 
interfering targets found in censoring step.  
 
Threshold Values 

 
The threshold selection is a key element in the 

algorithms [26]. These thresholds should be selected in order 
to reach low probability of hypothesis test error in a 
homogeneous environment. Monte Carlo simulation with 
500,000 independent runs was employed to obtain the 
threshold values by maintaining low value of  and . 
Table 1 gives the threshold parameters  and obtained 
using B-ACOSD with  and . 

 
Table 1: Threshold parameters for B-ACOSD (  
and ) 

(N,p)  
 

1 2 3 4 5 6 

(16,12) 
 2.596 2.038 1.709 1.443 - - 
 1.635 1.889 2.12 2.37 2.64 - 

 

IV. HW/SW FPGA BASED DESIGN OF THE B-ACOSD 
CFAR ARCHITECTURE 

A. Generic HW/SW Architecture for Radar System 
  
The B-ACOSD algorithm is implemented using the Stratix IV 
board of Altera integrating an FPGA in which we have 
embedded the Nios II processor in its fast version to execute 
the software modules described in ANSI C, where the 
hardware modules have been developed using the VHDL code 
through the custom instruction approach. In fact, to accelerate 
time-critical software algorithms, we proceed by adding 
custom instructions to extend the embedded Nios II processor 
instruction set. Custom instruction approach allow the 
designer to reduce a complex sequence of standard instruction 
to a single instruction implemented in hardware and 
represented as custom logic component adjacent to ALU of 
the Nios II  processor. Furthermore, Custom instruction is 
used to optimize software inner loops and computation-
intensive related to the CFAR application. In addition the 
custom instruction gives us the ability to tailor the system-on-
chip architecture integrating Nios II core processor to meet the 
critical time requirements related to the B-ACOSD 
architecture. 
 
The embedded CFAR architecture integrates the following 
devices as depicted in Fig.3. 
� A software fast Nios II core processor with a 32-bit data 

path and 8-KB data cache, 16-KB instruction cache and a 
Master port. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. B-ACOSD Nios II-based embedded System: 
  
�  Custom logics hardware modules described in HDL 

language at RTL level and including only slave ports to 
communication with the Avalon bus of our embedded 
system.  

� System Interconnect Fabric (SIF) which consists on the 
Avalon Memory Mapped bus to interconnect the custom 
instruction, NIOS II processor and all others interfaces 
within the same system-on-chip. 

� JTAG UART interfaces with simplified configuration 
allowing target connection downloaded software and 
having an interface for on-chip trace data. 

� On-chip memories with a size of 128kx32 and 64 kx16 
and additional timers to monitor all timing aspect with 
regards to the CFAR architecture. 

 
B. HW/SW Design flow 

 
To design the B-ACOSD System on Chip, we propose to 
follow a typical HW/SW design flow as shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4. Typical HW/SW Design Flow 
 

1. The first step consists on the design of a pure software 
architecture using a High Level Language (HLL) like 
ANSI C. The code is running over the Nios II processor 
within the FPGA using microC/OS II operating system in 
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order to identify the critical component to be exported as 
hardware modules. 
 2. Create the custom instruction modules in HDL 
language such as VHDL or verilog and simulate before 
their integration within the design process. 
3. Import the custom instructions into the design by adding 
them to the SOPC as an internal instruction accessible by 
the Nios II processor. These custom instructions can be 
called using ANSI C or assembly languages. 
 4. Co-simulate the system including Nios II, custom 
logics, and embedded memories with additional interfaces 
as depicted in Fig.3 using the stratix IV prototyping Board. 

V. EXPERIMENTAL IMPLEMENTATION AND VALIDATION  
The B-ACOSD CFAR architecture has been built around an 

FPGA single chip, with bloc diagram architecture similar than 
the one presented in Fig.3 where the architecture is mapped 
onto a HW/SW configuration. In this respect, the non critical 
tasks of our algorithms are executed over the Nios II core 
processor where the critical ones are exported as custom logic 
described in VHDL. First, we have implemented the 
architecture as a pure software core running over the Nios II 
processor and we have extracted the execution time for the 
three main components such as sorting, censoring and detection 
modules.  In the second step, we have exported the critical 
components as a hardware architecture described in VHDL and 
interconnected to the Nios II processor via the Avalon 
interface.  The following table gives the execution time of each 
component of the B-ACOSD architecture as a pure solution 
embedded into the Stratix IV board. 

Table 2: Software Execution Time of B-ACOSD module  

B-ACOSD Modules Delays in µs  
Sorting module 18 
Censoring module 104 
Detection module 21 
Total delay 143 

 
According to the computation results, we have found that 

the critical point is located in computing Tck and Tak which 
represents the threshold computation belonging to the 
censoring module and a part of the detection one. The sorting 
module represents also a critical task. We decide to export two 
custom instructions to integrate the sorting module and the 
censoring module with a part of the detection. The rest of the 
algorithm is dedicated for the Nios II core processor. In the 
mean time we tried to optimize the sorting technique as well as 
the look up table organization by approximating the resolution 
and decreasing the on-chip memory resources without 
increasing the constant false alarm rate of the B-ACOSD 
during the computation of the log function. 

 
In terms of hardware, computation of the exponential 

equation (5) and (7) is hard and high cost, especially when 
related with floating point calculation. To reduce the hardware 
complexity and computational time, equation (5) and (7) are 
converted respectively into logarithmic form as follows: 

 
  (8) 
  (9) 

In this form, power computation becomes a simple 
multiplication, and the multiplication becomes an addition. In 
addition, because the logarithmic computation in hardware is a 
complex and slow task, the logarithmic computation is 
simplified using a look-up table. The look-up table contains 
range of a lognormal distribution with  and  as 
suggested in [26], based on real radar input data measurement. 
The proposed LUT support up to 2000 values of log for our 
implementation which allow a resolution following the 
number representation change to logarithmic form, test cell 
value was also converted accordingly. This logarithmic 
conversion also performed using the same look-up table 
mentioned above. The look-up table resides on 32K on-chip 
ROM inside FPGA. The data distribution resolution in the 
32K on-chip ROM is 0.0610. MATLAB fixed-point B-
ACOSD CFAR simulation with this resolution gives censoring 
results as good as its real-number simulation.  

 
To accelerate the execution time, we have replaced the bubble 
sorting technique by a Parallel Range Computing (PRC) 
technique because it gives a reduced delay in software 
implementation, as depicted in table 3, and its hardware 
implementation allows s high degree of parallelism and an 
interesting timing. 
 
Table 3: Execution time over the Nios II processor of 
different sorting techniques 
Sorting technique Bubble Even/Odd  PRC 
Nios II Execution 
time 

18 µs 10 µs 1.28 µs 

 
After integrating the overall architecture including the 
hardware and the software modules, we have simulated the 
design and evaluated their complexity before and after adding 
the custom instruction. In table 4, we presented the complexity 
of only the Nios II core processor downloaded within the 
FPAG to execute the A-COSD detector. Where table 5, 
indicated resources of the total system with their hardware and 
software parts in terms of combinational LUTs, dedicated 
logic registers and On-chip memories. We note the complexity 
of the design is increased reasonably by adding the custom 
logics as hardware components. However, the processing time 
is decreasing from 143�s to 0.45 �s which is a big delay 
saving. 
 
Table 4: Nios II processor resources (pure software solution) 
 Without Custom Inst. With Custom Inst. 
Comb.LUTs  1474 (0.8%) 1683 (1%) 
Logic Reg. 1254(0.7%) 1257 (0.7%) 
On-chip Memory 94528 (7%) 94528 (7%) 
 
Table 5: B-ACOSD SoC resources (HW/SW Solution) 
 Without Custom Inst. With Custom Inst. 
Comb. LUTs  3368 (2%) 4723 (3%) 
Logic Reg. 2486(1%) 3074 (2%) 
On-chip Memory 4547584 (31%) 4547400 (31%) 

 
The FPGA implementation result for SoC with  

and  shows that the NIOS processor can achieve a 
maximum operating frequency of 250 MHz. After a software 
implementation of the B-ACOSD, we have experienced a 



design exploration by exporting the critical components in 
terms of delays to custom logic blocs connected to the Nios II 
processor via the Avalon interface. The time delay of the total 
architecture decreases up to 0.45 �s. This processing time is 
below the real-time requirements 0.5 �s [24]. For 
demonstration purposes, the default configuration of the 
proposed system-on-chip employs 16-bit data samples, 16 
reference cells, and 2 guard cells. The HW/SW architecture 
has been tested and verified by generating 256 data samples 
drawn from an exponential distribution. The data set is down 
loaded to 16 X 256 ROM. The output result is saved in 1 X 
256 RAM.  

VI. CONCLUSION  
In this paper, a hardware software implementation of 

B-ACOSD CFAR target detector for lognormal clutter is 
reported. This proposed system on chip system has the 
advantages of being simple, and fast with low development 
cost. The performance of the prototype hardware setup proved 
the concept of the co-design within a reasonable time of 
design.  We have considered the custom instruction approach 
to export and design the hardware components having critical 
delays. The proposed FPGA implementation integrates NiosII, 
custom logics, on-chip memories, Avalon switch fabric and 
additional interfaces. The proposed architecture allows the 
detection of each cell under test within a delay of 0.45 �s, 
below the real-time requirement of 0.5�s. The proposed 
architecture has been synthesized and validated using the 
Stratix IV development Kit (EP4SGX230KF4C2 device) over 
which we have measured all timing constraints.  
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