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ABSTRACT 

The development of next generation sequencing facilitates the 
study of metagenomics. Computational gene prediction aims to 
find the location of genes in a given DNA sequence. Gene 
prediction in metagenomics is a challenging task because of the 
short and fragmented nature of the data. Our previous framework 
minimum redundancy maximum relevance - support vector 
machines (mRMR-SVM) produced promising results in 
metagenomics gene prediction. In this paper, we review available 

metagenomics gene prediction programs and study the effect of 
the machine learning approach on gene prediction by altering the 
underlining machine learning algorithm in our previous 
framework. Overall, SVM produces the highest accuracy based on 
tests performed on a simulated dataset. 
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1. INTRODUCTION 
Metagenomics is the study of microbial communities directly in 
their natural environments such as soil, water, and gut samples—a 
single sample can contain 10,000 species [6], [30]. It has been 
estimated that only a small proportion of organisms in nature can 

be cultured using standard cultivation methods, but metagenomics 
does not require isolation and lab cultivation of individual species 
[23], [28], [30]. Metagenomics—a relatively new, but quickly 
developing field—enables us to understand the varieties of 
microorganisms, their functions, collaboration, and advancement in 
a specific biological system. 

Metagenomic analysis has useful applications in several areas, 
including biological, environmental, and clinical studies [10]. The 

analysis of metagenomics is used to discover new diseases and 

help preserve human health. For example, studying microbes in our 
environment can help us control diseases and introduce new 
strategies for diagnosis. Recent advances in next generating 
sequencing (NGS) technologies have facilitated and improved 
metagenomics research by generating high-throughput, low-cost 
sequencing data  [6], [21], [29]. 

Sequencing data taken directly from the environment are called 
metagenomes, and the study of these data is called metagenomics 

[30]. Machine learning techniques play an important role in 
solving many metagenomics problems, such as gene prediction 
taxonomic assignment, and comparative metagenomics analysis 
[27]. Finding genes and identifying their functions is essential to 
understanding the environment being studied and to annotating 
metagenomics reads [11]. 

From a computational perspective, a DNA sequence can be 
considered as a string of characters or nucleotides: A (adenine), C 
(cytosine), G (guanine) and T (thymine). A gene is a substring of 

DNA that codes for protein [17], [22]. A sequence of three 
nucleotides, called a codon, codes for one amino acid, and a 
sequence of amino acids forms a protein [17]. In prokaryotes, a 
gene is a sequence of codons that begins with either of the start 
codons (ATG, CTG, GTG, or TTG) and ends with one of the 
following stop codon (TGA, TAG, or TAA) [12], [22]. Gene 
prediction is an important step in analyzing and annotating 
genomics sequences. Given the genome’s DNA sequence, gene 

prediction algorithms find the location of coding regions in a 
genome [15]. Gene prediction algorithms for prokaryotes are 
simpler than for eukaryotes, due to high gene density and simple 
gene structure [22]. Gene prediction problems in genomics are 
well established and considered solved, and metagenomics uses 
the same gene prediction techniques. However, the greatest 
challenges for gene prediction algorithms in metagenomics are the 
short read-length and the incomplete and fragmented nature of the 

data [24], [26], [30]. 

Computational gene prediction methods can be classified into two 
classes: similarity search-based and ab-initio prediction methods 
[4], [18]. Similarity search-based approaches identify genes by 
comparing DNA sequences to previously known genes in protein 
databases, such as the basic local alignment search tool (BLAST) 
[3]. This method is reliable but computationally expensive. 
Moreover, similarity-based approaches are unable to predict novel 

genes that have no similarities to known genes. Ab-initio methods 
predict genes by finding patterns in sequences using statistical 
algorithms. Statistical features for coding regions are different 
from the features in non-coding regions, and ab-initio methods 
predict genes using intrinsic features of DNA sequences, such as 
sequence length, codon usage, and GC content. Codon usage is 
the most common feature in a range of gene prediction programs, 
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referring to the frequency of every codon in a sequence. Ab-initio 
methods are capable of discovering novel genes at reasonable 

computational cost.  

In this paper, we review existing metagenomics gene prediction 
methods. Then, we study the effect of different machine learning 
algorithms in predicting genes using our previous state-of-the-art 
framework and a large metagenomics dataset. 

2. RELATED WORK 
Most conventional gene prediction programs start by identifying 
the open reading frames (ORFs), then classifying them as coding 
or non-coding. An ORF is a sequence that starts with a start codon 
and ends with a stop codon; metagenomics data are short reads and 
have incomplete ORFs, making gene prediction a challenging task 
[30], [31]. Incomplete ORFs mean that they are missing a start 
codon, stop codon, or both, and some gene prediction programs 

fail to identify incomplete ORFs that are part of a gene [30].  
There are many metagenomics gene prediction programs 
including Orphelia [12], [13], metagenomics gene call (MGC) [2], 
Prodigal [14], FragGeneScan [25], Glimmer-MG [16],  MetaGene 
[19], MetaGeneAnnotator [20], MetaGeneMark [33] and Meta-
MFDL[32]. 

Orphelia [12], [13] is a gene prediction algorithm that uses a two-
stage machine learning approach. In the first stage, Orphelia 

extracts a large number of features, including codon usage, 
dicodon usage, and translation initiation sites, from each ORF and 
applies linear discriminants to reduce the feature space. In the 
second stage, a neural network is used to combine the features 
from the previous stage with the ORF length and the GC content 
of the fragment. The neural network computes the probability that 
an ORF encodes a protein and, finally, a greedy algorithm is used 
to select the most probable gene from the ORFs that overlap. 

MGC [2] is another prediction algorithm that uses the same two-
stage machine learning approach. MGC adds two features —
monoamino acid usage and diamino acid usage; moreover, MGC 
builds several classification models for different GC content and 
uses the appropriate model for each fragment. MGC shows the 
importance of separating the classification models based on GC 
content by showing that the ensemble technique outperforms the 
original Orphelia algorithm. Comparison results show that MGC 
outperforms Orphelia.  

mRMR-SVM [1] is another improvement over our initial MGC 
algorithm. We first extract complete and incomplete ORFs from 
each fragment, then we compute the codon usage, dicodon usage, 
monoamino acid usage, and diamino acid usage from each ORF. 
Minimum redundancy maximum relevance (mRMR) is then used 
to select the best 500 features. The hypothesis is that selecting the 
most relevant features is better than linearly combining features of 
the same origin as was the case of the two-machine learning 

approach. We then add features from the ORF length and the 
fragment GC content. An ensemble of support vector machines 
(SVM) are built for each GC content range and used to obtain 
gene probability for candidate ORFs. Lastly, a greedy algorithm 
uses the probability from the previous step to resolve any overlap 
in the predictions. We compare our new framework to the both 
original approaches and results show that the new algorithm 
outperforms the original two-stage machine learning approaches. 

Prodigal [14] is one of the most popular gene prediction tools for 
bacterial and archaeal genomes. Prodigal extracts set of features 
from input sequences: start codon usage, ribosomal binding site 

(RBS) motif usage, GC frame plot bias, and the hexamer coding 
statistics. Dynamic programming is then used to predict genes.  

FragGeneScan [25] is a gene prediction algorithm based on the 
hidden Markov model (HMM). It combines sequence error 
models, codon usage, and sequence patterns for start/stop codons, 
using the HMM to improve the accuracy of gene predictions. In 
the main module, genes are predicted after determining the path of 
hidden states that best generates the observed nucleotide sequence 
using the Viterbi algorithms. FragGeneScan has two useful 
features: the ability to predict fragmented genes and the ability to 

predict genes with frameshifts, which result from insertion or 
deletion sequence errors. FragGeneScan outperforms most 
methods in erroneous reads, however it does not perform as well 
as the other approaches in the absence of errors in the reads. 

Glimmer-MG [16] is another gene prediction algorithm, based on 
interpolated Markov models (IMM), that predicts genes in 
erroneous sequences. Glimmer-MG uses the same model as in the 
original genomic gene finder and adds additional features—

adjacent gene orientation, ORF length, and adjacent gene 
distance—to predict genes in metagenomics reads. To deal with 
sequencing errors, Glimmer-MG predicts insertions and deletions 
by branching into different frames at predefined locations. 
Glimmer-MG has the drawback of being computational expense 
as the algorithm requires classification and clustering before gene 
prediction each time. 

MetaGene [19] is a gene prediction program for metagenomics 

sequences. It uses different features to predict genes, such as 
codon and dicodon frequencies that are estimated based on the GC 
content of input sequences; the frequency distribution of ORF 
lengths; the distance distributions from the correct start codon to 
the leftmost start codon; and the distances between neighboring 
ORFs. MetaGene uses a two-stage approach; in the first stage, all 
ORFs are extracted and scored based on base compositions and 
ORF lengths; in the second stage, dynamic programming is used 

to combine previous scores and the scores of orientations and 
distances of neighboring ORFs, to calculate an optimal 
combination of ORFs. The scoring scheme is based on a 
stochastic approach. MetaGene has two limitations: the absence of 
an RBS model, and less sensitivity for predicting atypical genes 
that have different codon usages than typical genes. The 
MetaGeneAnnotator  [20] is an extension of MetaGene that 
includes statistical models for prophage genes and an RBS 
model—features that improve prediction accuracy. 

MetaGeneAnnotator has the ability to detect both typical and 
atypical genes and is thus more accurate than MetaGene. 

MetaGeneMark [33] predicts genes in short prokaryotic sequences 
with unknown origin. MetaGeneMark is based on Markov models 
and estimates parameters from dependencies between frequencies 
of oligonucleotides in protein-coding regions and genome 
nucleotide composition. 

Recently, deep learning is used to solve various bioinformatics 

and computational biology problems [5] including gene prediction. 
For example, Meta-MFDL [32] uses deep learning to predict 
genes in metagenomics fragments. First, ORF length coverage, 
monocodon usage, monoamino acid usage, and Z-curve parameter 
features are extracted from each ORF. Then, feature fusion is 
applied which concatenates the four type of features into one set 
in order to form a vector that represents the ORF.  Then, deep 
stacking network is used to classify ORFs into coding or non-

coding ORFs. 
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Table 1 compares different metagenomics gene prediction 

programs in terms of features and prediction approaches. 

 

Table 1. Metagenomics gene prediction programs 

Program Features Prediction 

approach 

Orphelia 

mononcodon usage, 

dicodon usage, translation 

initiation sites, ORF length 

and GC content 

linear 

discriminants 

and neural 

network 

MGC 

monocodon usage, dicodon 

usage, monoamino-acid 

usage, diamino-acid usage, 

TIS coverage, TIS 

probability, complete ORF 

length, incomplete ORF 

length and GC-content 

linear 

discriminants 

and neural 

network 

mRMR-SVM 

monocodon usage, dicodon 

usage, monoamino-acid 

usage, diamino-acid usage, 

complete ORF length, 

incomplete ORF length and 

GC content 

mRMR and 

SVM 

Prodigal 

start codon usage, 

ribosomal binding site 

(RBS) motif usage, GC 

frame plot bias, hexamer 

coding statistics 

dynamic 

programming 

FragGeneScan 

sequence error models, 

codon usage and sequence 

pattern for start/stop codon 

hidden 

Markov 

models 

Glimmer-MG 

ribosome binding site RBS, 

TIS, start codon usage, 

adjacent gene orientation, 

ORF length and adjacent 

gene distance. 

interpolated 

Markov 

model 

MetaGene 

codon frequencies, dicodon 

frequencies, ORF lengths, 

the distance from leftmost 

start codons, the distances 

between neighboring ORFs 

dynamic 

programming 

MetaGeneAnn

otator 

codon frequencies, dicodon 

frequencies, ORF lengths, 

the distance from leftmost 

start codons, the distances 

between neighboring 

ORFs, models for 

prophage genes and RBS 

dnamic 

programming 

MetaGeneMark 
dicodon frequencies, 

nucleotide frequencies 

hidden 

Markov  

model 

Meta-MFDL 

ORF length coverage, 

monocodon usage, 

monoamino acid usage, 

and Z-curve parameter 

features 

deep stacking 

network 

3. MATERIALS AND METHODS 

3.1 Dataset 
We use the same dataset originally used by Orphelia [13], which 
contains 7 million ORFs extracted from fragments of length 700 

bp. These fragments were simulated from 131 bacterial and 
archaeal genomes, and their gene annotations was obtained from 
GenBank [7]. We divide the dataset into 10 mutually exclusive 
parts, based on fragments’ GC content. Previous research [2] has 
shown that building several classification models based on pre-
defined GC ranges improves prediction performance and 
outperforms a single model.   

3.2 Methodology 
In order to study to effect of the machine learning classifiers on 
our perdition problem, we adopt our previous framework [1] to 
perform the experiments. Figure 1 shows the main stages of this 
framework. During the classification phase, the underlining 
classification algorithm is altered each time in order to test 

different classifiers. The predictions from this phase are fed to the 
next and final step in order to remove any overlap in the 
prediction. The accuracy of each run is computed by comparing 
the final prediction set with the real annotations previously 
computed for our simulated dataset. Below is a description of all 
five phases: 

 
Figure 1. mRMR-SVM framework 

ORF extraction: all complete and incomplete ORFs are extracted 
from each fragment. Since metagenomics fragments come from 
short NGS reads, these reads can either overlap with a gene, be 
completely inside a gene, or reside completely in the non-coding 
area. The results of this step include all possible ORFs that can be 
either complete, missing upstream portion, downstream portion or 
both.  

Feature extraction: 4,000 features from each ORF are extracted 

in this step. These features include codon usage, dicodon usage, 
monoamino acid usage, and diamino acid usage. Codon usage 
represents the frequency of each codon in the given ORF while 
dicodon usage represents the frequency of each overlapping codon 
tuples in the read. Similarly, monoamino acid and diamino acid 
usages are extracted using the translation of the DNA sequence of 
the ORF into amino acid sequence.  Additionally, we compute the 

Fragment 

ORF extraction 

Feature extraction 

Feature selection 

classification 

Solve the overlap 
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ratio of the ORF length to the read length as well as the GC 
content of the fragment. 

Feature selection: Feature selection reduces the dimensionality of 
data by removing irrelevant or redundant features according to 
certain criteria. There are many advantages of the feature selection 
phase in a machine learning experiment. It facilitates data 
understanding, reduces memory usage, reduces training time, and 
increases the performance of classification. Feature selection 
methods can be categorized into: filter, wrapper, hybrid and 
embedded methods depending on how to select and evaluate 

features. In our framework, we use a filter feature selection 
method that uses intrinsic characteristics of data and evaluates 
features independent of learning algorithms. Filter methods are 
suitable for high dimensional data because they are simple, fast, 
and computationally efficient. In our previous framework, we 
selected the best filter method by choosing a classification 
approach and then varying the filter methods and the final number 
of features. The mimimum redundancy maximum relevancy 

(mRMR) was selected and is used here to select best 500 features 
from the original feature space that best characterizes the 
statistical properties of the ORF. These features are the most 
dissimilar to one another and most similar to the classification 
variable.  

Classification: the ORF length feature, GC content, and best 500 
features selected previously are supplied to different machine 
learning algorithms to obtain the probability that an ORF encodes 

protein. In this paper, we test five different machine learning 
algorithms including k-nearest neighbors (KNN), naïve Bayes 
(NB), random forest (RF), neural networks (NN), and support 
vector machines (SVM). Our goal is to study the effect of the 
machine learning algorithms on our particular prediction problem. 
For each machine learning algorithm, we build 10 classification 
models based on pre-defined GC ranges. The ensemble technique 
has been shown to outperform a single model as was proven by 

our previous research [2]. After tuning the parameters of each 
classifier using a separate dataset, cross-validation is used to 
evaluate the prediction performance for each algorithm. We use 
the modified version of each algorithm that outputs the probability 
that a prediction belongs to the positive class (the coding class in 
our case). The reason behind this is due to the fact that 
overlapping ORFs can be classified as coding while only one of 
them can be a real gene. The next and final step uses these 
probabilities. 

Solve the overlap: some candidate genes might overlap or belong 
to the same ORF set. In this case, we use the same greedy 
algorithm from our previous work [1], which takes the probability 
from the classification stage and select the most probable ORF to 
include in the final set of genes. 

4. RESULTS AND DISCUSSION 
The aim of our study is to evaluate different machine learning 
algorithms to predict genes in metagenomics fragments. We focus 
on the classification phase and compare the accuracy of gene 
prediction framework using five different classification algorithms: 
k-nearest neighbors (KNN), naïve Bayes (NB), random forest 
(RF), neural networks (NN), and support vector machines (SVM). 
Tests are performed on fragments simulated from 131 bacterial 

and archaeal genomes and processed using our previous 
framework as shown in the methodology section. Previous 
research has shown that building multiple models based on GC 
content is better than building a single model [2]. Therefore, for 
each machine learning algorithm, we perform cross-validation on 

10 subsets of the dataset divided by GC content. Given the high 
dimensionality of the data and the large number of models to build, 

we use the Amazon Elastic Compute Cloud (Amazon EC2) to 
perform all experiments [9]. 

Table 2. Accuracy of different machine learning algorithms 

GC Ranges KNN NB RF NN SVM 

0-36.57 97.29 93.30 95.80 96.99 97.89 

36.57-41.57 97.95 93.92 96.35 97.64 98.37 

41.57-46 98.00 93.95 96.07 97.76 98.40 

46-50.14 97.62 92.30 95.64 97.34 98.28 

50.14-54.28 97.41 91.06 94.86 97.16 98.22 

54.28-58.14 97.10 89.80 94.94 96.91 98.05 

58.14-61.85 97.09 89.25 94.50 97.44 98.30 

61.85-65 97.44 90.81 95.02 97.83 98.70 

65-68.28 97.75 91.33 95.22 98.19 98.95 

68.28-100 98.04 91.75 95.69 98.31 99.08 

Average 97.57 91.75 95.41 97.56 98.42 

 

 
Figure 2. Sensitivity of different machine learning algorithms 

 

Table 2 presents the accuracy of each method on all 10 GC ranges. 
The SVM classifier achieves the highest accuracy across all GC 
ranges—an average accuracy of 98.42%—followed by k-nearest 
neighbors at 97.57%. The naïve Bayes achieves the lowest 
accuracy, of 91.75%. Figures 2 and 3 show the sensitivity and 
specificity of different machine learning methods on all 10 GC 

ranges. The results also show the performance difference across 
the GC spectrum. For example, we can see that the NB and RF 
algorithms have lower specificity and sensitivity respectively for 
high GC ranges. Overall, the SVM classifier achieves the highest 
sensitivity in all GC ranges and random forest has the lowest 
sensitivity. Moreover, all machine learning algorithms have high 
specificity across all GC range. SVM has been successfully used 
in various fields, including text classification, object recognition, 

image processing and many more classification problems. SVM is 
also widely used in bioinformatics and computational biology 
because it is computationally efficient, robust in high dimensional 
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data and is less prone to over-fitting. A survey of the use of SVM 
in bioinformatics lists many useful applications of SVM in the 

field such as protein secondary structure prediction, gene function 
classification, cancer tissue classification, translation initiation site 
recognition, identification of protein functions [8].  Our 
experiments show that SVM is also the best choice for gene 
prediction in metagenomics. Previous research shows lower 
accuracy scores in high GC ranges due to the high number of 
short ORFs that exist in high GC fragments. In our experiment, 
we can see that SVM has a somewhat constant accuracy across all 

GC ranges and even slightly better results for high GC ranges. 

 
Figure 3. Specificity of different machine learning algorithms 

5. CONCLUSIONS 
The incomplete and fragmented nature of metagenomics data 
presents challenges in predicting genes in metagenomics 
fragments. A reliable gene prediction program is essential for 
improving the metagenomics pipeline and for discovering novel 
genes and their functions. In this study, we compare various 
machine learning algorithms for predicting genes in 
metagenomics fragments. We empirically demonstrate that SVM 
outperforms other machine learning algorithms when compared to 

other classification algorithms using the same prediction 
framework. Our findings concur with other research that conclude 
that SVM achieves high accuracy and outperforms other machine 
learning algorithms [8]. Our next step is to explore the possibility 
of using convolutional neural networks in metagenomics gene 
prediction.  Moreover, we plan to incorporate sequence errors 
handling in our prediction models. 
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