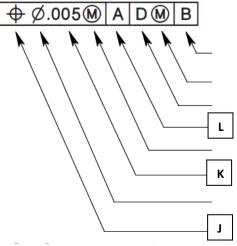


IE-352 Section 1, CRN: 48700/1/2 Section 2, CRN: 48706/7/8 Second Semester 1435-36 H (Spring-2015) – 4(4,1,2) "MANUFACTURING PROCESSES – 2"


	Thursday, April 23, 201	5 (04/07/1436H)
	Homework 3 (MIDTERM 2) [10 POINTS]	
Name	Steed and Neemsham	Sections

Name:	Student Number:	Section:
	4	10 / 11

Place the correct letter in the box at the right of each question [$\frac{1}{2}$ Point Each]

- 1. Classify, respectively, the following geometric symbols: // , \equiv , —:
 - A. orientation, form, location
 - B. form, orientation, location
 - C. orientation, location, form
 - D. location, form, orientation
 - E. location, orientation, form
- 2. Respectively, the following geometric symbols: //, =, stand for,
 - A. parallelism, symmetry, straightness
 - B. symmetry, parallelism, straightness
 - C. parallelism, symmetry, flatness
 - D. symmetry, parallelism, flatness
 - E. flatness, symmetry, straightness

Questions 3-4. Examine the feature control frame shown below and answer the questions to follow.

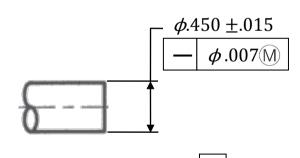
3. How do you read the feature control frame shown above?

A. position GT of feature (RFS) is 0.005-diam. cylind. zone relative to datums A, D, B

- B. circularity GT of feature (RFS) is 0.005-diam. cylind. zone relative to datums A, D, B
- C. position GT of feature at LMC is 0.005-diam. cylind. zone relative to datums A, D, B
- D. circularity GT of feature at MMC is 0.005-diam. cylind. zone relative to datums A, D, B
- E. position GT of feature at MMC is 0.005-diam. cylind. zone relative to datums A, D, B

4. Respectively, the symbols *J*, *K*, and *L* stand for,

- A. J: geometric characteristic symbol, K: geometric tolerance, L: tertiary datum
- B. J: geometric characteristic symbol, K: basic size, L: primary datum
- C. J: diameter symbol, K: geometric tolerance, L: primary datum
- D. J: geometric characteristic symbol, K: geometric tolerance, L: primary datum
- E. J: diameter symbol, K: basic size, L: tertiary datum


5. For the system shown below, $GT_{LMC} =$

A. 0.037

جــــامــعـــة الملكسعود

ing Saud University

- B. 0.007
- C. 0.015
- D. 0.014
- E. 0.030

6. Repeat P5 above given no material condition

modifier is defined in the FCF.

- A. 0.037
- В. 0.007
- C. 0.015
- D. 0.014
- E. 0.030

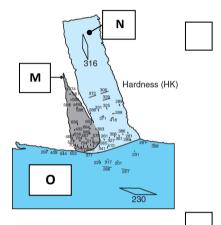
- 7. The following process involves a rotating workpiece and radially inward tool:
 - A. cutting off

الملكسعود

(ing Saud University

- B. slab milling
- C. drilling
- D. end milling
- E. turning

8. Label the hardness distribution diagram shown below.


- A. *M*: BUE; *N*: continuous chip; *O*: tool
- B. *M*: continuous chip; *N*: BUE; *O*: tool
- C. M: BUE; N: continuous chip; O: workpiece
- D. *M*: continuous chip; *N*: BUE; *O*: workpiece
- E. *M*: serrated chip; *N*: continuous chip; *O*: workpiece

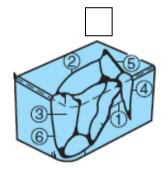
9. Discontinuous chips form under ALL of the following conditions,

- A. high α , large t_0 , very high V, high machine tool stiffness
- B. low α , small t_0 , normal V, low machine tool stiffness
- C. high α , large t_0 , normal V, low machine tool stiffness
- D. low α , small t_0 , very high V, high machine tool stiffness
- E. low α , large t_0 , very high V, low machine tool stiffness

10. Respectively, the following can be used to measure cutting forces, temperature,

- A. acoustic emission transducer, dynamometer
- B. dynamometer, acoustic emission transducer
- C. radiation pyrometer, dynamometer
- D. dynamometer, radiation pyrometer
- E. radiation pyrometer, acoustic emission transducer

11. Arrange the following parameters in *increasing* order of effect on tool life,


A. *f* , *t*₀ , *V*

جــــامــعـــة الملكسعود

- B. *t*₀, *f*, *V*
- C. V, t₀, f
- D. *t*₀, *V*, *f*
- E. V, f, t_0

12. Label the high-speed steel cutting tool diagram shown below.

- A. (1): crater wear; (2): flank wear; (3): DOC line; (4): failure face
- B. ①: failure face; ②: DOC line; ③: flank wear; ④: crater wear
- C. ①: flank wear; ②: failure face; ③: DOC line; ④: crater wear
- D. ①: flank wear; ②: crater wear; ③: failure face; ④: DOC line
- E. ①: DOC line; ②: crater wear; ③: failure face; ④: flank wear

Questions 13-20. In an orthogonal cutting operation using a ceramic tool (n = 0.7), $t_o = 0.25 \text{ mm}$, V = 400 m/min, $\alpha = 15^\circ$, and w = 8 mm. It is observed that $t_c = 0.45 \text{ mm}$, $F_c = 600 \text{ N}$, and the mean coefficient of friction in the cutting zone is 0.83.

13. What is the value of the *chip-compression factor*?

- A. 0.56
- B. 0.25
- **C**. 0.45
- D. 0.11
- E. 1.8

14. What is the value of the shear angle?

- A. 32.1°
- В. 57.9°
- C. 72.8°
- D. 49.3°
- E. 17.2°

15. What is the value of the shear strain?

- A. 3.27
- B. 1.72
- C. 1.90
- D. 3.54
- E. 2.22

16. What is the value of the shear velocity?

- A. 222 *m/min*
- B. 404 *m/min*
- C. 108 *m/min*
- D. 1314 *m/min*
- E. 723 *m/min*

17. What is the magnitude of the thrust force?

- A. 1305 N
- B. 80.2 N
- C. 4488 N
- D. 276 N
- E. 545 N

18. Find the required *source power* given a mechanical efficiency of 65%.

- A. 369 *kW*
- B. 4.0 *kW*
- C. 240 kW
- D. 2.6 *kW*
- E. 6.15 *kW*

19. What is the effect on *increase in mean temperature* of doubling the cutting speed?

A. increase in T by 74%

جــــامــعـــة الملكسعود

- B. decrease in T by 74%
- C. increase in T by 26%.
- D. decrease in *T* by 26%
- E. increase in T by 41%

20. What is the effect on tool life of doubling the cutting speed?

- A. reduction in tool life by 37.1%
- B. reduction in tool life by 62.9%
- C. reduction in tool life by 61.6%
- D. reduction in tool life by 38.4%
- E. reduction in tool life by 50.0%

Rules:

- You must prepare and submit the homework individually.
- Your work must be **neatly written** in pencil (or typed) and in **proper English** (where applicable).
- You must show all work.
- **BOX** your answer(s) and include the **units**.

Due date:

• Sunday, May 3rd, 2015 (14/07/1436)

Equations, Data, Diagrams You May Find Useful

$$\log x^{p} = p \log x, \quad \log xy = \log x + \log y, \quad \log \frac{x}{y} = \log x - \log y$$

$$\tan\phi = \frac{r\cos\alpha}{1 - r\sin\alpha} \Longrightarrow r = \frac{t_0}{t_c} = \frac{\sin\phi}{\cos(\phi - \alpha)} \qquad \alpha_e = \sin^{-1}\left(\sin^2 i + \cos^2 i\sin\alpha_n\right)$$

$$r = \frac{t_0}{t_c} = \frac{V_c}{V}$$
$$\gamma = \frac{AB}{OC} = \frac{AO}{OC} + \frac{OB}{OC} \Longrightarrow \gamma = \cot\phi + \tan(\phi - \alpha)$$

Shear Stress = $\frac{F_s}{Area of the shear plane}$

$$\phi = 45^{\circ} + \frac{\alpha}{2} - \frac{\beta}{2} \text{ (when } \mu = 0.5 \sim 2\text{)} = \frac{V_s}{\cos\alpha} = \frac{V_c}{\sin\phi}$$
$$\Rightarrow \phi = 45^{\circ} + \alpha - \beta$$

$$T = \frac{0.000665Y_f}{\rho c} \sqrt[3]{\frac{Vt_0}{K}}$$

جـــامــعـــة الملكسعود

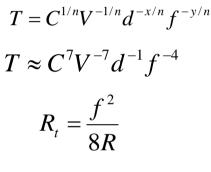
King Saud University

$$T_{mean} \propto V^a f^b$$

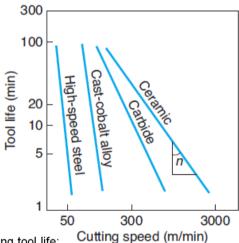
Carbide tools: a = 0.2, b = 0.125

High-speed steel tools: a = 0.5, b = 0.375

$$\eta_{mech} = \frac{Power_c}{Power_{source}}$$


$$\mu = \tan \beta = \frac{F}{N} = \frac{F_t + F_c \tan \alpha}{F_c - F_t \tan \alpha}$$
$$F_s = F_c \cos \phi - F_t \sin \phi$$
$$F_n = F_c \sin \phi + F_t \cos \phi$$

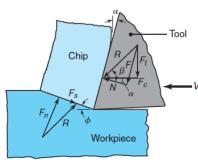
$$Power = F_c V$$
Power for friction = FV_c
Power for shearing = $F_s V_s$

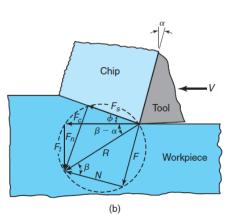

$$u_t = u_s + u_f \qquad u_s = \frac{F_s V_s}{w t_0 V}$$

$$u_f = \frac{FV_c}{wt_0 V} = \frac{Fr}{wt_0}$$

Ranges of <i>n</i> Values for the Taylor Equation (21.20a) for Various Tool Materials		
High-speed steels	0.08-0.2	
Cast alloys	0.1-0.15	
Carbides	0.2-0.5	
Coated carbides	0.4-0.6	
Ceramics	0.5-0.7	




 $VT^n d^x f^y = C$



Recommended cutting speed is one producing tool life:

 60-120 min: high-speed steel tools tools

Approximate Range of Energy Requirements in Cutting Operations at the Drive Motor of the Machine Tool (for Dull Tools, Multiply by 1.25)

	$\frac{\text{Specific energy}}{\text{W} \cdot \text{s/mm}^3}$	
Material		
Aluminum alloys	0.4-1	
Cast irons	1.1-5.4	
Copper alloys	1.4-3.2	
High-temperature alloys	3.2-8	
Magnesium alloys	0.3-0.6	
Nickel alloys	4.8-6.7	
Refractory alloys	3-9	
Stainless steels	2-5	
Steels	2-9	
Titanium alloys	2-5	