IE-352

Section 1, CRN: 48700/1/2
Section 2, CRN: 48706/7/8
Second Semester 1435-36 H (Spring-2015) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Thursday, April 23, 2015 (04/07/1436H) Homework 3 (MIDTERM 2) [10 POINTS]

Name:	Student Number:	Section:
	4	$10 / 11$

Place the correct letter in the box at the right of each question [$\frac{1}{2}$ Point Each]

1. Classify, respectively, the following geometric symbols: $/ /, \overline{=}, \square$: $\quad \square$
A. orientation, form, location
B. form, orientation, location
C. orientation, location, form
D. location, form, orientation
E. location, orientation, form
2. Respectively, the following geometric symbols: //, =,__stand for, \square
A. parallelism, symmetry, straightness
B. symmetry, parallelism, straightness
C. parallelism, symmetry, flatness
D. symmetry, parallelism, flatness
E. flatness, symmetry, straightness

Questions 3-4. Examine the feature control frame shown below and answer the questions to follow.

3. How do you read the feature control frame shown above?

A. position GT of feature (RFS) is 0.005 -diam. cylind. zone relative to datums A, D, B
B. circularity GT of feature ($R F S$) is 0.005 -diam. cylind. zone relative to datums A, D, B
C. position GT of feature at $L M C$ is 0.005 -diam. cylind. zone relative to datums A, D, B
D. circularity GT of feature at $M M C$ is 0.005 -diam. cylind. zone relative to datums A, D, B
E. position GT of feature at $M M C$ is 0.005 -diam. cylind. zone relative to datums A, D, B
4. Respectively, the symbols J, K, and L stand for,

A. \boldsymbol{J} : geometric characteristic symbol, \boldsymbol{K} : geometric tolerance, \boldsymbol{L} : tertiary datum
B. J: geometric characteristic symbol, \boldsymbol{K} : basic size, \boldsymbol{L} : primary datum
C. J: diameter symbol, \boldsymbol{K} : geometric tolerance, \boldsymbol{L} : primary datum
D. J: geometric characteristic symbol, \boldsymbol{K} : geometric tolerance, \boldsymbol{L} : primary datum
E. \boldsymbol{J} : diameter symbol, \boldsymbol{K} : basic size, \boldsymbol{L} : tertiary datum
5. For the system shown below, $\boldsymbol{G T} \boldsymbol{T}_{L M C}=$
A. 0.037
B. 0.007
C. 0.015
D. 0.014

6. Repeat P5 above given no material condition modifier is defined in the FCF.

A. 0.037
B. 0.007
C. 0.015
D. 0.014
E. 0.030
7. The following process involves a rotating workpiece and radially inward tool:

A. cutting off
B. slab milling
C. drilling
D. end milling
E. turning
8. Label the hardness distribution diagram shown below.
A. M : BUE; N : continuous chip; \boldsymbol{O} : tool
B. M : continuous chip; N : BUE; \boldsymbol{O} : tool
C. \boldsymbol{M} : BUE; \boldsymbol{N} : continuous chip; \boldsymbol{O} : workpiece
D. \boldsymbol{M} : continuous chip; \boldsymbol{N} : BUE; \boldsymbol{O} : workpiece
E. \boldsymbol{M} : serrated chip; \boldsymbol{N} : continuous chip; \boldsymbol{O} : workpiece

9. Discontinuous chips form under ALL of the following conditions,

A. high α, large t_{0}, very high V, high machine tool stiffness
B. low α, small t_{0}, normal V, low machine tool stiffness
C. high α, large t_{0}, normal V, low machine tool stiffness
D. low α, small t_{0}, very high V, high machine tool stiffness

E . low α, large t_{0}, very high V, low machine tool stiffness
10. Respectively, the following can be used to measure cutting forces, temperature,

A. acoustic emission transducer, dynamometer
B. dynamometer, acoustic emission transducer
C. radiation pyrometer, dynamometer
D. dynamometer, radiation pyrometer
E. radiation pyrometer, acoustic emission transducer
11. Arrange the following parameters in increasing order of effect on tool life,

A. f, t_{0}, V
B. t_{0}, f, V
C. V, t_{0}, f
D. t_{0}, V, f
E. V, f, t_{0}
12. Label the high-speed steel cutting tool diagram shown below.
A. (1): crater wear; (2): flank wear; (3): DOC line; (4): failure face
B. (1): failure face; (2): DOC line; (3): flank wear; (4): crater wear
C. (1): flank wear; (2): failure face; (3): DOC line; (4): crater wear
D. (1) : flank wear; (2): crater wear; (3) : failure face; (4): DOC line

E. (1): DOC line; (2): crater wear; (3) : failure face; (4): flank wear

Questions 13-20. In an orthogonal cutting operation using a ceramic

 tool $(n=0.7), t_{o}=0.25 \mathrm{~mm}, V=400 \mathrm{~m} / \mathrm{min}, \alpha=15^{\circ}$, and $w=8 \mathrm{~mm}$. It is observed that $t_{c}=0.45 \mathrm{~mm}, F_{c}=600 \mathrm{~N}$, and the mean coefficient of friction in the cutting zone is 0.83 .13. What is the value of the chip-compression factor?

A. 0.56
B. 0.25
C. 0.45
D. 0.11
E. 1.8
14. What is the value of the shear angle? \square
A. 32.1°
B. 57.9°
C. 72.8°
D. 49.3°
E. 17.2°
15. What is the value of the shear strain?
A. 3.27
B. 1.72
C. 1.90
D. 3.54
E. 2.22
16. What is the value of the shear velocity? \square
A. $222 \mathrm{~m} / \mathrm{min}$
B. $404 \mathrm{~m} / \mathrm{min}$
C. $108 \mathrm{~m} / \mathrm{min}$
D. $1314 \mathrm{~m} / \mathrm{min}$
E. $723 \mathrm{~m} / \mathrm{min}$
17. What is the magnitude of the thrust force?
A. 1305 N
B. 80.2 N
C. 4488 N
D. 276 N
E. 545 N
18. Find the required source power given a mechanical efficiency of 65\%.

A. 369 kW
B. 4.0 kW
C. 240 kW
D. 2.6 kW
E. 6.15 kW
19. What is the effect on increase in mean temperature of doubling the cutting speed?
A. increase in T by 74%
B. decrease in T by 74%
C. increase in T by 26\%.
D. decrease in T by 26\%
E. increase in T by 41\%
20. What is the effect on tool life of doubling the cutting speed?

A. reduction in tool life by 37.1%
B. reduction in tool life by 62.9%
C. reduction in tool life by 61.6%
D. reduction in tool life by 38.4%
E. reduction in tool life by 50.0%

Rules:

- You must prepare and submit the homework individually.
- Your work must be neatly written in pencil (or typed) and in proper English (where applicable).
- You must show all work.
- BOX your answer(s) and include the units.

Due date:

- Sunday, May 3 ${ }^{\text {rd }}$, 2015 (14/07/1436)

Equations, Data, Diagrams You May Find Useful

$$
\begin{aligned}
& \log x^{p}=p \log x, \quad \log x y=\log x+\log y, \quad \log \frac{x}{y}=\log x-\log y \\
& \tan \phi=\frac{r \cos \alpha}{1-r \sin \alpha} \Rightarrow r=\frac{t_{0}}{t_{c}}=\frac{\sin \phi}{\cos (\phi-\alpha)} \quad \alpha_{e}=\sin ^{-1}\left(\sin ^{2} i+\cos ^{2} i \sin \alpha_{n}\right) \\
& r=\frac{t_{0}}{t_{c}}=\frac{V_{c}}{V} \\
& \gamma=\frac{A B}{O C}=\frac{A O}{O C}+\frac{O B}{O C} \Rightarrow \gamma=\cot \phi+\tan (\phi-\alpha) \\
& \text { Shear Stress = } \\
& V T^{n} d^{x} f^{y}=C \\
& T=C^{1 / n} V^{-1 / n} d^{-x / n} f^{-y / n} \\
& T \approx C^{7} V^{-7} d^{-1} f^{-4} \\
& R_{t}=\frac{f^{2}}{8 R} \\
& T_{\text {mean }} \propto V^{a} f^{b} \\
& \text { - Carbide tools: } a=0.2, b=0.125 \\
& \text { - High-speed steel tools: } a=0.5, b=0.375 \\
& \eta_{\text {mech }}=\frac{\text { Power }_{c}}{\text { Power }_{\text {source }}} \\
& \mu=\tan \beta=\frac{F}{N}=\frac{F_{t}+F_{c} \tan \alpha}{F_{c}-F_{t} \tan \alpha} \\
& F_{s}=F_{c} \cos \phi-F_{t} \sin \phi \\
& F_{n}=F_{c} \sin \phi+F_{t} \cos \phi \\
& \text { Power }=F_{c} V \\
& \text { Power for friction }=F V_{c} \\
& \text { Power for shearing }=F_{s} V_{s} \\
& u_{t}=u_{s}+u_{f} \quad u_{s}=\frac{F_{s} V_{s}}{w t_{0} V} \\
& u_{f}=\frac{F V_{c}}{w t_{0} V}=\frac{F r}{w t_{0}} \\
& \text { Ranges of } n \text { Values for the Taylor Equation } \\
& \text { (21.20a) for Various Tool Materials }
\end{aligned}
$$

- 60-120 min: high-speed steel tools
- ㅁ $\quad 30-60 \mathrm{~min}$: carbide tools
$F_{t}=R \sin (\beta-\alpha)$ or $F_{t}=F_{c} \tan (\beta-\alpha)$

(b)

