



## IE-352 Section 1, CRN: 48703/4/5 Section 2, CRN: 48706/7/8 First Semester 1436-37 H (Fall-2015) – 4(4,1,2) "MANUFACTURING PROCESSES – 2"

## Wednesday, Oct. 14, 2015 (01/01/1437H)

| <b>HW 1</b> | (MIDTER | M 1) |
|-------------|---------|------|
|-------------|---------|------|


| Name: | Student Number: | Section:         |
|-------|-----------------|------------------|
|       | 4               | Darwish / Sherb. |

# Place the correct letter in the box at the right of each question [0.5 Pt. Each]

- 1. The figure below displays what type of manufacturing process/operation?
  - A. surface processing operation
  - B. permanent joining, assembly operation
  - C. shaping, material removal process
  - D. mechanical fastening operation
  - E. heat treatment, property enhancing process

### 2. The building blocks of modern manufacturing are ...

- A. people, materials, processes, and products
- B. people, equipment, machines, and systems
- C. people, materials, machines, and products
- D. people, equipment, processes, and systems
- E. people, materials, processes, and systems
- 3. The maximum quantity produced in a given time period in a plant is called ...
  - A. physical product limitations
  - B. production capacity
  - C. technological processing capability
  - D. production quantity
  - E. manufacturing industry





4. A material that consists of a rigid, structure that cannot be reheated is ...

- A. thermosetting polymers
- B. elastomers

الملكسعهم

- C. thermoplastic polymers
- D. crystalline ceramics
- E. nonferrous metals

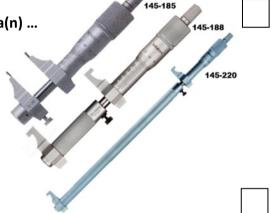
5. In the following processes, the starting material is a ductile or brittle solid:

- A. surface processing operations
- B. deformation processes
- C. particulate processing
- D. solidification processes
- E. material removal processes

## 6. The devices shown below are all examples of a(n) ...

- A. micrometer depth gage
- B. Vernier height gage
- C. inside Vernier gage
- D. inside micrometer gage
- E. micrometer height gage

### 7. A dial caliper...

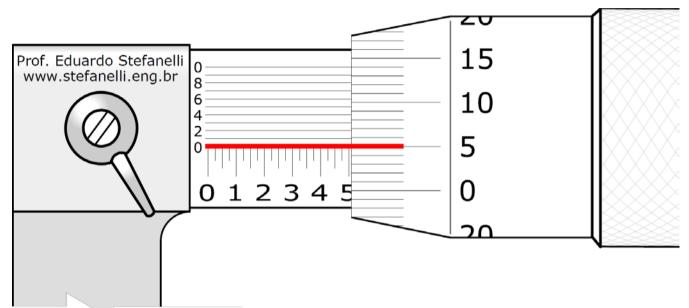

- A. looks similar to a Vernier micrometer
- B. is used to provide angular measurements using a Vernier scale
- C. is used to provide direct readings of linear measurements
- D. is used to provide direct readings of angular measurements
- E. is used to provide angular measurements using a degree-minute system

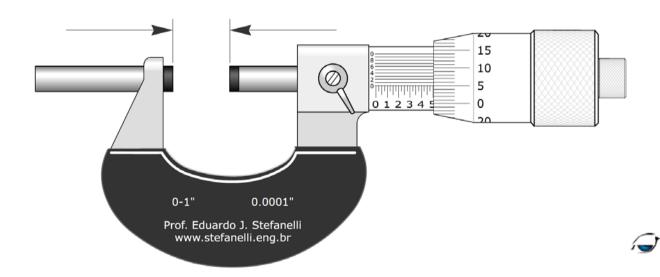
### 8. The figure below shows an example of a ... gage.

- A. dial indicator snap gage
- B. ring gage
- C. plug gage
- D. non-adjustable snap gage
- E. thread gage

Darwish/El-Sherbeeny Oct. 14, 2015





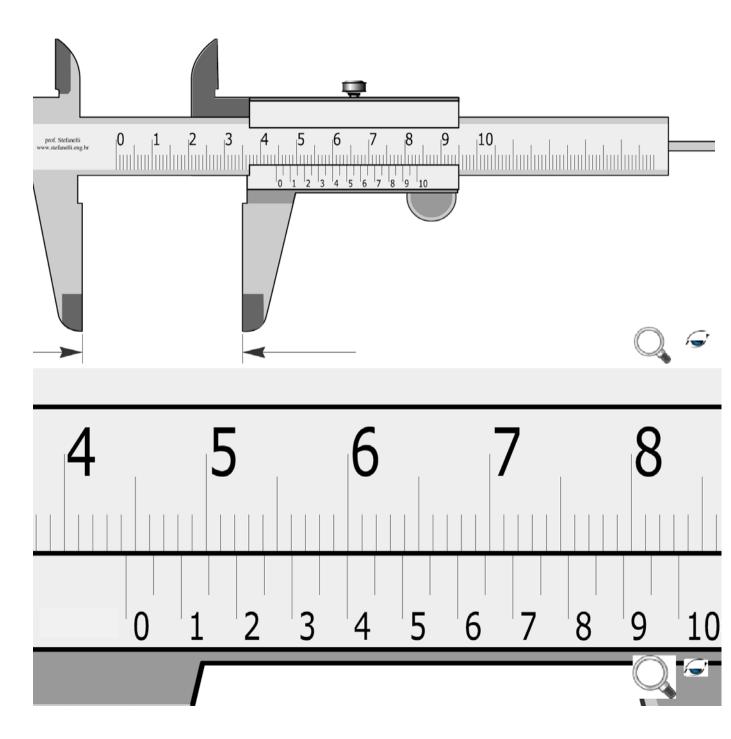

- 9. The correct reading in the ... shown below is ...
  - A. inside micrometer; 0.5050 in

جــــامــعـــة الملكسعود

- B. outside micrometer; 0.5050 in
- C. inside micrometer; 0.505 in
- D. outside micrometer;  $0.505 \ in$
- E. inside micrometer; 0.550 in





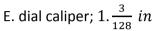


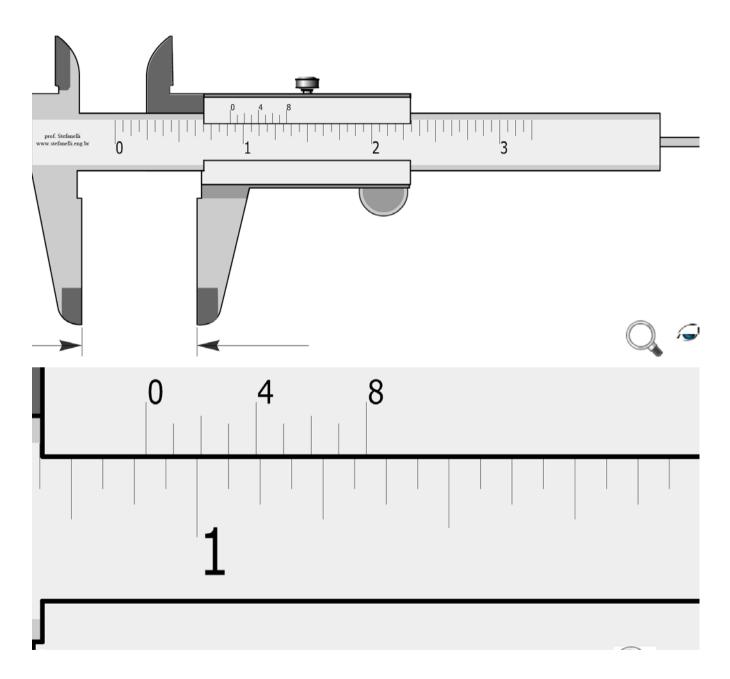

# 10. The correct reading in the ... shown below is ...

A. Vernier caliper; 4.435 mm

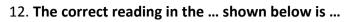
جـــامــعــة الملك سعود King Saud University

- B. Vernier micometer; 44.35 mm
- C. Vernier caliper; 44.35 in
- D. Vernier caliper; 44.70 mm
- E. Vernier caliper; 44.35 mm



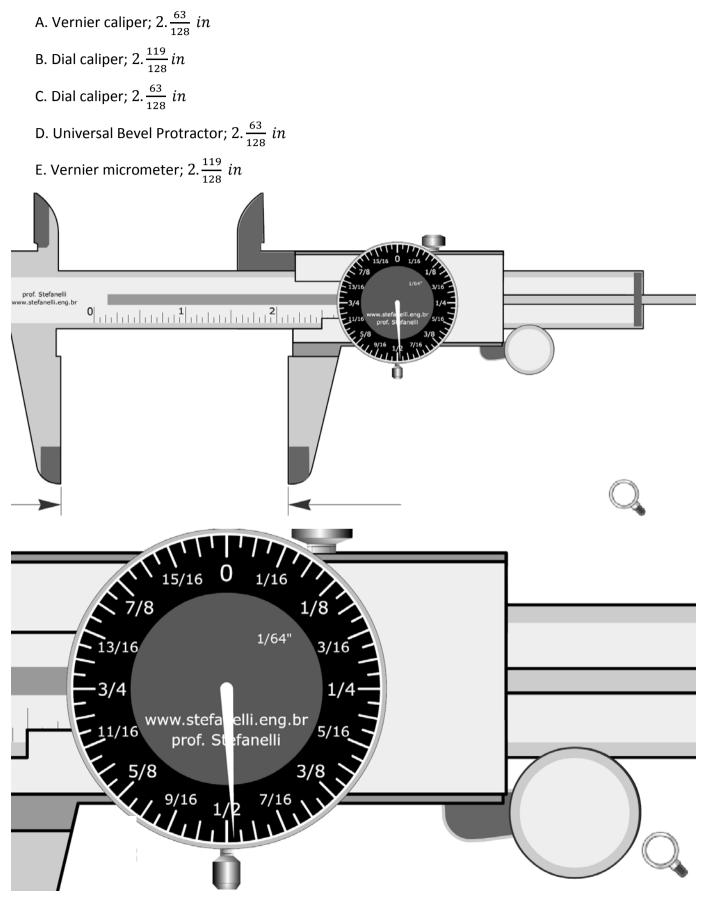







A. vernier caliper;  $0.\frac{115}{128}$  in B. vernier caliper;  $1.\frac{1}{16}$  in C. dial caliper;  $0.\frac{115}{128}$  in D. dial caliper;  $1.\frac{1}{16}$  in

جـــامــعــة الملك سعود King Saud University







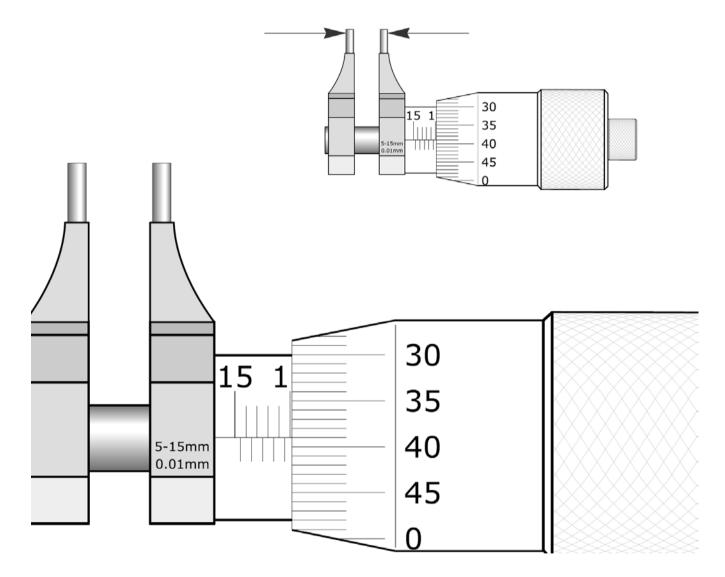



جــــامــعـــة الملكسعود

King Saud Universit



Darwish/El-Sherbeeny Oct. 14, 2015




# 13. The correct reading in the ... shown below is ...

A. outside micrometer; 9.91 mm

جـــامـعــة الملك سعود King Saud University

- B. outside micrometer; 9.89 mm
- C. inside micrometer; 9.91 mm
- D. inside micrometer; 9.89 mm
- E. inside micrometer; 16.41 mm





# **Questions 14-16**. Consider a 15" nominal diameter, *RC*7 fit between a shaft and hole.

# 14. Respectively, $shaft_{MMC} =$ ; $shaft_{LMC} =$ ...

A. 15.006 *in*; 15.000 *in*B. 14.987 *in*; 14.990 *in* 

جــــامــعـــة الملكسعود

King Saud University

- C. 15.000 in; 15.006 in
- D. 14.990 in; 14.987 in
- E. 14.990 in; 15.006 in

# 15. **Respectively,** $hole_{MMC} =$ ; $hole_{LMC} =$ ...

- A. 15.006 in; 15.000 in
- B. 15.000 in; 15.006 in
- C. 14.987 in; 14.990 in
- D. 14.990 in; 14.987 in
- E. 14.990 in; 15.006 in

# 16. **Respectively,** *min. clearance* =; *max. clearance* = ...

- A. 0 in; 0.020 in
- B. 0.008 in; 0.016 in
- C. 0 in; 0.006 in
- D. 0.010 in; 0.020 in
- E. 0.020 in; 0.010 in

جـــامــعـــة الملكسعود

(ing Saud University



# Questions 17-20. Consider a 20 mm nominal diameter, N7/h6 fit. 17. **Respectively,** $shaft_{MMC} =$ ; $shaft_{LMC} =$ ... A. 20.000 mm; 19.987 mm B. 19.987 mm; 20.000 mm C. 20.000 mm; 19.993 mm D. 19.993 mm; 19.972 mm E. 19.972 mm; 19.993 mm 18. Respectively, $hole_{MMC} =$ ; $hole_{LMC} =$ ... A. 20.000 mm; 19.987 mm B. 19.987 mm; 20.000 mm C. 20.000 mm; 19.993 mm D. 19.993 mm; 19.972 mm E. 19.972 mm; 19.993 mm 19. **Respectively**, *max*. *clearance* =; *max*. *interference* = ... A. 0; 0.028 mm B. 0; 0 C. 0.006 mm; 0.028 mm D. 0.028 mm; 0.006 mm E. 0; 0.006 mm 20. **Respectively,** *min. clearance* =; *min. interference* = ... A. 0; 0.028 mm B. 0; 0 C. 0.006 mm; 0.028 mm D. 0.028 mm; 0.006 mm E. 0; 0.006 mm





| 15.75 - 19.69  | 12.41 - 15.75 |              | 9.85 - 12.41 | 7.09 - 9.85 |       |       | A 73 7 00 | J.IJ - 4.1J |       | 1.31 - 3.13 |       |       | 1 10 1 07 |       | 0 71 _ 1 10 |       | 0 / 0 71 | 0.40 - 10.40 | UV U V6 U | 0.12 - 0.24 |       | 0 - 0.12 |       | Over To                           | Inches            | Size Range, | Nominal |           |          |            |                                                                     |
|----------------|---------------|--------------|--------------|-------------|-------|-------|-----------|-------------|-------|-------------|-------|-------|-----------|-------|-------------|-------|----------|--------------|-----------|-------------|-------|----------|-------|-----------------------------------|-------------------|-------------|---------|-----------|----------|------------|---------------------------------------------------------------------|
| 8.0<br>14.5    | 11.7          | 6.0          | 5.0          | 8.6         | 4.0   | 7.6   | 3.5       | 6.6         | 3.0   | 5.5         | 2.5   | 4.6   | 2.0       | 3.6   | 1.6         | 2.9   | 1.2      | 2.5          | 1.0       | 2.0         | 0.8   | 1.6      | 0.6   |                                   | ance <sup>a</sup> | Clear-      |         |           |          |            |                                                                     |
| $^{+4.0}$      | 0             | +<br>5<br>7  | +3.0         | 0           | +2.8  | 0     | +2.5      | 0           | +2.2  | 0           | 8.1+  | 0     | +1.6      | 0     | +1.2        | 0     | +1.0     | 0            | 6.0 +     | 0           | +0.7  | 0        | 9.0+  |                                   | H8                | Hole        | Limits  | Tolerance | Standard | Class RC 5 | Table                                                               |
| -8.0<br>-10.5  |               | - 60         | - 5.0        | - 5.8       | - 4.0 | - 5.1 | - 3.5     | - 4.4       | - 3.0 | - 3.7       | - 2.5 | - 3.0 | - 2.0     | - 2.4 | - 1.6       | - 1.9 | - 1.2    | - 1.6        | - 1.0     | - 1.3       | - 0.8 | - 1.0    | - 0.6 |                                   | e7                | Shaft       | its     | unce      | ard      |            | 4. Amer                                                             |
| 8.0<br>18.0    | 15.5          | 6.0          | 5.0          | 11.3        | 4.0   | 10.0  | 3.5       | 8.7         | 3.0   | 7.3         | 2.5   | 6.1   | 2.0       | 4.8   | 1.6         | 3.8   | 1.2      | 3.3          | 1.0       | 2.7         | 0.8   | 2.2      | 0.6   |                                   | ance <sup>a</sup> | Clear-      |         |           |          |            | ican Na                                                             |
| +6.0<br>0      | 0             | 0 9+         | +5.0         | 0           | +4.5  | 0     | +4.0      | 0           | +3.5  | 0           | +3.0  | 0     | +2.5      | 0     | +2.0        | 0     | +1.6     | 0            | +1.4      | 0           | +1.2  | 0        | +1.0  |                                   | H9                | Hole        | Limits  | Tolerance | Standard | Class RC 6 | ational St                                                          |
| - 8.0<br>-12.0 | - 9.5         | - 60         | - 5.0        | - 6.8       | - 4.0 | - 6.0 | - 3.5     | - 5.2       | - 3.0 | - 4.3       | - 2.5 | - 3.6 | - 2.0     | - 2.8 | - 1.6       | - 2.2 | - 1.2    | - 1.9        | - 1.0     | - 1.5       | - 0.8 | - 1.2    | - 0.6 | Values                            | e8                | Shaft       | iits    | ance      | lard     | 5          | andard ]                                                            |
| 12.0<br>22.0   | 10.0<br>19.5  | 10.0         | 8.0          | 14.3        | 7.0   | 12.5  | 6.0       | 10.7        | 5.0   | 8.8         | 4.0   | 7.1   | 3.0       | 5.7   | 2.5         | 4.6   | 2.0      | 3.9          | 1.6       | 3.1         | 1.2   | 2.6      | 1.0   | shown be                          | ance <sup>a</sup> | Clear-      |         |           |          |            | Runnin                                                              |
| +6.0<br>0      | 0             | -60          | +5.0         | 0           | +4.5  | 0     | +4.0      | 0           | +3.5  | 0           | +3.0  | 0     | +2.5      | 0     | +2.0        | 0     | +1.6     | 0            | +1.4      | 0           | +1.2  | 0        | +1.0  | shown below are in thousandths of | H9                | Hole        | Limits  | Tolerance | Standard | Class RC 7 | Table 4. American National Standard Running and Sliding Fits ANSI B |
| -12.0<br>-16.0 | -13.5         | -10.0        | - 8.0        | - 9.8       | - 7.0 | - 8.5 | - 6.0     | - 7.2       | - 5.0 | - 5.8       | - 4.0 | - 4.6 | - 3.0     | - 3.7 | - 2.5       | - 3.0 | - 2.0    | - 2.5        | - 1.6     | - 1.9       | - 1.2 | - 1.6    | - 1.0 | usandths of                       | <b>8</b> P        | Shaft       | iits    | ance      | lard     |            | ding Fits                                                           |
| 16.0<br>32.0   | 29.0          | 14.0         | 12.0         | 21.5        | 10.0  | 18.0  | 8.0       | 15.5        | 7.0   | 13.5        | 6.0   | 11.5  | 5.0       | 10.0  | 4.5         | 7.9   | 3.5      | 6.6          | 3.0       | 5.8         | 2.8   | 5.1      | 2.5   | an inch                           | ance <sup>a</sup> | Clear-      |         |           |          |            | ANSI I                                                              |
| $^{+10.0}_{0}$ | 0             | 00+          | +8.0         | 0           | +7.0  | 0     | +6.0      | 0           | +5.0  | 0           | +4.5  | 0     | +4.0      | 0     | +3.5        | 0     | +2.8     | 0            | +2.2      | 0           | +1.8  | 0        | +1.6  |                                   | H10               | Hole        | Limits  | Tolerance | Standard | Class RC 8 | 34.1-1967 (R1987)                                                   |
| -16.0<br>-22.0 | -20.0         | -14.0        | -12.0        | -14.5       | -10.0 | -12.0 | - 8.0     | -10.5       | - 7.0 | - 9.0       | - 6.0 | - 7.5 | - 5.0     | - 6.5 | - 4.5       | - 5.1 | - 3.5    | - 4.4        | - 3.0     | - 4.0       | - 2.8 | - 3.5    | - 2.5 |                                   | c9                | Shaft       | its     | ince      | ard      |            | (R1987)                                                             |
| 25.0<br>51.0   | 45.0          | 20.0<br>22 N | 18.0         | 34.0        | 15.0  | 28.0  | 12.0      | 24.0        | 10.0  | 20.5        | 0.6   | 18.0  | 8.0       | 15.5  | 7.0         | 12.8  | 6.0      | 10.7         | 5.0       | 9.0         | 4.5   | 8.1      | 4.0   |                                   | ance <sup>a</sup> | Clear-      |         |           |          |            |                                                                     |
| $^{+16.0}_{0}$ | 0             | +14.0        | +12.0        | 0           | +12.0 | 0     | +10.0     | 0           | +9.0  | 0           | 0.2+  | 0     | 0.9+      | 0     | +5.0        | 0     | +4.0     | 0            | +3.5      | 0           | +3.0  | 0        | +2.5  |                                   | H11               | Hole        | Limits  | Tolerance | Standard | Class RC 9 |                                                                     |
| -25.0<br>-35.0 | -31.0         | -20.0        | -18.0        | -22.0       | -15.0 | -18.0 | -12.0     | -15.0       | -10.0 | -13.5       | - 9.0 | -12.0 | - 8.0     | -10.5 | - 7.0       | - 8.8 | - 6.0    | - 7.2        | - 5.0     | - 6.0       | - 4.5 | - 5.6    | - 4.0 |                                   | Shart             | C1 6        | its     | ance      | lard     |            |                                                                     |

## ALLOWANCES AND TOLERANCES

Darwish/El-Sherbeeny Oct. 14, 2015

IE 352(01,02)-Fall 2015 HW 1 (MIDTERM 1) Page - 10





| Г      |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        | S B                        |                         |                                                                                                                           |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|
|        | 25     |        | 20     |        | 16     |        | 12     |        | 10     |        | 8      |        | 9      |        | 5      |        | 4      |        | 3      |        | 2.5    |        | 2      |        | 1.6    |        | 1.2    |        | -      | Basic<br>Size <sup>a</sup> |                         | Т                                                                                                                         |
| Min    | Max    |                            |                         | able 15.                                                                                                                  |
| 24.985 | 25.006 | 19.985 | 20.006 | 15.988 | 16.006 | 11.988 | 12.006 | 9.990  | 10.005 | 7.990  | 8.005  | 5.991  | 6.003  | 4.991  | 5.003  | 3.991  | 4.003  | 2.990  | 3.000  | 2.490  | 2.500  | 1.990  | 2.000  | 1.590  | 1.600  | 1.190  | 1.200  | 0.990  | 1.000  | Hole<br>K7                 | Locat                   | America                                                                                                                   |
| 24.987 | 25.000 | 19.987 | 20.000 | 15.989 | 16.000 | 11.989 | 12.000 | 9.991  | 10.000 | 7.991  | 8.000  | 5.992  | 6.000  | 4.992  | 5.000  | 3.992  | 4.000  | 2.994  | 3.000  | 2.494  | 2.500  | 1.994  | 2.000  | 1.594  | 1.600  | 1.194  | 1.200  | 0.994  | 1.000  | Shaft<br>h6                | Locational Transition   | an Natio                                                                                                                  |
| -0.015 | +0.019 | -0.015 | +0.019 | -0.012 | +0.017 | -0.012 | +0.017 | -0.010 | +0.014 | -0.010 | +0.014 | -0.009 | +0.011 | -0.009 | +0.011 | -0.009 | +0.011 | -0.010 | +0.006 | -0.010 | +0.006 | -0.010 | +0.006 | -0.010 | +0.006 | -0.010 | +0.006 | -0.010 | +0.006 | Fit <sup>b</sup>           | ion                     | nal Stai                                                                                                                  |
| 24.972 | 24.993 | 19.972 | 19.993 | 15.977 | 15.995 | 11.977 | 11.995 | 9.981  | 9.996  | 7.981  | 7.996  | 5.984  | 5.996  | 4.984  | 4.996  | 3.984  | 3.996  | 2.986  | 2.996  | 2.486  | 2.496  | 1.986  | 1.996  | 1.586  | 1.596  | 1.186  | 1.196  | 0.986  | 0.996  | Hole<br>N7                 | Locat                   | ndard Pro                                                                                                                 |
| 24.987 | 25.000 | 19.987 | 20.000 | 15.989 | 16.000 | 11.989 | 12.000 | 9.991  | 10.000 | 7.991  | 8.000  | 5.992  | 6.000  | 4.992  | 5.000  | 3.992  | 4.000  | 2.994  | 3.000  | 2.494  | 2.500  | 1.994  | 2.000  | 1.594  | 1.600  | 1.194  | 1.200  | 0.954  | 1.000  | Shaft<br>h6                | Locational Transition   | eferred                                                                                                                   |
| -0.028 | +0.006 | -0.028 | +0.006 | -0.023 | +0.006 | -0.023 | +0.006 | -0.019 | +0.005 | -0.019 | +0.005 | -0.016 | +0.004 | -0.016 | +0.004 | -0.016 | +0.004 | -0.014 | +0.002 | -0.014 | +0.002 | -0.014 | +0.002 | -0.014 | +0.002 | -0.014 | +0.002 | -0.014 | +0.002 | Fit <sup>b</sup>           | ion                     | Shaft Ba                                                                                                                  |
| 24.965 | 24.986 | 19.965 | 19.986 | 15.971 | 15.989 | 11.971 | 11.989 | 9.976  | 9.991  | 7.976  | 7.991  | 5.980  | 5.992  | 4.980  | 4.992  | 3.980  | 3.992  | 2.984  | 2.994  | 2.484  | 2.494  | 1.984  | 1.994  | 1.584  | 1.594  | 1.184  | 1.194  | 0.984  | 0.994  | Hole<br>P7                 | Locatic                 | ısis Metri                                                                                                                |
| 24.987 | 25.000 | 19.987 | 20.000 | 15.989 | 16.000 | 11.989 | 12.000 | 9.991  | 10.000 | 7.991  | 8.000  | 5.992  | 6.000  | 4.992  | 5.000  | 3.992  | 4.000  | 2.994  | 3.000  | 2.494  | 2.500  | 1.994  | 2.000  | 1.594  | 1.600  | 1.194  | 1.200  | 0.994  | 1.000  | Shaft<br>h6                | Locational Interference | ic Trans                                                                                                                  |
| -0.035 | -0.001 | -0.035 | -0.001 | -0.029 | 0.000  | -0.029 | 0.000  | -0.024 | 0.000  | -0.024 | 0.000  | -0.020 | 0.000  | -0.020 | 0.000  | -0.020 | 0.000  | -0.016 | 0.000  | -0.016 | 0.000  | -0.016 | 0.000  | -0.016 | 0.000  | -0.016 | 0.000  | -0.016 | 0.000  | Fit <sup>b</sup>           | ence                    | ition an                                                                                                                  |
| 24.952 | 24.973 | 19.952 | 19.973 | 15.961 | 15.979 | 11.961 | 11.979 | 9.968  | 9.983  | 7.968  | 7.983  | 5.973  | 5.985  | 4.973  | 4.985  | 3.973  | 3.985  | 2.976  | 2.986  | 2.476  | 2.486  | 1.976  | 1.986  | 1.576  | 1.586  | 1.176  | 1.186  | 0.976  | 0.986  | Hole<br>S7                 | Me                      | d Interfei                                                                                                                |
| 24.987 | 25.000 | 19.987 | 20.000 | 15.989 | 16.000 | 11.989 | 12.000 | 9.991  | 10.000 | 7.991  | 8.000  | 5.992  | 6.000  | 4.992  | 5.000  | 3.992  | 4.000  | 2.994  | 3.000  | 2.494  | 2.500  | 1.994  | 2.000  | 1.594  | 1.600  | 1.194  | 1.200  | 0.994  | 1.000  | Shaft<br>h6                | Medium Drive            | ence Fi                                                                                                                   |
| -0.048 | -0.014 | -0.048 | -0.014 | -0.039 | -0.010 | -0.039 | -0.010 | -0.032 | -0.008 | -0.032 | -0.008 | -0.027 | -0.007 | -0.027 | -0.007 | -0.027 | -0.007 | -0.024 | -0.008 | -0.024 | -0.008 | -0.024 | -0.008 | -0.024 | -0.008 | -0.024 | -0.008 | -0.024 | -0.008 | Fit <sup>b</sup>           |                         | ts ANSI                                                                                                                   |
| 24.939 | 24.960 | 19.946 | 19.967 | 15.956 | 15.974 | 11.956 | 11.974 | 9.963  | 826'6  | 7.963  | 826'2  | 5.969  | 186'2  | 4.969  | 4.981  | 3.969  | 186'2  | 2.972  | 286.2  | 2.472  | 2.482  | 1.972  | 286'1  | 1.572  | 1.582  | 1.172  | 1.182  | 0.972  | 286'0  | Hole<br>U7                 |                         | Table 15. American National Standard Preferred Shaft Basis Metric Transition and Interference Fits ANSI B4.2-1978 (R1994) |
| 24.987 | 25.000 | 19.987 | 20.000 | 15.989 | 16.000 | 11.989 | 12.000 | 9.991  | 10.000 | 7.991  | 8.000  | 5.992  | 6.000  | 4.992  | 5.000  | 3.992  | 4.000  | 2.994  | 3.000  | 2.494  | 2.500  | 1.994  | 2.000  | 1.594  | 1.600  | 1.194  | 1.200  | 0.994  | 1.000  | Shaft<br>h6                | Force                   | 8 (R199                                                                                                                   |
| -0.061 | -0.027 | -0.054 | -0.020 | -0.044 | -0.015 | -0.044 | -0.015 | -0.037 | -0.013 | -0.037 | -0.013 | -0.031 | -0.011 | -0.031 | -0.011 | -0.031 | -0.011 | -0.028 | -0.012 | -0.028 | -0.012 | -0.028 | -0.012 | -0.028 | -0.012 | -0.028 | -0.012 | -0.028 | -0.012 | Fit <sup>b</sup>           |                         | 4)                                                                                                                        |

# **WILLOWANCES AND TOLERANCES**

₽<u>9</u>9





**Rules:** 

- You must prepare and submit the homework **individually**.
- Your work must be **neatly written** in pencil (or typed) and in **proper English** (where applicable).
- You must show all work.
- **BOX** your answer(s) and include the **units**.

Due date:

• Thursday, October 22, 2015 (09/01/1437)