

IE-341

Section 1, CRN: 30512/513/514 Section 2, CRN: 30515/516/517 Section 3, CRN: 46950/951/952

First Semester 1435-36 H (Fall-2014) – 3(2,1,2)

	"HUMAN FACTORS ENGINEERING			
	Sunday, Oct 19, 2014 (25/12/1435H Homework 1			
Name: Student Number: 4			Section: Sun / Mon /	Wed
Pl	ace the correct LETTER in the box at	the right of each ques	tion [0.5 Points Ea	ch]
1.	HF engineering concerned with dynamic	ic human-machine inter	action is called	
	A. human capabilities			
	B. ergonomics			
	C. human psychology			
	D. human sociology			
	E. anthropometry			
2.	What is a "hierarchical" system?			
	A. it is a system having an immediate bo	oundary		
	B. it is a system where the components	have no relation to one	another	
	C. it is a system consisting of only a few	components		
	D. it is a system that serves only one ob	jective		
	E. it is a system consisting of several lev	els of subsystems		
3.	Human Factors became a profession af	ter		
	A. emphasis moved from military to ind	ustry		
	B. the PC revolution			
	C. the <i>Chernobyl</i> disaster			
	D. the first world war			

E. the second world war

4.	Door that opens as soon as you approach it is an example of what type of system?				
	A. manual, open-loop system				
	B. semiautomatic, open-loop system				
	C. automated, open-loop system				
	D. mechanical, closed-loop system				
	E. manual, closed-loop system				
5.	Majority of people working in HF are in; majority of HF Society members are				
	A. private business; Psychology members				
	B. academics; Psychology members				
	C. private business; Engineering members				
	D. academics; Engineering members				
	E. government; Psychology members				
6.	What is the reliability of a system consisting of 3 components connected in series,				
	having respective reliabilities of 85%, 80%, 65%?				
	A. 98.95%				
	B. 97.90%				
	C. 1.05%				
	D. 44.20%				
	E. 55.80%				
7.	Repeat the previous problem with the same 3 components connected in <i>parallel</i> .				
	A. 98.95%				
	B. 97.90%				
	C. 1.05%				
	D. 44.20%				
	E. 55.80%				

8.	The probability of success for an ATM machine which is operated an average of 3,000		
	times every month, and is known to fail 10 times in one year is		
	A. 99.72%		
	B. 99.67%		
	C. 99.97%		
	D. 0.03%		
	E. 0.33%		
9.	"Popliteal height" is the		
	A. thickness of the thighs		
	B. distance from the bottom of the foot to the lowest point in the elbows		
	C. distance from the bottom of the foot to the highest point in the thighs		
	D. distance from the bottom of the foot to the top of the knees		
	E. distance from the bottom of the foot to the bottom of the thigh at the knees		
10.	. The following should decrease when converting static to dynamic anthrop. data		
	A. hip height		
	B. elbow height		
	C. sitting knee height		
	D. popliteal height		
	E. shoulder height (in the case of extensive motion)		
11.	. It is recommended to using anthropometric data in the following order		
	A. determine important dimensions; determine population; determine design princip	le	
	B. determine population; determine important dimensions; determine design princip	le	
	C. determine design principle; determine population; determine important dimension	۱S	
	D. determine important dimensions; determine design principle; determine population	n	
	E. determine population; determine design principle; determine important dimension	ıs	

12. Research done on horizontal work surface area focuses on what main issue?

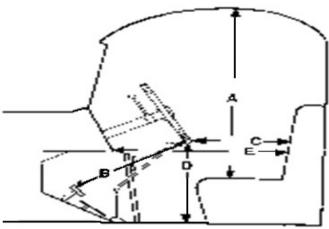
- A. work surface area should allow comfortable elbow height during work
- B. work surface area should allow comfortable forearm movement during work
- C. work surface area should allow comfortable arm reach during work
- D. work surface area should allow comfortable hand movement during manual work
- E. work surface area should allow comfortable elbow movement during manual work

Questions 13-14. Examine the table below, including recommended standing work-surface heights for different tasks and answer the questions to follow.

Type of task (standing)	Sex	in	cm
Precision work (with	Males	42.0-49.5	107-126
elbows supported)	Females	37.0-45.5	94-116
Light assembly work	Males	34.5-42.0	88-107
	Females	32.0-38.0	81-96
Heavy work	Males	31.5-39.0	80-99
-	Females	29.0-35.0	74-89

13 Respectively, the 5 th	and 95 th %ile female light assembly work-surface height is	
13. Respectively, the 3	and 35 your remain ingine assembly work surface height is in =	

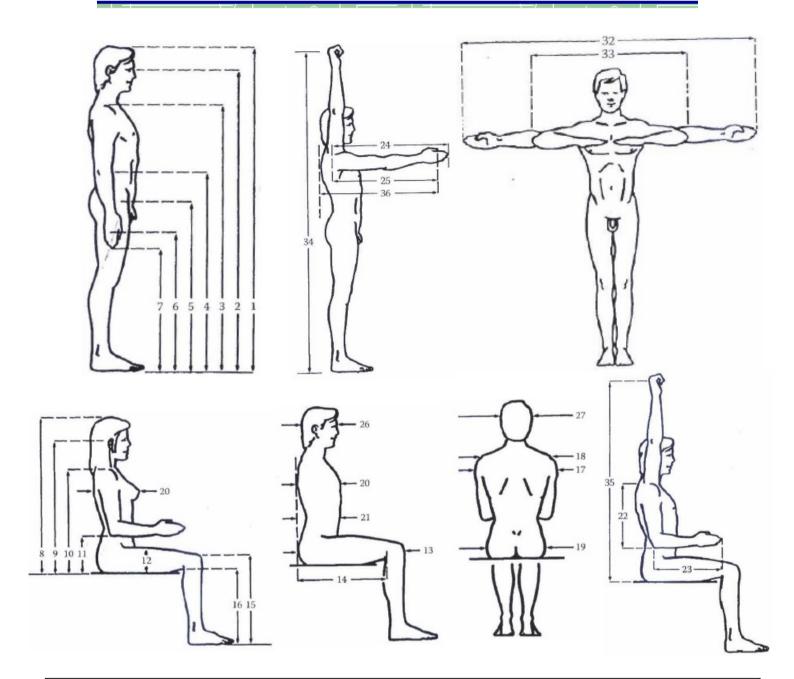
- A. 74 cm; 89 cm
- B. 89 cm; 74 cm
- C. 96 cm; 81 cm
- D. 81 cm; 96 cm
- E. 94 cm; 116 cm


14.	For Q13 above.	what should be the	height for a fixe	ed work surface height?

- A. 81 cm
- B. 96 cm
- C. 88 cm
- D. 107 cm
- E. 99 cm

Questions 15-16. Examine the figure below showing a view of the driver's seat of a truck cab, with dimensions corresponding to the letters below, and answer the questions to follow.

_		
15	. Cab dimension A is, corresponds to body dimension, and should be used for	
	A. seat-to-roof clearance; 35 (vertical grip-reach, sitting); 95 th percentile individual	
	B. seat-to-roof clearance; 8 (seated height); 5 th percentile individual	
	C. seat-height clearance; 8 (seated height); 95 th percentile individual	
	D. seat-height clearance; 35 (vertical grip-reach, sitting); 5 th percentile individual	
	E. seat-to-roof clearance; 8 (seated height); 95th percentile individual	
16	. The only dimension(s) designed for a minimum individual is/are since	
	A. B and D; tall individuals don't have a problem bending their legs	
	B. E; tall individuals don't have a problem bending their arms	
	C. C; tall individuals don't have a problem bending their arms	
	D. E and C; tall individuals don't have a problem bending their arms	
	E. A; tall individuals can just bend their head a little while driving	
17	. Which of the following carries importance according to the information theory?	
	A. breaks in the car stop the car from traveling when pressed	
	B. traffic signal switching from green to yellow to red	
	C. printer indicating that it needs to be repaired	
	D. hot-water tap gives hot water when switched on	
	E. a gun fires a bullet when the trigger is pulled	



18. In the Information Theory, a Bit is defined as			
A. reduction in certainty resulting produced by two events being equally likely			
B. reduction in certainty from two or more events not being equally likely			
C. reduction in uncertainty produced by two events being equally likely			
D. reduction in uncertainty produced by two events not being equally likely			
E. reduction in uncertainty produced by two or more events being equally likely			
19. How much information is involved with throwing a <i>twelve</i> -sided die (see below)?			
A. 6.00 Bits			
B. 2.58 Bits			
C. 0.28 Bits	M.		
D. 3.58 Bits			
E. 1 Bit			
20. Calculate the redundancy involved with a coin, given a man cheats the coin such that			
one side is three times as likely to occur as the other.			
A. 81.13%			
B. 8.17%			
C. 91.50%			
D. 18.87%			
E. 25.00%			

$$H_{max} = \log_2 N$$
 $H_{ave} = \sum p_i \log_2 \left(\frac{1}{p_i}\right)$ % $R = \left(1 - \frac{H}{H_{max}}\right) * 100$

Rules:

- You must prepare and submit the homework individually.
- All work must be neatly typed and printed.
- Use proper English.
- Show all work.
- **BOX** your answer(s) and include the **units** (if applicable).
- **Due date**: the first class of Week 7 (beginning of class). NO late homework will be accepted.