King Saud University
 Department of Mechanical Engineering
 ME305 Machine Design

Homework No. (5)
Gears2 Ch. 14

Question 1

A 20° full-depth spur pinion has 17 teeth and a module of 1.5 mm and is to transmit 0.25 kW at a speed of $400 \mathrm{rev} / \mathrm{min}$. Find an appropriate face width if the bending stress is not to exceed 75 MPa .

Question 2

A spur pinion is to transmit 15 hp at a speed of $600 \mathrm{rev} / \mathrm{min}$. The pinion is cut on the 20° full-depth system and has a diametral pitch of 5 teeth/in and 16 teeth. Find a suitable face width based on an allowable stress of 10 kpsi .

Question 3

A 20° full-depth steel spur pinion rotates at $1145 \mathrm{rev} / \mathrm{min}$. It has a module of 6 mm , a face width of 75 mm , and 16 milled teeth. The ultimate tensile strength at the involute is 900 MPa exhibiting a Brinell hardness of 260 . The gear is steel with 30 teeth and has identical material strengths. For a design factor of 1.3 find the power rating of the gear set based on the pinion and the gear resisting bending and wear fatigue.

Question 4

A 20° spur pinion with 20 teeth and a module of 1.5 mm transmits 120 W to a 36 -tooth gear. The pinion speed is $100 \mathrm{rev} / \mathrm{min}$, and the gears are grade $1,18 \mathrm{~mm}$ face width, through-hardened steel at 200 Brinell, uncrowned, manufactured to a No. 6 quality standard, and considered to be of open gearing quality installation. Find the AGMA bending and contact stresses and the corresponding factors of safety.

Question 5

A spur gear set has 17 teeth on the pinion and 51 teeth on the gear. The pressure angle is 20° and the overload factor $K_{o}=1$. The diametral pitch is 6 teeth/in and the face width is 2 in . The pinion speed is 1120 $\mathrm{rev} / \mathrm{min}$ and its cycle life is to be 10^{8} revolutions at a reliability $R=0.99$. The quality number is 5 . The material is a through-hardened steel, grade 1, with Brinell hardnesses of 232 core and case of both gears. For a design factor of 2 , rate the gear set for these conditions using the AGMA method.

