1. Give brief explanations about the point, line, and planar defects exist in crystalline solids? Provide schematic sketch for each type as possible.
Solution: See the book/slides.
2. Briefly explain the difference between substitutional and interstitial solution solutions?
Solution: See the book/slides.
3. Calculate the activation energy for vacancy formation in aluminum, given that the equilibrium number of vacancies at $500^{\circ} \mathrm{C}(773 \mathrm{~K})$ is $7.55 \times 10^{23} \mathrm{~m}^{-3}$. The atomic weight and density (at $500^{\circ} \mathrm{C}$) for aluminum are, respectively, $26.98 \mathrm{~g} / \mathrm{mol}$ and $2.62 \mathrm{~g} / \mathrm{cm}^{3}$. Boltzman constant $\mathrm{k}=8.62 \mathrm{e}-5(\mathrm{eV} /$ atom K$)$

Solution:

\% Given:
$\mathrm{Nv}=8.47 \mathrm{e} 23 \mathrm{~m}^{-3}$
$\mathrm{T}=500+273 \mathrm{~K}$
$\mathrm{A}=26.98 \mathrm{~g} / \mathrm{mol}$
density $=2.17 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{k}=8.62 \mathrm{e}-5 \mathrm{eV} /$ atom K (Boltzman constant)
\% Mass in $\mathrm{m}^{\wedge} 3$
mass=density*1e6;
\% Number of atoms per $\mathrm{m}^{\wedge} 3$

$$
\begin{aligned}
N & =\frac{N_{\mathrm{A}} \rho_{\mathrm{Al}}}{A_{\mathrm{Al}}} \\
& =6.022 \mathrm{e} 23 * \text { mass } / \mathrm{A}=4.8435 \mathrm{e}+28 \text { atoms } / \mathrm{m}^{3}
\end{aligned}
$$

\% Activation energy
$N_{v}=N \exp \quad \frac{Q_{v}}{k T} \div$
$\ln N_{v}=\ln N \frac{Q_{v}}{k T}$
$Q_{v}=k T \ln \frac{N_{v}}{N} \div=0.7299 \mathrm{eV} /$ atom
4. What is the composition, in weight percent and atom percent, of an alloy that contains 35.7 kg copper, 41.9 kg zinc, and 4.95 kg lead?

Solution:

```
% Given:
m_Cu=35.7e3; % g
A_Cu=63.55; %g/mol
m_Zn=41.9e3; % g
A_Zn=65.41;%g/mol
m_Pb=4.95e3; % g
A_Pb=207.2; %g/mol
% ========================================
% Calcualte Composition in Wt%
% Total mass
Mass_All=m_Cu+m_Zn+m_Pb = 82550
% Wt% of xx
WtPercent_Cu=m_Cu/Mass_All * 100 = 43.2465 Wt%
WtPercent_Zn=m_Zn/Mass_All * 100 = 50.7571 Wt%
WtPercent_Pb=m_Pb/Mass_All * 100 = 5.9964 Wt%
% ======================================
```

\% Calcualte Composition in At\%
\% Number of moles
Nmole_Cu=m_Cu/A_Cu = 561.7624
Nmole_Zn=m_Zn/A_Zn = 640.5748
Nmole_Pb=m_Pb/A_Pb = 23.8900
\% Total number of moles
Nmole_All= Nmole_Cu+Nmole_Zn+Nmole_Pb = 1226.2
\% At\% of xx
AtomPercent_Cu=Nmole_Cu/Nmole_All * $100=45.812$ at $\%$
AtomPercent_Zn=Nmole_Zn/Nmole_All * $100=52.239$ at $\%$
AtomPercent_Pb=Nmole_Pb/Nmole_All * $100=1.9482$ at $\%$
5. Copper forms a solid solution with zinc. If the concentration of copper in a copper-zinc alloy is $41.9 \mathrm{at} \%$ and the mass of zinc is 47 g , compute the number of atoms of copper in this alloy? The atomic weight of zinc is $65.39 \mathrm{~g} / \mathrm{mole} . N_{a v}=$ 6.023×10^{23}

Solution:

Calculate the number of moles of zinc in the alloy:
$N_{\text {mol-zn }}=\frac{M}{A}=\frac{47(\mathrm{~g})}{65.39\left(\frac{\mathrm{~g}}{\mathrm{~mole}}\right)}=0.7187 \mathrm{~mol}$
$C_{c u}=0.419=\frac{N_{\text {mol }-c u}}{N_{\text {mol }-c u}+N_{m o l-z n}}$
$\Rightarrow N_{\text {mol-cu }}=\frac{0.419}{0.581} N_{\text {mol-zn }}=0.721 * 0.7187=0.5182 \mathrm{~mol}$

The number of atoms of copper:

$$
\begin{gathered}
N_{\text {atom }-c u}=N_{a v} * N_{m o l-c u}=6.023 \times 10^{23}\left(\frac{\text { atoms }}{m o l e}\right) * 0.5182 \\
=3.121 \times 10^{23} \text { atoms }
\end{gathered}
$$

