Homework 1

1. (a) Two cards are selected in sequence from a standard deck. Find the probability that the second card is a queen, given that the first card is a king. (Assume that the king is not replaced.)
(b) Two cards are selected, with replacement, from a standard deck. Find the probability of selecting a king and then selecting a queen.
(c) What is the probability that a poker hand is a full house? A poker hand consists of five random selected cards from an ordinary deck of 52 cards. It is a full house if three cards are of the one denomination and two cards are of another denomination: for example, three queens and two 4's.
(a) Solution:

Let A represent the first card drawn is a king, B the second card drawn is a queen. so the probability to get the event of interest is

$$
P(B \mid A)=\frac{4}{51} .
$$

(b) Solution:

Because of sampling with replacement, $P(B \mid A)=P(B)$. Therefore, the probability to get the event of interest is

$$
P(A \cap B)=P(A) P(B \mid A)=P(A) P(B)=\frac{4}{52} \times \frac{4}{52}
$$

(c) Solution:

Let C be the event that a pork hand is full house. Then, the probability to get a hand poker of full house is

$$
P(C)=\frac{\binom{13}{1}\binom{4}{3}\binom{12}{1}\binom{4}{2}}{\binom{52}{5}}
$$

2. An experiment consists of tossing a pair of 6 -sided dice.
(a) list the elements of the sample space S;
(b) list the elements corresponding to the event A that the sum is greater than 9 ;
(c) list the elements corresponding to the event B that a 5 occurs on either dice;
(d) list the elements corresponding to the event A^{\prime};
(e) list the elements corresponding to the event $A^{\prime} \cap B$;
(f) list the elements corresponding to the event $A \cup B$;

Solution:

Let x and y represent the the numbers showing up in dice1 and dice2, respectively.
(a) $S=\{(x, y) \mid x=1,2,3,4,5,6, y=1,2,3,4,5,6\}$.
(b) $A=\{(x, y) \mid x+y>9\}$
(c) $B=\{(x, y) \mid x=5$ or $y=5\}$
(d) $A^{\prime} \cap B=\{(1,5),(2,5),(3,5),(4,5),(5,1),(5,2),(5,3),(5,4)\}$.
(e) $A \cup B=\{(x, y) \mid x+y<9$ or $x=5$ or $y=5\}$
3. Suppose that we have two urns, cleverly named Urn I and Urn II. Suppose that Urn I has 2 red marbles and 2 blue marbles, and Urn II has 1 red and 3 blue marbles. We flip a fair coin to select an urn. If head occurs, Urn I is selected, otherwise, Urn II. Having selected an urn we select a marble without looking in the urn. It so happens that the marble we chose is red. Our question is: what is the probability that we chose Urn I?

Solution: Let

$$
\begin{aligned}
A & =\{\text { The Urn I is selected. }\} \\
B & =\{\text { The Urn II is selected. }\} \\
R & =\{\text { The red marble is selected. }\} \\
P(A) & =1 / 2, \quad P(B)=1 / 2, \quad P(R \mid A)=1 / 2 \quad P(R \mid B)=1 / 4 ; \\
P(A \mid R) & =\frac{P(A) P(R \mid A)}{P(A) P(R \mid A)+P(B) P(R \mid B)} \\
& =\frac{1 / 2 \times 1 / 2}{1 / 2 \times 1 / 2+1 / 2 \times 1 / 4} \\
& =\frac{2}{3} .
\end{aligned}
$$

4. Suppose that we roll a pair of fair 6 -sided dice, so each of the 36 possible outcomes is equally likely. Let A denote the event that the first dice lands on 4 , let B be the event that the sum of the dice is 7 .
(a) Are A and B disjoint (mutually exclusive)?
(b) Are A and B independent?
(c) True or False. Determine whether the statement is true or false.
i. $\quad F$ If two events, say E_{1} and E_{2}, are independent, then E_{1} and E_{2} are disjoint.
ii. $\quad F$ If two events, say E_{1} and E_{2}, are disjoint, then E_{1} and E_{2} are independent.

Solution:

Let x and y represent the numbers showing up in first and second dice, respectively.

		y					
	(x, y)	1	2	3	4	5	6
	1	$(1,1)$	$(1,2)$	$(1,3)$	(1, 4)	$(1,5)$	$(1,6)$
	2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
	3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
x	4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
	4	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
	5	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

Let's define one more event that the sum of the dice is 11 .

$$
\begin{aligned}
& P(A)=\frac{1}{6} \\
& P(B)=\frac{1}{6} \\
& P(C)=\frac{1}{18} .
\end{aligned}
$$

Since $A \cap B=\{(4,3)\}, P(A \cap B)=\frac{1}{36}$. We can see $P(A B)=P(A) P(B)$, so A and B are independent but obviously they are not disjoint.
Apparently, $A \cap C=\phi$, are disjoint, but they are not independent

$$
P(A \cap C) \neq P(A) P(C)
$$

