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Abstract

We deal with a relational algebra model to define
a refinement fuzzy ordering (demonic fuzzy inclu-
sion) and also the associated fuzzy operations which
are fuzzy demonic join (tfuz), fuzzy demonic meet
(ufuz) and fuzzy demonic composition ( 2 fuz). We
give also some properties of these operations, and il-
lustrate them with simple examples. Our formalism
is the relational algebra.

Keywords: Fuzzy sets, demonic operators,
demonic fuzzy operators, demonic fuzzy
ordering.

1 Relation Algebras

Our mathematical tool is abstract relation alge-
bra [8, 28, 30], which we now introduce.

(1) Definition. A (homogeneous) relation algebra
is a structure (R,∪,∩, , ^, ;) over a non-empty set
R of elements, called relations. The following con-
ditions are satisfied.

• (R,∪,∩, ) is a complete Boolean algebra, with
zero element Ø, universal element L and order-
ing ⊆.

• Composition, denoted by (;), is associative and
has an identity element, denoted by I.

• The Schröder rule is satisfied: P ;Q ⊆ R ⇔
P^;R ⊆ Q ⇔ R ;Q^ ⊆ P .

• L ;R ;L = L ⇔ R 6= Ø (Tarski rule).

The relation R^ is called the converse of R. The
standard model of the above axioms is the set℘(S×
S) of all subsets of S × S. In this model, ∪,∩,
are the usual union, intersection and complement,
respectively; the relation Ø is the empty relation,
the universal relation is L = S × S and the identity
relation is I = {(s, s′) | s′ = s}. Converse and
composition are defined by

R^ = {(s, s′) | (s′, s) ∈ R} and Q ;R =
{(s, s′) | ∃s′′ : (s, s′′) ∈ Q ∧ (s′′, s′) ∈ R}.

The precedence of the relational operators from
highest to lowest is the following: and ^ bind
equally, followed by ;, then by ∩, and finally by ∪.
From now on, the composition operator symbol ;

will be omitted (that is, we write QR for Q ;R).
From Definition 1, the usual rules of the calculus of
relations can be derived (see, e.g., [6, 8, 28]). We
assume these rules to be known and simply recall a
few of them.

(2) Theorem. Let P,Q,R be relations. Then,

• Q ∪R = Q ∩R,

• Q ∩R = Q ∪R,

• Q ∩R ∪R = Q ∪
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• P ∩Q ⊆ R ⇔ P ⊆ Q ∪R,

• Q ⊆ R ⇔ R ⊆ Q,

• P (Q ∩R) ⊆ PQ ∩ PR,

• (P ∩Q)R ⊆ PR ∩QR,

• P (Q ∪R) = PQ ∪ PR,

• (P ∪Q)R = PR ∪QR,

• Q ⊆ R ⇒ PQ ⊆ PR,

• Q ⊆ R ⇒ QP ⊆ RP .

• RLL = RL,

• PQ ∩R ⊆ P (Q ∩ P^R),

• (P ∩QL)R = PR ∩QL,

• (
⋂

i∈X RiL)L =
⋂

i∈X RiL.

2 Fuzzy Relation

Fuzzy relations are fuzzy subsets of A× B, that is,
mapping from A → B. They have been studied by a
number of authors, in particular by Zadeh [38],[39],
Kaufmann [20], and Rosenfeld [26]. Applications of
fuzzy relations are widespread and important.

(3) Definition. Let A,B ∈ U be universal sets, a
fuzzy relation R̃ on A×B is defined by;

R̃ = {((x, y), µR̃(x, y) | (x, y) ∈ A×B,µR̃(x, y) ∈
[0, 1]} is called a Fuzzy relation on A×B.

(4) Example.
R̃ = ”x considerably larger than y, we have: ,

R̃ =

 0.8 1 0.1 0.7
0 0.8 0 0

0.9 1 0.7 0.8

 ,

and, S̃ = ”y very close tox”

S̃ =

 0.4 0 0.9 0.6
0.9 0.4 0.5 0.7
0.3 0 0.8 0.5



2.1 Basic Operations On Fuzzy Rela-
tions

(5) Definition. Let R̃ and S̃ be two fuzzy relations
on A×B. Then:

• Union: µR̃∪S̃(x, y) = max{µR̃(x, y), µS̃(x, y)},

• Intersection: µR̃∩S̃(x, y) = min{µR̃(x, y), µS̃(x, y)},

• Max-min composition:
R̃◦S̃ = {[(x, z),maxy{min{µR̃(x, y), µS̃(y, z)}}]},

(6) Example.

• R̃ =

 0.8 1 0.1
0 0.8 0

0.9 1 0.7

 ,

• S̃ =

 0.4 0 0.9
0.9 0.4 0.5
0.3 0 0.8



• R̃ ∪ S̃ =

 0.8 1 0.9
0.9 0.8 0.5
0.9 1 0.8

 ,

• R̃ ∩ S̃ =

 0.4 0 0.1
0 0.4 0

0.3 0 0.7

,

• R̃ ◦ S̃ =

 0.9 0.4 0.8
0.8 0.4 0.5
0.9 0.4 0.9


(7) Theorem. Let R̃ be a fuzzy relation on A×A.

• R̃ is reflexive [39] iff µR̃(x, x) = 1 ∀x ∈ A

• R̃ is ε-reflective [40] iff µR̃(x, x) ≥ ε ∀x ∈ A

• R̃ is weakly reflexive [40] iff

µR̃(x, y) ≤ µR̃(x, x) ∀x, y ∈ A

µR̃(y, x) ≤ µR̃(x, x) ∀x, y ∈ A

• R̃ is symmetric iff R̃(x, y) = R̃(y, x).
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• R̃ is antisymmetric [20] iff for x 6= y either
µR̃(x, y) 6= µR̃(y, x) or µR̃(x, y) = µR̃(y, x) =
0 , ∀x, y ∈ A .

• R̃ is perfectly antisymmetric [39] iff for x 6= y
whenever
µR̃(x, y) > 0 then µR̃(y, x) = 0 , ∀x, y ∈ A .

3 A demonic fuzzy order re-
finement

We will give the definition of domain of fuzzy rela-
tions R̃

(8) Definition. Let R̃ = {[(x, y), µR̃(x, y)] |
(x, y) ∈ A × B} be fuzzy relation and
R̃(1) = {(x, maxyµR̃(x, y) | (x, y) ∈ A × B}
be the first projection of R̃;
Then:
The domain of fuzzy relation R̃L is the first
projection of R̃, denoted by π∨R̃;
π∨R̃ = {(x,maxyµR̃(x, y) | (x, y) ∈ A×B}, i.e;

π∨R̃=R̃L .

Now, we will give the definition of fuzzy ordering

(9) Definition. We say that a fuzzy relation Q̃
fuzzy refines a fuzzy relation R̃, denoted by Q̃ vfuz

R̃, iff

π∨R̃ ⊆ π∨Q̃ and Q̃ ∩ π∨R̃ ⊆ R̃

In other words, Q̃ refines R̃ if and only if the prere-
striction of Q̃ to the domain of R̃ is included in R̃
: this means that Q̃ must not produce results not
allowed by R̃ for those states that are in the domain
of R̃.

(10) Example.

 0.3 0.2 0.4
0.7 0.8 0.8
0.3 0.5 0.6

 vfuz

 0.3 0.2 0.5
0.4 0.5 0.9
0.1 0.2 0.7


and(

0.1 0.2 0.4
0.5 0.7 0.9

)
6vfuz

(
0.2 0.2 0.3
0.4 0.5 0.8

)

3.1 Fuzzy Demonic operators

In this subsection, we will present fuzzy demonic
operators and also some of their properties.

To clarify the ideas, take two relations Q̃ and R̃:

• Their supremum is

Q̃ tfuz R̃ = min{max{Q̃, R̃}, π∨Q̃, π∨R̃}

and satisfies

π∨(Q̃ tfuz R̃) = π∨Q̃ ∩ π∨R̃.

Then, Q̃tfuz R̃ is exactly the relational expres-
sion of the fuzzy demonic union.

(11) Example. Let

Q̃ =

0.1 0 0.2
0.3 0.8 1
0 1 0.7

 , R̃ =

 0 1 0
0.3 0.5 0.4
0.9 0.7 0.2


Then;

Q̃ tfuz R̃ =

0.1 0.2 0.2
0.3 0.5 0.5
0.9 0.9 0.7


• Their infimum, if it exists, is

Q̃ ufuz R̃ = max{min{Q̃, R̃},
min{Q̃, 1− π∨R̃},min{R̃, 1− π∨Q̃}}

and it satisfies

π∨(Q̃ ufuz R̃) = π∨Q̃ ∪ π∨R̃.

The operator ufuz is called fuzzy demonic in-
tersection. For Q̃ ufuz R̃ to exist, we have to
verify π∨ ⊆ π∨(Q̃∪ ¯π∨Q̃∩ R̃∪ ¯π∨R̃). This con-
dition is equivalent to π∨Q̃∩π∨R̃ ⊆ π∨(Q̃∩ R̃),
which can be interpreted as follows: the exis-
tence condition simply means that on the in-
tersection of their domains, Q̃ and R̃ have to
agree for at least one value.
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Let

Q̃ =

0.1 0 0.2
0.3 0.8 1
0 1 0.7

 , R̃ =

 0 1 0
0.3 0.5 0.4
0.9 0.7 0.2


Then;

Q̃ ufuz R̃ =

 0 0.8 0
0.3 0.5 0.5
0 0.7 0.2


In what follows, we will give the definition of the

fuzzy demonic composition.

(12) Definition. The fuzzy demonic composition
of relations Q̃ and R̃ is

Q̃ 2 fuzR̃ = min{Q̃R̃, 1− Q̃π∨R̃}

.

(13) Example.

0.1 0 0.2
0.3 0.8 1
0 1 0.7

 2 fuz

 0 1 0
0.3 0.5 0.4
0.9 0.7 0.2



=

0.2 0.2 0.2
0.5 0.5 0.4
0.5 0.5 0.4


3.2 Properties of fuzzy demonic op-

erators

The fuzzy demonic operators ufuz,tfuz and 2 fuz,
have the same properties as u,t and 2 , but the
fuzzy demonic intersections have to be defined. Let
us give some of them.

(14) Theorem. Let P̃ , Q̃ and R̃ be fuzzy relations.
Then,

• P̃ ufuz (Q̃tfuz R̃) = (P̃ ufuz Q̃)tfuz (P̃ ufuz R̃),

• P̃ tfuz (Q̃ufuz R̃) = (P̃ tfuz Q̃)ufuz (P̃ tfuz R̃),

• R̃ 2 fuzI = I 2 fuzR̃ = R̃,

• Q̃ vfuz R̃ ⇒ P̃ 2 fuzQ̃ vfuz P̃ 2 fuzR̃,

• P̃ vfuz Q̃ ⇒ P̃ 2 fuzR̃ vfuz Q̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ tfuz R̃) = P̃ 2 fuzQ̃ tfuz P̃ 2 fuzR̃,

• (P̃ tfuz Q̃) 2 fuzR̃ = P̃ 2 fuzR̃ tfuz Q̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ufuz R̃) vfuz P̃ 2 fuzQ̃ufuz P̃ 2 fuzR̃,

• P̃ 2 fuz(Q̃ 2 fuzR̃) =
(P̃ 2 fuzQ̃) 2 fuzR̃,

• (P̃ ufuz Q̃) 2 fuzR̃ vfuz P̃ 2 fuzR̃ufuz Q̃ 2 fuzR̃.

(15) Proposition.

• Q̃ deterministic ⇒ Q̃ 2 fuzR̃ = Q̃R̃,

• P̃ deterministic ⇒ P̃ 2 fuz(Q̃ ufuz R̃) =
P̃ Q̃ ufuz P̃ R̃,

• R̃ total ⇒ Q̃ 2 fuzR̃ = Q̃R̃,

• π∨P̃ ufuz π∨Q̃ = Ø ⇒ (P̃ tfuz Q̃) 2 fuzR̃ =
P̃ 2 fuzR̃ ∪ Q̃ 2 fuzR̃,

• π∨P̃ ufuz π∨Q̃ = Ø ⇒ P̃ ufuz Q̃ = P̃ tfuz Q̃.
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[28] Schmidt, G. and Ströhlein, T.: Relations and
Graphs. EATCS Monographs in Computer Sci-
ence. Springer-Verlag, Berlin, 1993.

[29] Sekerinski, E.: A Calculus for Predicative
Programming. In R. S. Bird, C. C. Morgan,
and J. C. P. Woodcock, editors, Second In-
ternational Conference on the Mathematics of
Program Construction, volume 669 of Lecture
Notes in Comput. Sci. Springer-Verlag, 1993.

[30] Tarski, A.: On the calculus of relations. J.
Symb. Log. 6, 3, 1941, 73–89.

[31] F. Tchier.: Sémantiques relationnelles
démoniaques et vérification de boucles
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