Homework Assignment 2

Exercise 1

Decide whether the following statements are tautologies or contradictions or neither.

- 1. $(p \rightarrow q) \lor (q \rightarrow p)$.
- $2. \ (p \wedge q) \vee (q \to \neg p).$
- 3. $(p \lor \neg q) \to (q \land \neg p)$.

Exercise 2

. Let f and g be functions defined as:

$$f = \{(0, e), (1, a), (2, u), (3, i), (4, o)\},$$
and $g = \{(a, 4), (e, 1), (i, 0), (o, 3), (u, 2)\}.$

Show, computationally that $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$

Exercise 3

Using Mathematical Induction, prove for all Natural Numbers n, $\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$.

Exercise 4

Find the terms a_3 , a_4 , a_5 , and a_6 for the recursively defined sequence given by: $a_0 = -1$, $a_1 = 0$, $a_2 = 1$ and $a_n = 2(a_{n-1})(a_{n-3}) + (a_{n-2})^2$ for $n \ge 3$.

Exercise 5

For the function $f: \mathbf{R} \to \mathbf{R}$ defined as $f(x) = x^3 + 2$, show:

- (a) f is One-To-One
- (b) f is Onto