

Experiment (4)

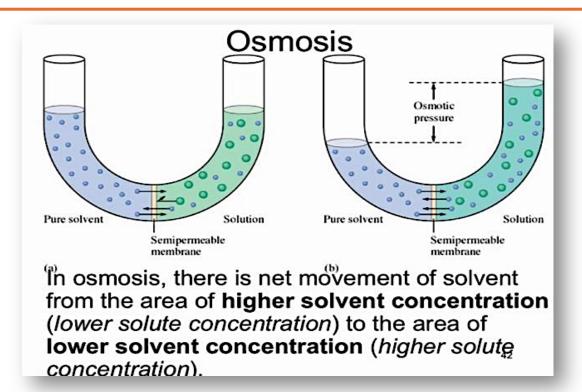
Haemolysing Agents & Detection of blood

OBJECTIVES

✓ To find the nature of substances that cause haemolysis of RBCs.

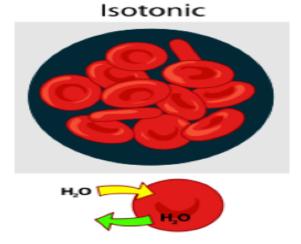
✓ To detect the presence of blood.

HAEMOLYSIS

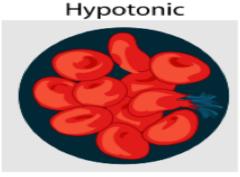

- It is the breaking open of RBCs and the release of hemoglobin and the red cell contents into the surrounding fluid (plasma).
- The concentration of potassium inside red blood cells is much higher than in the plasma
 > so elevated potassium is usually found in biochemistry tests of hemolysed blood.
- <u>Haemolysis may occur in:</u>
- <u>Vivo:</u>
 - *Causes:* Immune reactions, Infections, Medications, Toxins and poisons, or by a defect in the RBC memebrane.
- <u>Vitro:</u>
 - *Causes:* Placing RBCs in a hypotonic solution.

IMPORTANCE OF HAEMOLYSIS PRACTICALLY

- Breaking down RBCs to release their content is often necessary in biochemistry for:
 - Estimation of heamoglobin.
 - To obtain erythrocytes-free preparation of leukocytes and platelets.


OSMOTIC PRESSURE

- Osmosis : It is the diffusion of water across a selectively preamble membrane into a region of higher solute conc., once an equilibrium is reached the flow of water stops .
- Osmotic pressure : It is the pressure that generates from osmosis .


ISOTONIC SOLUTION

- It is a solution that has <u>the same salt concentration</u> as the normal cells of the body and the blood, <u>having equal osmotic pressure.</u>
- For example: 0.9% NaCl solution, have the same osmotic pressure as serum \rightarrow it does not affect the membranes of the RBCs.
- In hospitals, intravenous fluids are isotonic.

HYPOTONIC SOLUTION

- In a hypotonic solution, there is <u>a lower concentration of solute</u> outside a cell, creating an environment <u>with lower osmotic pressure</u> than what is contained within the cell.
- As a result, the RBCs would <u>hemolyze or burst</u>.
- Examples of Hypertonic Solutions
 - 0.45% NaCl
 (Lower concentration than normal saline 0.9%NaCl)
 - Distilled water
 - Dextrose 2 or 2.5% in water.

HYPERTONIC SOLUTION

- In a hypertonic solution, there is <u>a higher concentration of solute</u> outside a cell, creating an environment <u>with higher osmotic pressure</u> than what is contained within the cell.
- As a result, the RBCs would <u>shrink</u>.
- Example of Hypertonic Solutions
 - 1.2% NaCl (higher concentration than normal saline 0.9% NaCl)

Hypertonic

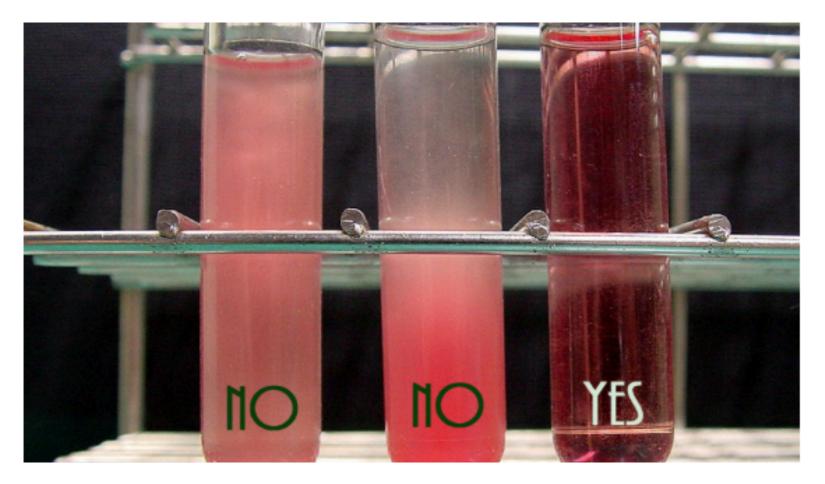
HOW TO CALCULATE THE OSMOLARITY OF A SOLUTION

For example: Calculate the osmolarity of NaCl?

Osmolality of RBC = 0.308 Osmolar $O = M \times no.$ of dissociation particles NaCl \rightarrow Na⁺ + Cl⁻ (no. of dissociation particles = 2) M = no. of moles / volume (L) $0.308 = M \times 2 \rightarrow M = 0.154 M$ <u>**To calculate in w/w% expression</u> M = no. of moles / V (in L)no. of moles = weight/ Molecular weight So, weight = $M \times Molecular weight$ (in 1000 ml) = 0.154 x 58.5 = 9 q $9 \text{ g} \rightarrow 1000 \text{ ml}$? g → 100 ml

w/w% of NaCl = $(9 \times 100) / 1000 = 0.9\% \rightarrow isotonic$

METHOD


• Into 6 dry clean test tubes (A, B, C, D, E, F), pipette 3 drops of the suspended RBC's in saline solution, and add to each tube as indicated the following table:

	Α	В	С	D	E	F
NaCl 0.45%	5ml					
NaCl 1.2%		5ml				
Sucrose 6%			5ml			
NaOH 0.1M				3drops		
HCI 0.1M					3drops	
Dis. H2O						5ml
NaClO.9%				5ml	5ml	

- Wait 30 minutes.
- Observe whether Haemolysis has taken place

Mwt: NaCI= 58.5 Sucrose= 342.3

RESULTS

Note that the hemolyzed sample is transparent, because there are no cells to scatter light.

DETECTION OF BLOOD BY BENZIDINE TEST

• Principle:

- This method depend on the fact that the haem group of haemoglobin possesses a peroxidase-like activity which catalyses the breakdown of hydrogen peroxide (H_2O_2) .
- The oxidising species formed in this reaction can then react with benzidine giving a blue color.
- It is often necessary to detect the presence of small quantities of blood in urine, stomach contents etc.
- The test is not specific for blood because peroxidases are present in milk, potatoes and pus, as well as the ions of Fe⁺³, Cu⁺² and K⁺ will give false positive results..

- 3ml of suspended blood cells solution is boiled in water bath for 3 minutes and then cool it under tap water.
- Add 2 ml of benzidine solution, followed by 1 ml of hydrogen peroxide solution.

NOTE

The general principle is that:

• if the test is negative, blood is absent.

But

• if the test is positive, blood is probably<u>, not definitely</u> present.

→ For this reason the tests are often described as "presumptive tests".