DEFINITION 8 If A is a square matrix, then the trace of A, denoted by tr(A), is defined to be the sum of the entries on the main diagonal of A. The trace of A is undefined if A is not a square matrix.

Example 1: Trace of a Matrix

The following are examples of matrices and their traces.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \quad B = \begin{bmatrix} -1 & 2 & 7 & 0 \\ 3 & 5 & -8 & 4 \\ 1 & 2 & 7 & -3 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + a_{33}$$
 $tr(B) = -1 + 5 + 7 + 0 = 11$

In the exercises you will have some practice working with the transpose and trace operations.

Concept Review

- Matrix
- · Entries
- Column vector (or column matrix)
- Row vector (or row matrix)
- Square matrix
- · Main diagonal
- Equal matrices

- · Matrix operations: sum, difference, scalar multiplication
- · Linear combination of matrices
- · Product of matrices (matrix multiplication)
- · Partitioned matrices
- Submatrices

- · Row-column method
- · Column method
- · Row method
- · Coefficient matrix of a linear system
- Transpose
- Trace

Skills

- Determine the size of a given matrix.
- · Identify the row vectors and column vectors of a given matrix.
- · Perform the arithmetic operations of matrix addition, subtraction, scalar multiplication, and multiplication.
- · Determine whether the product of two given matrices is defined.
- Compute matrix products using the row-column method, the column method, and the row method.
- · Express the product of a matrix and a column vector as a linear combination of the columns of the matrix.
- · Express a linear system as a matrix equation, and identify the coefficient matrix.
- · Compute the transpose of a matrix.
- · Compute the trace of a square matrix.

Exercise Set 1.3

AI

1. Suppose that A, B, C, D, and E are matrices with the following sizes:

(a) BA کب

 \rightarrow (b) $AC + D \rightarrow$ (c) AE + B

In each part, determine whether the given matrix expression

is defined. For those that are defined, give the size of the

D

(g) ETA

resulting matrix.

(h) $(A^T + E)D$

J (d) AB + B \longrightarrow (e) E(A + B) \longrightarrow (f) E(AC)

Chapter 1 Systems of Linear Equations and Matrices

2. Suppose that A, B, C, D, and E are matrices with the following sizes:

$$A$$
 B C D E (3×1) (3×6) (6×2) (2×6) (1×3)

In each part, determine whether the given matrix expression is defined. For those that are defined, give the size of the resulting matrix.

(b)
$$AB^T$$

(c)
$$B^T(A+E^T)$$

(d)
$$2A + C$$

(e)
$$(C^T + D)B^T$$
 (f) $CD + B^T E^T$

(h)
$$DC + EA$$

(g) $(BD^T)C^T$ Consider the matrices

$$A = \begin{bmatrix} 2 & 0 \\ -4 & 6 \end{bmatrix}. \quad B = \begin{bmatrix} 1 & -7 & 2 \\ 5 & 3 & 0 \end{bmatrix}. \quad C = \begin{bmatrix} 4 & 9 \\ -3 & 0 \\ 2 & 1 \end{bmatrix}. \quad \text{(c) the second row of } BB. \quad \text{(d) the first column of } BA.$$

$$D = \begin{bmatrix} -2 & 1 & 8 \\ 3 & 0 & 2 \\ 4 & -6 & 3 \end{bmatrix}. \quad E = \begin{bmatrix} 0 & 3 & 0 \\ -5 & 1 & 1 \\ 7 & 6 & 2 \end{bmatrix}$$
(a) express each column vector of AA as a linear combin of the column vectors of A .
(b) express each column vector of BB as a linear combin.

In each part, compute the given expression (where possible).

$$(a)D + E$$

(b)
$$D - E$$

(f)
$$7E - 3D$$

(g)
$$2(D+5E)$$

(i) $tr(D-E)$

$$(k)$$
 2 tr(4B

(i)
$$tr(D)$$

$$(j)$$
 tr $(D-E)$

$$(k)$$
 2 tr(4B)

4. Using the matrices in Exercise 3, in each part compute the given expression (where possible).

(a)
$$2A^T + C$$

(b)
$$D^T - E^T$$
 (c) $(D - E)^T$

(c)
$$(D - E)^7$$

(d)
$$B^T + 5C^T$$

(e)
$$\frac{1}{2}C^T - \frac{1}{4}A$$

(f)
$$B - B^T$$

(g)
$$2E^{T} - 3D^{T}$$

(e)
$$\frac{1}{2}C' - \frac{1}{4}$$

(n)
$$(2E' - 3D)$$

(h)
$$(2E^T - 3D^T)^T$$
 (i) $(CD)E$

(j)
$$C(BA)$$

(k)
$$tr(DE^T)$$

(k)
$$tr(DE^{i})$$

(1)
$$tr(BC)$$

5. Using the matrices in Exercise 3, in each part compute the given expression (where possible).

$$(a)$$
 AB

(c)
$$(3E)D$$

(d)
$$(AB)C$$

(e)
$$A(BC)$$

(f)
$$CC^T$$

$$(g) (DC)^T$$

(h)
$$(C^TB)A^T$$

(i)
$$tr(4F^T - D)$$

(i)
$$tr(DD^T)$$

(j)
$$tr(4E^T - D)$$

(j)
$$tr(4E^T - D)$$
 (k) $tr(A^TC^T + 2E^T)$ (l) $tr((E^TC)B)$

6. Using the matrices in Exercise 3, in each part compute the given expression (where possible).

(a)
$$(2D^T - E)A$$

(b)
$$(4B)C + 2B$$

(c)
$$(-AC)^T + 5D^T$$

(d)
$$(BA^T - 2C)^T$$

(e)
$$B^T(CC^T - A^TA)$$

(f)
$$D^T \vec{E}^T \sim (ED)^T$$

$$A = \begin{bmatrix} 3 & -2 & 7 \\ 6 & 5 & 4 \\ 0 & 4 & 9 \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 & -2 & 4 \\ 0 & 1 & 3 \\ 7 & 7 & 5 \end{bmatrix}$$

Use the row method or column method (as appropriate) to find

- (a) the first row of AB.
- (b) the third row of AB.
- (c) the second column of AB. (d) the first column of BA.
- (e) the third row of AA.
- (f) the third column of AA
- 8. Referring to the matrices in Exercise 7, use the row method or column method (as appropriate) to find
 - (a) the first column of AB.
- (b) the third column of BB.
- (d) the first column of AA.
- (f) the first row of BA.
- - (a) express each column vector of AA as a linear combination of the column vectors of A.
 - (b) express each column vector of BB as a linear combination of the column vectors of B.
- 10. Referring to the matrices in Exercise 7 and Example 9,
 - (a) express each column vector of AB as a linear combination of the column vectors of A.
 - (b) express each column vector of BA as a linear combination of the column vectors of B.
- 11. In each part, find matrices A, x, and b that express the given system of linear equations as a single matrix equation Ax = b, and write out this matrix equation.

(a)
$$5x + y + z = 2$$

$$2x + 3z = 1$$
$$x + 2y = 0$$

$$x + 2y = 0$$

(b)
$$x_1 + x_2 - x_3 - 7x_4 = 6$$

 $- x_2 + 4x_3 + x_4 = 1$
 $4x_1 + 2x_2 + x_3 + 8x_4 = 0$

12. In each part, find matrices
$$A$$
, x , and b that express the given system of linear equations as a single matrix equation $Ax = b$, and write out this matrix equation.

(a)
$$x_1 - 2x_2 + 3x_3 = -3$$

$$2x_1 + x_2 = 0
-3x_2 + 4x_3 = 1
x_1 + x_3 = 5$$

(b)
$$3x_1 + 3x_2 + 3x_3 = -3$$

 $-x_1 - 5x_2 - 2x_3 = 3$
 $-4x_2 + x_3 = 0$

(a)
$$\begin{bmatrix} 5 & 6 & -7 \\ -1 & -2 & 3 \\ 0 & 4 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$$

- 14. In each part, express the matrix equation as a system of linear equations.
 - $\begin{bmatrix} 2\\7\\5 \end{bmatrix} \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix} = \begin{bmatrix} 2\\-1\\4 \end{bmatrix}$

o find

BA

In Exercises 15–16, find all values of k, if any, that satisfy the

- $\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & 2 & -3 \end{bmatrix} \begin{bmatrix} k \\ 1 \\ 1 \end{bmatrix} = 0$
- $\begin{bmatrix} 16 & \begin{bmatrix} 2 & 2 & k \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 3 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \\ k \end{bmatrix} = 0$

Exercises 17-18, solve the matrix equation for a, b, c, and d.

- - $\begin{bmatrix} a-b & b+a \\ 3d+c & 2d-c \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 7 & 6 \end{bmatrix}$
 - 19. Let A be any $m \times n$ matrix and let 0 be the $m \times n$ matrix each of whose entries is zero. Show that if kA = 0, either k = 0 or A=0.
 - 20. (a) Show that if AB and BA are both defined, then AB and BA are square matrices.
 - (b) Show that if A is an $m \times n$ matrix and A(BA) is defined, then B is an $n \times m$ matrix.
 - 21. Prove: If A and B are $n \times n$ matrices, then

$$tr(A+B) = tr(A) + tr(B)$$

- 22. (a) Show that if B is any matrix with a column of zeros and A is any matrix for which AB is defined, then AB also has a column of zeros.
 - (b) Find a similar result involving a row of zeros.
- 23. In each part, find a 6×6 matrix $[a_{ij}]$ that satisfies the stated condition. Make your answers as general as possible by using letters rather than specific numbers for the nonzero entries.
 - (a) $a_{ij} = 0$ if $i \neq j$ (b) $a_{ij} = 0$ if i > j
 - (c) $a_{ij} = 0$ if i < j
 - (d) $a_{ij} = 0$ if |i j| > 1

- 24. Find the 4×4 matrix $A = [a_{ij}]$ whose entries satisfy the stated condition.
 - (a) $a_{ij} = i j$
- (b) $a_{ij} = (-1)^1 ij$
- (c) $a_{ij} = \begin{cases} 0 & |i-j| \ge 1 \\ -1 & |i-j| < 1 \end{cases}$
- 25. Consider the function y = f(x) defined for 2×1 matrices x by y = Ax, where

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Plot f(x) together with x in each case below. How would you describe the action of f?

- (a) $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
- (b) $x = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$
- (c) $x = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$
- (d) $x = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$
- 26. Let i be the $n \times n$ matrix whose entry in row i and column j

$$\begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Show that AI = IA = A for every $n \times n$ matrix A.

27. How many 3×3 matrices A can you find such that

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x + y \\ x - y \\ 0 \end{bmatrix}$$

for all choices of x, y, and z?

28. How many 3×3 matrices A can you find such that

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xy \\ 0 \\ 0 \end{bmatrix}$$

for all choices of x, y, and z?

- 29. A matrix B is said to be a square root of a matrix A if BB = A.
 - (a) Find two square roots of $A = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$.
 - (b) How many different square roots can you find of
 - (c) Do you think that every 2 × 2 matrix has at least one square root? Explain your reasoning.
- 30. Let 0 denote a 2×2 matrix, each of whose entries is zero.
 - (a) Is there a 2×2 matrix A such that $A \neq 0$ and AA = 0? Justify your answer.
 - (b) Is there a 2 \times 2 matrix A such that $A \neq 0$ and AA = A? Justify your answer.

Exercise Set 1.4

 $A = \begin{bmatrix} 2 & -1 & 3 \\ 0 & 4 & 5 \\ -2 & 1 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 8 & -3 & -5 \\ 0 & 1 & 2 \\ 4 & -7 & 6 \end{bmatrix},$

$$C = \begin{bmatrix} 0 & -2 & 3 \\ 1 & 7 & 4 \\ 3 & 5 & 9 \end{bmatrix}, \quad a = 4, \quad b = -7$$

Show that

(a) A + (B + C) = (A + B) + C

(b) (AB)C = A(BC)

(c) (a+b)C = aC + bC

(d) (B - C) = aB - aC

Living the matrices and scalars in Exercise 1, verify that

(a)
$$a(BC) = (aB)C = B(aC)$$

(b) A(B-C) = AB - AC

(c) (B+C)A = BA + CA

(d) a(bC) = (ab)C

(3) Using the matrices and scalars in Exercise 1, verify that

(a)
$$(B^T)^T = B$$

(b)
$$(A + C)^T = A^T + C^T$$

$$(c)(bA)^T = bA^T$$

(d)
$$(CA)^T = A^T C^T$$

In Exercises 4-7, use Theorem 1.4.5 to compute the inverses

$$5 \stackrel{6}{\cancel{B}} = \begin{bmatrix} 6 & 3 \\ -5 & -2 \end{bmatrix}$$

$$\mathbf{6.} \ C = \begin{bmatrix} 6 & 4 \\ -2 & -1 \end{bmatrix}$$

$$7. D = \begin{bmatrix} 0 & -3 \\ 7 & 2 \end{bmatrix}$$

$$\begin{bmatrix}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{bmatrix}$$

9. Find the inverse of

$$\begin{bmatrix} \frac{1}{2}(e^x + e^{-x}) & \frac{1}{2}(e^x - e^{-x}) \\ \frac{1}{2}(e^x - e^{-x}) & \frac{1}{2}(e^x + e^{-x}) \end{bmatrix}$$

10. Use the matrix A in Exercise 4 to verify that $(A^T)^{-1} = (A^{-1})^T.$

11. Use the matrix B in Exercise 5 to verify that $(B^T)^{-1} = (B^{-1})^T$.

12. Use the matrices A and B in Exercises 4 and 5 to verify that $(AB)^{-1} = B^{-1}A^{-1}.$

13. Use the matrices A, B, and C in Exercises 4-6 to verify the

In Exercises 14-17, use the given information to find A.

15.
$$(5A)^{-1} = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

16.
$$(5A^T)^{-1} = \begin{bmatrix} -3 & -1 \\ 5 & 2 \end{bmatrix}$$
 17. $(I + 2A)^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}$

17.
$$(I+2A)^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & 5 \end{bmatrix}$$

18 Let A be the matrix

In each part, compute the given quantity.

- (a) A^{3}
- (b) A-3
- (c) $A^2 2A + I$

49

- (d) p(A), where p(x) = x 2
- (e) p(A), where $p(x) = 2x^2 x + 1$
- (f) p(A), where $p(x) = x^3 2x + 4$
- 19. Repeat Exercise 18 for the matrix

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

20. Repeat Exercise 18 for the matrix

$$A = \begin{bmatrix} 3 & 0 & -1 \\ 0 & -2 & 0 \\ 5 & 0 & 2 \end{bmatrix}$$

21. Repeat Exercise 18 for the matrix

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -1 & 3 \\ 0 & -3 & -1 \end{bmatrix}$$

 \models In Exercises 22-24, let $p_1(x) = x^2 - 9$, $p_2(x) = x + 3$, and $p_3(x) = x - 3$. Show that $p_1(A) = p_2(A)p_3(A)$ for the given matrix.

22. The matrix A in Exercise 18.

23. The matrix A in Exercise 21.

24. An arbitrary square matrix A.

25. Show that if $p(x) = x^2 - (a + d)x + (ad - bc)$ and

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

then p(A) = 0.

cd)x - a(be - cd) and

$$A = \begin{bmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{bmatrix}$$

then p(A) = 0.