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Graphs and Graph Models.

Definition 1.1

A graph G = (V,E) consists of V , a nonempty set of vertices (or
nodes) and E, a set of edges. Each edge has either one or two vertices
associated with it, called its endpoints. An edge is said to connect its
endpoints.

Remark 1.1

The set of vertices V of a graph G may be infinite. A graph with an infinite
vertex set or an infinite number of edges is called an infinite graph, and in
comparison, a graph with a finite vertex set and a finite edge set is called a
finite graph. In this book we will usually consider only finite graphs.
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Graphs and Graph Models.

Figure: Example of Graph.
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Graphs and Graph Models.

Figure: Example of Graph.
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Graphs and Graph Models.

Definition 1.2

A directed graph (or digraph) (V ,E) consists of a nonempty set of
vertices V and a set of directed edges (or arcs) E. Each directed edge is
associated with an ordered pair of vertices. The directed edge associated
with the ordered pair (u, v) is said to start at u and end at v.
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Graphs and Graph Models.

Figure: Example of Digraph.
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Graph Terminology and Special Types of Graphs.

We introduce some of the basic vocabulary of graph theory in this
section.

We will use this vocabulary later in this chapter when we solve many
different types of problems.

One such problem involves determining whether a graph can be
drawn in the plane so that no two of its edges cross.

Another example is deciding whether there is a one-to-one
correspondence between the vertices of two graphs that produces a
one-to-one correspondence between the edges of the graphs.

We will also introduce several important families of graphs often used
as examples and in models.

Several important applications will be described where these special
types of graphs arise.
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Graph Terminology and Special Types of Graphs.

Basic Terminology
First, we give some terminology that describes the vertices and edges of
undirected graphs.

Definition 2.1

Two vertices u and v in an undirected graph G are called adjacent (or
neighbors) in G if u and v are endpoints of an edge e of G. Such an edge
e is called incident with the vertices u and v and e is said to connect u
and v.

We will also find useful terminology describing the set of vertices adjacent
to a particular vertex of a graph.

Definition 2.2

The set of all neighbors of a vertex v of G = (V,E), denoted by N(v), is
called the neighborhood of v. If A is a subset of V , we denote by N(A)
the set of all vertices in G that are adjacent to at least one vertex in A.
So, N(A) =

⋃
v∈A

N(v).
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Graph Terminology and Special Types of Graphs.

Basic Terminology
To keep track of how many edges are incident to a vertex, we make the
following definition.

Definition 2.3

The degree of a vertex in an undirected graph is the number of edges
incident with it, except that a loop at a vertex contributes twice to the
degree of that vertex. The degree of the vertex v is denoted by deg(v).

Example 2.1

What are the degrees and what are the neighborhoods of the vertices in
the graphs G displayed in Figure 3?
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Graph Terminology and Special Types of Graphs.

Figure: The Undirected Graph G

Solution: In G, deg(a) = 2, deg(b) = deg(c) = deg(f) = 4, deg(d) = 1,
deg(e) = 3, and deg(g) = 0. The neighborhoods of these vertices are
N(a) = {b, f}, N(b) = {a, c, e, f},
N(c) = {b, d, e, f}, N(d) = {c}, N(e) = {b, c, f}, N(f) = {a, b, c, e}, and
N(g) = ∅.
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Graph Terminology and Special Types of Graphs.

A vertex of degree zero is called isolated. It follows that an isolated
vertex is not adjacent to any vertex. Vertex g in graph G in Example
1 is isolated.

A vertex is pendant if and only if it has degree one. Consequently, a
pendant vertex is adjacent to exactly one other vertex. Vertex d in
graph G in Example 1 is pendant.
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Graph Terminology and Special Types of Graphs.

What do we get when we add the degrees of all the vertices of a
graph G = (V,E)?

Each edge contributes two to the sum of the degrees of the vertices
because an edge is incident with exactly two (possibly equal) vertices.

Theorem 2.1 (THE HANDSHAKING THEOREM)

Let G = (V,E) be an undirected graph with m edges. Then

2m =
∑
v∈V

deg(v)

Example 2.2

How many edges are there in a graph with 10 vertices each of degree six?
Solution: Because the sum of the degrees of the vertices is 6.10 = 60, it
follows that 2m = 60 where m is the number of edges. Therefore, m = 30.
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Graph Terminology and Special Types of Graphs.

Theorem 1 shows that the sum of the degrees of the vertices of an
undirected graph is even. This simple fact has many consequences, one of
which is given as Theorem 2.

Theorem 2.2

An undirected graph has an even number of vertices of odd degree.

Terminology for graphs with directed edges reflects the fact that edges in
directed graphs have directions.

Definition 2.4

When (u, v) is an edge of the graph G with directed edges, u is said to be
adjacent to v and v is said to be adjacent from u. The vertex u is called
the initial vertex of (u, v), and v is called the terminal or end vertex of
(u, v). The initial vertex and terminal vertex of a loop are the same.

(King Saud University) Discrete Mathematics (Math 151) 17 / 65



Graph Terminology and Special Types of Graphs.

Because the edges in graphs with directed edges are ordered pairs, the
definition of the degree of a vertex can be refined to reflect the number of
edges with this vertex as the initial vertex and as the terminal vertex.

Definition 2.5

In a graph with directed edges the in-degree of a vertex v, denoted by
deg−(v), is the number of edges with v as their terminal vertex. The
out-degree of a vertex v, denoted by deg+(v), is the number of edges
with v as their initial vertex. (Note that a loop at a vertex contributes 1 to
both the in-degree and the out-degree of this vertex.)

Example 2.3

Find the in-degree and out-degree of each vertex in the graph G with
directed edges shown in the following figure.
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Graph Terminology and Special Types of Graphs.

Figure: The directed Graph G

Solution: The in-degrees in G are
deg−(a) = 2, deg−(b) = 2, deg−(c) = 3, deg−(d) = 2, deg−(e) = 3, and
deg−(f) = 0.
The out-degrees are
deg+(a) = 4, deg+(b) = 1, deg+(c) = 2, deg+(d) = 2, deg+(e) = 3, and
deg+(f) = 0.
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Graph Terminology and Special Types of Graphs.

Because each edge has an initial vertex and a terminal vertex, the sum of
the in-degrees and the sum of the out-degrees of all vertices in a graph
with directed edges are the same. Both of these sums are the number of
edges in the graph.

Theorem 2.3

Let G = (V,E) be a graph with directed edges. Then∑
v∈V

deg−(v) =
∑
v∈V

deg+(v) = |E|
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Graph Terminology and Special Types of Graphs.

Some Special Simple Graphs
We will nowintroduce several classes of simple graphs. These graphs are
often used as examples and arise in many applications.

Example 2.4 (Complete Graphs)

A complete graph on n vertices, denoted by Kn, is a simple graph that
contains exactly one edge between each pair of distinct vertices. The
graphs Kn, for n = 1, 2, 3, 4, 5, 6, are displayed in Figure 5. A simple
graph for which there is at least one pair of distinct vertex not connected
by an edge is called noncomplete.

A complete graph on n vertices has exactly n(n−1)
2 edges.

Figure: The Graphs Kn for 1 ≤ n ≤ 6.
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Graph Terminology and Special Types of Graphs.

Example 2.5 (Cycles)

A cycle Cn, n ≥ 3, consists of n vertices v1, v2, . . . , vn and edges
{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, and {vn, v1}. The cycles C3, C4, C5,
and C6 are displayed in Figure 6.

Figure: The Cycles C3, C4, C5, and C6

(King Saud University) Discrete Mathematics (Math 151) 22 / 65



Graph Terminology and Special Types of Graphs.

Example 2.6 (Wheels)

We obtain a wheel Wn when we add an additional vertex to a cycle Cn,
for n ≥ 3, and connect this new vertex to each of the n vertices in Cn, by
new edges. The wheels W3,W4,W5, and W6 are displayed in Figure 7.

Figure: The Wheels W3,W4,W5, and W6
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Graph Terminology and Special Types of Graphs.

Bipartite Graphs

Definition 2.6

A simple graph G is called bipartite if its vertex set V can be partitioned
into two disjoint sets V1 and V2 such that every edge in the graph
connects a vertex in V1 and a vertex in V2 (so that no edge in G connects
either two vertices in V1 or two vertices in V2). When this condition holds,
we call the pair (V1, V2) a bipartition of the vertex set V of G.

In the following example we will show that C6 is bipartite, and in Example
9 we will show that K3 is not bipartite.

Example 2.7

C6 is bipartite, as shown in Figure 6, because its vertex set can be
partitioned into the two sets V1 = {v1, v3, v5} and V 2 = {v2, v4, v6}, and
every edge of C6 connects a vertex in V1 and a vertex in V2.
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Graph Terminology and Special Types of Graphs.

Figure: Showing That C6 Is Bipartite.
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Graph Terminology and Special Types of Graphs.

Example 2.8

K3 is not bipartite. To verify this, note that if we divide the vertex set of
K3 into two disjoint sets, one of the two sets must contain two vertices. If
the graph were bipartite, these two vertices could not be connected by an
edge, but in K3 each vertex is connected to every other vertex by an edge.

Theorem 2.4

A simple graph is bipartite if and only if it does not contain an odd-length
cycle.
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Graph Terminology and Special Types of Graphs.

Example 2.9

Are the graphs G and H displayed in Figure 9 bipartite?

Figure: The Undirected Graphs G and H.
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Graph Terminology and Special Types of Graphs.

Solution: Graph G is bipartite because its vertex set is the union of two
disjoint sets, {a, b, d} and {c, e, f, g}, and each edge connects a vertex in
one of these subsets to a vertex in the other subset. (Note that for G to
be bipartite it is not necessary that every vertex in {a, b, d} be adjacent to
every vertex in {c, e, f, g}. For instance, b and g are not adjacent.)
Graph H is not bipartite because its vertex set cannot be partitioned into
two subsets so that edges do not connect two vertices from the same
subset. (We verify this by considering the vertices a, b, and f .)
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Graph Terminology and Special Types of Graphs.

Theorem 4 provides a useful criterion for determining whether a graph is
bipartite.

Theorem 2.5

A simple graph is bipartite if and only if it is possible to assign one of two
different colors to each vertex of the graph so that no two adjacent
vertices are assigned the same color.

Example 2.10 (Complete Bipartite Graphs)

A complete bipartite graph Km,n is a graph that has its vertex set
partitioned into two subsets of m and n vertices, respectively with an edge
between two vertices if and only if one vertex is in the first subset and the
other vertex is in the second subset. The complete bipartite graphs
K2,3,K3,3,K3,5, and K2,6 are displayed in Figure 10.
A complete bipartite graph Km,n have exactly n.m edges.
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Graph Terminology and Special Types of Graphs.

Figure: Some Complete Bipartite Graphs.
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Graph Terminology and Special Types of Graphs.

New Graphs from Old

Definition 2.7

A subgraph of a graph G = (V,E) is a graph H = (W,F ), where
W ⊆ V and F ⊆ E.
A subgraph H of G is a proper subgraph of G if H ̸= G.

Given a set of vertices of a graph, we can form a subgraph of this graph
with these vertices and the edges of the graph that connect them.

Definition 2.8

Let G = (V,E) be a simple graph. The subgraph induced by a subset W
of the vertex set V is the graph (W,F ), where the edge set F contains an
edge in E if and only if both endpoints of this edge are in W .
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Graph Terminology and Special Types of Graphs.

Example 2.11

The graph G shown in Figure 11 is a subgraph of K5. If we add the edge
connecting c and e to G, we obtain the subgraph induced by
W = {a, b, c, e}.

Figure: A Subgraph of K5.
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Graph Terminology and Special Types of Graphs.

Definition 2.9

The complement of G is G = (V,E(G)).

x ̸= y ∈ V / (x, y) ∈ E(G) ⇐⇒ (x, y) /∈ E(G)

If G is a Graph with n vertices, then the sum of the number of edge of G
and those of G is n(n−1)

2

|E(G)|+ |E(G)| = n(n− 1)

2
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Representing Graphs and Graph Isomorphism.

Introduction

There are many useful ways to represent graphs. As we will see
throughout this chapter, in working with a graph it is helpful to be
able to choose its most convenient representation.

In this section we will show how to represent graphs in several
different ways.

Sometimes, two graphs have exactly the same form, in the sense that
there is a one-to-one correspondence between their vertex sets that
preserves edges. In such a case, we say that the two graphs are
isomorphic.

Determining whether two graphs are isomorphic is an important
problem of graph theory that we will study in this section.
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Representing Graphs and Graph Isomorphism.

Adjacency Matrices Suppose that G = (V,E) is a simple graph where
|V | = n. Suppose that the vertices of G are listed arbitrarily as
v1, v2, . . . , vn. The adjacency matrix A (or AG) of G, with respect to
this listing of the vertices, is the n×n zero-one matrix with 1 as its (i, j)th
entry when vi and vj are adjacent, and 0 as its (i, j)th entry when they
are not adjacent. In other words, if its adjacency matrix is A = [aij ], then

aij =

{
1 if {vi, vj} is an edge of G,
0 otherwise.
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Representing Graphs and Graph Isomorphism.

Example 3.1

Use an adjacency matrix to represent the graph shown in the following
figure.

Figure: Simple Graph.
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Representing Graphs and Graph Isomorphism.

Solution: We order the vertices as a, b, c, d. The matrix representing this
graph is 

0 1 1 1
1 0 1 0
1 1 0 0
1 0 0 0
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Representing Graphs and Graph Isomorphism.

Example 3.2

Draw a graph with the adjacency matrix
0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


with respect to the ordering of vertices a, b, c, d.
Solution: A graph with this adjacency matrix is shown in in the following
figure.

Figure: A Graph with the Given Adjacency Matrix.
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Representing Graphs and Graph Isomorphism.

Incidence Matrices Another common way to represent graphs is to use
incidence matrices. Let G = (V,E) be an undirected graph. Suppose that
v1, v2, . . . , vn are the vertices and e1, e2, . . . , em are the edges of G. Then
the incidence matrix with respect to this ordering of V and E is the n×m
matrix M = [mij ], where

mij =

{
1 when edge ej is incident with vi,
0 otherwise.
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Representing Graphs and Graph Isomorphism.

Example 3.3

Represent the graph shown in in the following figure with an incidence
matrix.

Figure: Simple Graph.
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Representing Graphs and Graph Isomorphism.

Solution: The incidence matrix is

e1 e2 e3 e4 e5 e6

v1
v2
v3
v4
v5


1 1 0 0 0 0
0 0 1 1 0 1
0 0 0 0 1 1
1 0 1 0 0 0
0 1 0 1 1 0
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Representing Graphs and Graph Isomorphism.

Isomorphism of Graphs

Definition 3.1

The simple graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic if
there exists a one-to- one and onto function f from V1 to V2 with the
property that a and b are adjacent in G1 if and only if f(a) and f(b) are
adjacent in G2, for all a and b in V1. Such a function f is called an
isomorphism. Two simple graphs that are not isomorphic are called
nonisomorphic.

Example 3.4

Show that the graphs G = (V,E) and H = (W,F ), displayed in the
following figure, are isomorphic.
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Representing Graphs and Graph Isomorphism.

Figure: The Graphs
G and H.

The function f with
f(u1) = v1, f(u2) = v4, f(u3) = v3, and f(u4) = v2 is
a one-to- one correspondence between V and W .
To see that this correspondence preserves adjacency,
note that adjacent vertices in G are
u1 and u2, u1 and u3, u2 and u4, and u3 and u4,
and each of the pairs f(u1) = v1 and f(u2) = v4,
f(u1) = v1 and f(u3) = v3, f(u2) = v4 and
f(u4) = v2, and f(u3) = v3 and f(u4) = v2 consists of
two adjacent vertices in H.
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Representing Graphs and Graph Isomorphism.

Sometimes it is not hard to show that two graphs are not isomorphic.

Isomorphic simple graphs must have the same number of vertices,
because there is a one-to-one correspondence between the sets of
vertices of the graphs.

Isomorphic simple graphs also must have the same number of edges,
because the one-to-one correspondence between vertices establishes a
one-to-one correspondence between edges.

In addition, the degrees of the vertices in isomorphic simple graphs
must be the same. That is, a vertex v of degree d in G must
correspond to a vertex f(v) of degree d in H, because a vertex w in
G is adjacent to v if and only if f(v) and f(w) are adjacent in H.
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Representing Graphs and Graph Isomorphism.

Example 3.5

Show that the graphs displayed in the following figure are not isomorphic.
Solution: Both G and H have five vertices and six edges. However, H
has a vertex of degree one, namely, e, whereas G has no vertices of degree
one. It follows that G and H are not isomorphic.

Figure: The Graphs G and H.
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Representing Graphs and Graph Isomorphism.

Example 3.6

Determine whether the graphs shown in the following figure are
isomorphic.
Solution: The graphs G and H both have eight vertices and 10 edges.
They also both have four vertices of degree two and four of degree three.
Because these invariants all agree, it is still conceivable that these graphs
are isomorphic.
However, G and H are not isomorphic. To see this, note that because
deg(a) = 2 in G, a must correspond to either t, u, x, or y in H, because
these are the vertices of degree two in H. However, each of these four
vertices in H is adjacent to another vertex of degree two in H, which is
not true for a in G.

Figure: The Graphs G and H.
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Connectivity.

Introduction

Many problems can be modeled with paths formed by traveling along
the edges of graphs.

For instance, the problem of determining whether a message can be
sent between two computers using intermediate links can be studied
with a graph model.

Problems of efficiently planning routes for mail delivery, garbage
pickup, diagnostics in computer networks, and so on can be solved
using models that involve paths in graphs.
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Connectivity.

Path Informally, a path is a sequence of edges that begins at a vertex of a
graph and travels from vertex to vertex along edges of the graph. As the
path travels along its edges, it visits the vertices along this path, that is,
the endpoints of these edges.

Definition 4.1

Let n be a nonnegative integer and G an undirected graph. A path of
length n from u to v in G is a sequence of n edges e1, . . . , en of G for
which there exists a sequence x0 = u, x1, . . . , xn−1, xn = v of vertices
such that ei has, for i = 1, . . . , n, the endpoints xi−1 and xi . When the
graph is simple, we denote this path by its vertex sequence x0, x1, · · · , xn
(because listing these vertices uniquely determines the path). The path is
a circuit if it begins and ends at the same vertex, that is, if u = v, and
has length greater than zero. The path or circuit is said to pass through
the vertices x1, x2, · · · , xn−1 or traverse the edges e1, e2, . . . , en. A path
or circuit is simple if it does not contain the same edge more than once.
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Connectivity.

A path or circuit is simple if it does not contain the same edge more than
once. There is considerable variation of terminology concerning the
concepts defined in Definition 1.

Remark 4.1

In some books, the term walk is used instead of path, where a walk is
defined to be an alternating sequence of vertices and edges of a
graph, v0, e1, v1, e2, . . . , vn−1, en, vn, where vi−1 and vi are the
endpoints of ei for i = 1, 2, . . . , n.

When this terminology is used, closed walk is used instead of circuit
to indicate a walk that begins and ends at the same vertex, and trail
is used to denote a walk that has no repeated edge (replacing the
term simple path). When this terminology is used, the terminology
path is often used for a trail with no repeated vertices, conflicting
with the terminology in Definition 1.
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Connectivity.

Example 4.1

In the simple graph shown in the following figure, a, d, c, f, e is a simple
path of length 4, because {a, d}, {d, c}, {c, f}, and {f, e} are all edges.
However, d, e, c, a is not a path, because {e, c} is not an edge. Note that
b, c, f, e, b is a circuit of length 4 because {b, c}, {c, f}, {f, e}, and {e, b}
are edges, and this path begins and ends at b. The path a, b, e, d, a, b,
which is of length 5, is not simple because it contains the edge {a, b}
twice.

Figure: A Simple Graph.
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Connectivity.

Connectedness in Undirected Graphs: When does a computer network
have the property that every pair of computers can share information, if
messages can be sent through one or more intermediate computers? When
a graph is used to represent this computer network, where vertices
represent the computers and edges represent the communication links, this
question becomes: When is there always a path between two vertices in
the graph?

Definition 4.2

An undirected graph is called connected if there is a path between every
pair of distinct vertices of the graph. An undirected graph that is not
connected is called disconnected. We say that we disconnect a graph
when we remove vertices or edges, or both, to produce a disconnected
subgraph.

Thus, any two computers in the network can communicate if and only if
the graph of this network is connected.

(King Saud University) Discrete Mathematics (Math 151) 53 / 65



Connectivity.

Example 4.2

The graph G1 in the following figure is connected, because for every pair
of distinct vertices there is a path between them (we can verify this).
However, the graph G2 in Figure 19 is not connected. For instance, there
is no path in G2 between vertices a and d.

Figure: The Graphs G1 and G2.
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Connectivity.

Theorem 4.1

There is a simple path between every pair of distinct vertices of a
connected undirected graph.

CONNECTED COMPONENTS

A connected component of a graph G is a connected subgraph of G
that is not a proper subgraph of another connected subgraph of G. That
is, a connected component of a graph G is a maximal connected subgraph
of G.A graph G that is not connected has two or more connected
components that are disjoint and have G as their union.
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Connectivity.

Figure: The Graph H and Its Connected Components H1,H2, and H3.

Example 4.3

What are the connected components of the graph H shown in the
following figure?
Solution: The graph H is the union of three disjoint connected subgraphs
H1,H2, and H3, shown in Figure 20. These three subgraphs are the
connected components of H.

Figure: The Graph H and Its Connected Components H1,H2, and H3.
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Connectivity.

Sometimes the removal from a graph of a vertex and all incident edges
produces a subgraph with more connected components. Such vertices are
called cut vertices (or articulation points). The removal of a cut vertex
from a connected graph produces a subgraph that is not connected.
Analogously, an edge whose removal produces a graph with more
connected components than in the original graph is called a cut edge or
bridge. Note that in a graph representing a computer network, a cut
vertex and a cut edge represent an essential router and an essential link
that cannot fail for all computers to be able to communicate.
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Connectivity.

Figure: Some Connected Graphs.
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Connectivity.

Paths and Isomorphism: There are several ways that paths and circuits can
help determine whether two graphs are isomorphic. For example, the
existence of a simple circuit of a particular length is a useful invariant that
can be used to show that two graphs are not isomorphic. In addition,
paths can be used to construct mappings that may be isomorphisms. As
we mentioned, a useful isomorphic invariant for simple graphs is the
existence of a simple circuit of length k, where k is a positive integer
greater than 2. Example 6 illustrates how this invariant can be used to
show that two graphs are not isomorphic.
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Connectivity.

Example 4.4

Determine whether the graphs G and H shown in the following figure are
isomorphic.

Figure: The Graphs G and H.
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Connectivity.

Solution: Both G and H have six vertices and eight edges. Each has four
vertices of degree three, and two vertices of degree two. So, the three
invariants-number of vertices, number of edges, and degrees of vertices all
agree for the two graphs. However, H has a simple circuit of length three,
namely, v1, v2, v6, v1, whereas G has no simple circuit of length three, as
can be determined by inspection (all simple circuits in G have length at
least four). Because the existence of a simple circuit of length three is an
isomorphic invariant, G and H are not isomorphic.
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Connectivity.

Example 4.5

Determine whether the graphs G and H shown in the following figure are
isomorphic.
Solution: Both G and H have five vertices and six edges, both have two
vertices of degree three and three vertices of degree two, and both have a
simple circuit of length three, a simple circuit of length four, and a simple
circuit of length five. Because all these isomorphic invariants agree, G and
H may be isomorphic.

Figure: The Graphs G and H.

(King Saud University) Discrete Mathematics (Math 151) 62 / 65



Connectivity.

Counting Paths Between Vertices: The number of paths between two
vertices in a graph can be determined using its adjacency matrix.

Theorem 4.2

Let G be a graph with adjacency matrix A with respect to the ordering
v1, v2, · · · , vn of the vertices of the graph (with directed or undirected
edges, and loops allowed). The number of different paths of length r from
vi to vj , where r is a positive integer, equals the (i, j)th entry of Ar.
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Connectivity.

Figure: The Graph G.

Example 4.6

How many paths of length four are there from a to d in the simple graph
G ?
Solution: The adjacency matrix of G (ordering the vertices as a, b, c, d) is

A =


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 and A4


8 0 0 8
0 8 8 0
0 8 8 0
8 0 0 8


Hence, the number of paths of length four from a to d is 8 (the (1, 4)th

entry of A4).
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Connectivity.

1 a, b, a, b, d
2 a, b, a, c, d
3 a, b, d, b, d

4 a, b, d, c, d
5 a, c, a, b, d
6 a, c, a, c, d

7 a, c, d, b, d

8 a, c, d, c, d
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