King Saud University - College of Engineering - Industrial Engineering Dept.

IE-352

Section 1, CRN: 5022/5030/5041
Section 2, CRN: 32997/32999/32998
Second Semester 1433-34 H (Spring-2013) - 4(4,1,1)
MANUFACTURING PROCESSES - 2
Wednesday, Mar 13, 2013 ($01 / 05 / 1434 \mathrm{H})$
Exercise: Geometric Tolerance (Straightness of a Center Plane)

Name:	Student Number:	Section:
	4	$8: 00 / 10: 00$

Straightness of a Center Plane

Examine the dimensioned plane shown on the right (units in mm). Calculate the geometric tolerance for cross sections in the plane having the following sizes:
a) 0.632
b) 0.628

c) 0.621
d) 0.619

Given:

a) $B S=0.625 \mathrm{~mm}$
o Size Tol. $= \pm 0.005$
o $\Rightarrow M M C=B S+0.005=0.625+0.005=0.630$
$0 \Rightarrow L M C=B S-0.005=0.625-0.005=0.620$
$0 \Rightarrow \mathbf{0 . 6 2 0} \leq$ size $\leq \mathbf{0 . 6 3 0}$
o Note, this is the allowable range of sizes (or size zone) along the different cross sections of the plane
b) Feature control frame:
o Straightness geometric tolerance (plane)
o $G T=0.003 @ M M C$ (i.e. allowable GT at MMC is 0.003 mm)

King Saud University - College of Engineering - Industrial Engineering Dept.
$\mathrm{o} \Rightarrow$ Virtual Condition: $V_{c}=M M C+0.003=0.630+0.003=0.633$
$\mathrm{o} \Rightarrow$ @ LMC: $G T_{L M C}=V_{c}-L M C=0.633-0.620=0.013$
$0 \Rightarrow \mathbf{0 . 0 0 3}(@ M M C) \leq \boldsymbol{G T} \leq \mathbf{0 . 0 1 3}$ (@LMC)
o This is the allowable GT range (or GT zone) for this feature
Required:
a) $G T_{0.632}=$?
b) $G T_{0.628}=$?
c) $G T_{0.621}=$?
d) $G T_{0.619}=$?

Solution:

a) size $=0.632$
o Check if within size limits: $0.632>0.630 \Rightarrow$ part is rejected (note, remachining may be possible here)
b) size $=0.628$
o Check size: $0.620<0.628<0.630 \Rightarrow$ part is acceptable
o $G T_{0.628}=V_{c}-$ size $=0.633-0.628=0.005$
o Check if within GT limits: $0.003<0.005<0.013(\Rightarrow$ ok)

$$
G T_{0.628}=0.005
$$

c) size $=0.621$
o Check size: $0.620 \leq 0.621 \leq 0.630(\Rightarrow$ ok)
o $G T_{0.621}=V_{c}-$ size $=0.633-0.621=0.012$
o Check GT: $0.003<0.012<0.013$ (\Rightarrow ok)

$$
G T_{0.628}=0.012
$$

d) size $=0.619$
o Check size: $0.619<0.620 \Rightarrow$ part is rejected (note, remachining is not possible in this case)

King Saud University - College of Engineering - Industrial Engineering Dept.

IE-352
Section 1, CRN: 13536
Section 2, CRN: 30521
First Semester 1434-35 H (Fall-2013) - 4(4,1,2)
"MANUFACTURING PROCESSES - 2"
Sunday, November 10, 2013 (07/01/1435H)
Quiz 3 ANSWERS

Name:	Student Number:	Section:
AHMED M. EL-SHERBEENY, PHD	4	$11: 00 / 1: 00$

Examine the drawing below and answer the following questions. [units: in]

1. What type of geometric tolerance is involved here (form, orientation, or location)? [1 Point]

ANSWER:
form
2. Describe below each element of the feature control frame.

- : geometric - form - straighness tolerance
- $-\varnothing .007$: allowable geometric tolerance is a 0.07 in cylindrical error

measured around the central axis (or axis error) and is taken at the MMC of the shaft

3. What is the basic size? [1 Point]

ANSWER:

1. 250 in
2. What is the MMC and LMC? [1 Point]

$$
\text { MMC: } \quad 1.260 \mathrm{in}
$$

LMC:
1.240 in
$M M C=B S+0.010=1.260 ; L M C=B S-0.010=1.240$

King Saud University - College of Engineering - Industrial Engineering Dept.
5. What is the size of the virtual hole? [2 Points] ANSWER: 1.267 in
virtual hole: $V_{c}=\phi_{\text {shaft@MMC }}+G T_{M M C}=1.260+0.007=1.267$ in
6. What is the geometric tolerance for cross sections in the shaft having the following sizes? [2 Points]
a. 1.256
ANSWER: 0.011 in
b. 1.238

ANSWER: part rejected
a) size $=1.256$

- Check size: $1.240<1.256<1.260(\Rightarrow$ ok)
- $G T_{1.256}=V_{c}-$ size $=1.267-1.256=\mathbf{0 . 0 1 1}$
b) size $=1.238$
- Check size: $1.238<1.240(L M C)$ (\Rightarrow part is rejected)

King Saud University - College of Engineering - Industrial Engineering Dept.

IE-352
Section 1, CRN: 32997
Section 2, CRN: 5022
Second Semester 1431-32 H (Spring-2011) - 4(4,1,1)
MANUFACTURING PROCESSES - 2
Sunday, Apr 17, 2011 (13/5/1432H)

Quiz 3 ANSWERS

Name:	Student Number:
	42

Examine the shaft system below (dimensions in $\mathbf{m m}$) and answer the following questions.

1. Describe below each element of the feature control frame.

The shaft must lie perpendicular within a tolerance zone of 0.007 mm diameter (ϕ) at the maximum material condition (MMC), with respect to datum axis A.
2. What type of geometric tolerance is involved here (form, orientation, or
location)? [1 Point]
3. What is the basic size? [2 Points]
4. What is the feature size at MMC? [2 Points]

At MMC: $\boldsymbol{\phi}=0.225+0.003=0.228 \mathrm{~mm}$
5. What is the feature size at V_{c} ? [2 Points]

ANSWER:
orientation

ANSWER:
0.225 mm ANSWER: 0.228 mm

$$
V_{c}=\phi_{M M C}+\text { Geom.Tol }=0.228+0.007=0.235 \mathrm{~mm}
$$

King Saud University - *College of Engineering* - Industrial Engineering Dept.

IE-352

Section 1, CRN: 32997
Section 2, CRN: 5022
Second Semester 1431-32 H (Spring-2011) - 4(4,1,1)
MANUFACTURING PROCESSES - 2
Sunday, Apr 17, 2011 (13/5/1432H)
Quiz 3 ANSWERS

Name:	Student Number:
	42

Examine the hole system below (dimensions in mm) and answer the following questions.

1. Describe below each element of the feature control frame.

The hole must lie perpendicular within a tolerance zone of 0.007 mm diameter (ϕ) at the maximum material condition (MMC), with respect to datum axis A .
2. What type of geometric tolerance is involved here (form, orientation, or

Iocation)? [1 Point]
3. What is the basic size? [2 Points]
4. What is the feature size at MMC? [2 Points]

At MMC: $\phi=0.225-0.003=0.222 \mathrm{~mm}$
5. What is the feature size at V_{C} ? [2 Points]

ANSWER:
orientation ANSWER: 0.225 mm ANSWER: 0.222 mm
$V_{c}=\phi_{M M C}+$ Geom.Tol $=0.222-0.007=0.215 \mathrm{~mm}$

King Saud University - College of Engineering - Industrial Engineering Dept.
\square

IE-352
Section 1, CRN: 13536
Section 2, CRN: 30521
First Semester 1432-33 H (Fall-2011) - 4(4,1,1)
MANUFACTURING PROCESSES - 2
Sunday, Nov 20, 2011 (24/12/1432H)

Quiz 4 ANSWERS

Name:	Student Number:	Section:
	4	$8: 00 / 10: 00$

Examine the feature below (dimensions in $\mathbf{m m}$) and answer the following questions.

1. Describe below each element of the feature control frame.

The featured dimension must lie,

- at a 30-degree angle
- with respect to datum axis B,
- and within a tolerance zone of length 0.008 mm between parallel planes (containing all points on the inclined face)
- where the top plane is tangent to high point(s) of the face.

2. What type of geometric tolerance is involved here, (form, orientation, or location)? [1 Point]

ANSWER:
orientation
3. What is the basic size? [2 Points]

ANSWER:
0.350 mm
4. Use the diagram above to sketch the two planes that contain the MMC and LMC. (see diagram)
5. If the feature size is 0.355 mm , use the diagram above to sketch the two planes that must contain all points on the part.
[2 Points] (see diagram)

- Note, feature size $(0.355 \mathrm{~mm})$ lies within the size zone (0.340 0.360 mm)
- Also note, lowest point on face lies at:

$$
0.355-0.008=0.347 \mathrm{~mm}(\text { i.e.within zone, since }>L M C)
$$

6. If the datum (B) is removed from the FCF above, what is the resulting geometric tolerance type? [1 Point] ANSWER:
form (flatness)

King Saud University - College of Engineering - Industrial Engineering Dept.

IE-352

Section 1, CRN: 5022/5030/5041
Section 2, CRN: 32997/32999/32998
Second Semester 1433-34 H (Spring-2013) - 4(4,1,1)
MANUFACTURING PROCESSES - 2
Monday, Mar 18, 2013 (06/05/1434H)

Quiz 4 ANSWERS

Name:	Student Number:	Section:
Ahmed M. El-Sherbeeny, PhD	4	$8: 00 / 10: 00$

Examine the drawing below and answer the following questions. [units: in]

1. What type of geometric tolerance is involved here (form, orientation, or location)? [1 Point] ANSWER: location
2. Describe below each element of the feature control frame.

- : geometric - location - position tolerance
- $\varnothing .024$ @: allowable geometric tolerance is a 0.024 in cylindrical error Tolaerace Zonese conterad
 measured around center point (or "centered on zone
 true positions"), and is taken at the MMC of the hole
- $A|B| C$: the tolerance is determined with reference to datums A (primary datum), \boldsymbol{B} (secondary datum), and \boldsymbol{C} (tertiary datum)

King Saud University - College of Engineering - Industrial Engineering Dept.

ANSWER:
 Basic hole system

From the drawing $\varnothing .625_{-.000}^{+.007}$ we can see that the hole $_{\boldsymbol{M M C}}=\boldsymbol{B S}=0.625$
This must, thus, be a basic hole system
5. What is the size of the virtual shaft? [2 Points] ANSWER:
0.601 in
virtual shaft: $V_{c}=\phi_{\text {hole@MMC }}-G T_{M M C}=0.625-0.024=0.601$ in
6. What is the shaft $\boldsymbol{M M C}$ and shaft $t_{L M C}$ given that an allowance of 5 thousands is required, and that the shaft has the same tolerance as the hole? [2 Points]

$$
\begin{aligned}
& \text { shaft }_{M M C}: 0.596 \mathrm{in} \\
& \text { shaft }_{L M C}: 0.589 \mathrm{in}
\end{aligned}
$$

$\phi_{\text {shaft@MMC }}=V_{c}-$ allowance $=0.601-0.005=0.596$ in
$\phi_{\text {shaft@LMC }}=\phi_{\text {shaft@MMC }}-D T_{\text {shaft }}=0.596-0.007=0.589$ in

