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1 Topics to be Covered  

Topic No. of 
Weeks 

Contact 
hours 

Sampling methods   1 (1+1) 

Data distributions 1 (1+1) 

Precision and accuracy 1 (1+1) 

Confidence intervals 1 (1+1) 

Least squares methods 2 (2+2) 

Correlation 1 (1+1) 

Time series analysis 1 (1+1) 

Multivariate techniques 2 (2+2) 

Cluster analysis 1 (1+1) 

Principal component analysis 1 (1+1) 

Kriging 1 (1+1) 

Geologic modeling 2 (2+2) 



  

Schedule of Assessment Tasks for Students During the Semester 

Assessment 
Assessment task (eg. essay, test, group project, 

examination etc.) 
Week due 

Proportion 
of Final 

Assessment 

1 1st exam 6 15 

2 lab reports Every 3 
weeks 

5 

3 Mid-term exam 12 15 

4 1st lab exam 6 5 

5 2nd lab exam 12 10 

6 Final Practical exam Last week 10 

7 Final exam 
As scheduled 

by the 
College 

40 



A simple definition 

 

Statistics:  

 

“The determination of the probable 

from the possible” 



What is “statistical analysis”? 

• This term refers to a wide range of techniques 

to. . . 

• 1. (Describe) 

• 2. Explore 

• 3. Understand 

• 4. Prove 

• 5. Predict 



Geostatistics 

• Geostatistical analysis is distinct from other 

spatial models in the statistics in that it assumes 

the region of study is continuous. 

 

• Observations could be taken at any point 

within the study area 

 

• Interpolation at points in between observed 

locations makes sense 

 



Why Geostatistics? 

• Classic statistics is generally devoted to the analysis and 

interpretation of un- certainties caused by limited sampling of a 

property under study. 

  

• Geostatistics however deviates from classic statistics in that 

Geostatistics is not tied to a population distribution model that 

assumes, for example, all samples of a population are normally 

distributed and independent from one another.  



Why Geostatistics? 

• Most of the earth science data (rock properties, contaminant 

concentrations) can be highly skewed and/or possess spatial 

correlation (data values from locations that are closer together 

tend to be more similar than data values from locations that are 

further apart). 

 

• To most geologists, the fact that closely spaced samples tend 

to be similar is not surprising since such samples have been 

influenced by similar physical and chemical 

depositional/transport processes. 

 

• Compared to the classic statistics which examine the statistical 

distribution of a set of sampled data, geostatistics incorporates 

both the statistical distribution of the sample data and the 

spatial correlation among the sample data 



• Sampling frameworks 

– Pure random sampling 

– Stratified random – by class/strata  

– Randomised within defined grids 

– Uniform 

– Uniform with randomised offsets 

– Sampling and declustering 

Spatial data exploration 



Spatial data exploration 

• Sampling frameworks – point sampling 
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Spatial data exploration 

– Sampling frameworks – within zones 

Selection of 5 random points per zone 
Grid generation - square grid 

within field boundaries 

Grid generation (hexagonal) - 

selection of 1 point per cell, 

random offset from centre 



Spatial data exploration 

A. 10% random sample from existing 

point set 

B. Stratified random selection, 30% of 

each stratum 

800 radio-activity monitoring sites. Random 

sample of 80 (red/large dots) 

200 radio-activity monitoring sites. Random 

sample of 30 (red/large dots)<100 units of 

radiation and 30 (crosses)>=100 units of 

radiation 



Spatial data exploration 

• Random points on a network 



Populations and samples 
 

. A population is a set of well-defined objects. 

1. We must be able to say, for every object, if it is in the population or not. 

2. We must be able, in principle, to find every individual of the population. 

A geographic example of a population is all pixels in a multi-spectral 

satellite image. 

. A sample is some subset of a population. 

1. We must be able to say, for every object in the population, if it is in the 

sample or not. 

2. Sampling is the process of selecting a sample from a population. 

Continuing the example, a sample from this population could be a set of 

pixels from known ground truth points. 



To check your understanding . . . 

• Q1 : Suppose we are studying the distribution of rare element 

species in an aquifer. Are all the element species in this aquifer 

reserve population or sample?  

• A1 : This is the population; it includes all the objects of interest 

for the study. 



To check your understanding . . . 

• Q2 : If we make a transect from one side of the aquifer to the 

other, and measure all the element species within 10 km of the 

centre line, is this a population or sample of the element species 

in the aquifer reserve? 

• A2 : This is the sample; it is a defined subset of the population. 



What do we mean by “statistics”? 

Two common use of the word: 

1. Descriptive statistics: numerical summaries of samples;  (what was 

observed) 

2. Inferential statistics: from samples to populations.  (what could 

have been or will be observed in a larger population) 

Example: 

Descriptive “The adjustments of 14 GPS control points for this 

orthorectification ranged from 3.63 to 8.36 m with an arithmetic 

mean of 5.145 m” 

Inferential “The mean adjustment for any set of GPS points taken 

under specified conditions and used for orthorectification is no 

less than 4.3 and no more than 6.1 m; this statement has a 5% 

probability of being wrong.” 



 



Q3 : Suppose we do a survey of all the computers in an organization, 

and we discover that, of the total 120 computers, 80 are running 

some version of Microsoft Windows operating system, 20 Mac OS 

X, and 20 Linux. If we now say that 2/3 of the computers in this 

organization are running Windows, is this a descriptive or 

inferential statistic?  

A3 : This a descriptive statistic. It summarizes the entire population. 

Note that we counted every computer, so we have complete 

information. There is no need to infer. 



Q4: Suppose we create a sampling frame (list) of all the businesses 

of a certain size in a city, we visit a random sample of these, and 

we count the operating systems on their computers. Again we 

count 80 Windows, 20 Mac OS X, and 20 Linux. If we now say that 

2/3 of the computers used for business in this city are running 

Windows, is this a descriptive or inferential statistic? 

A4 : We have summarized a sample (some of the businesses) that is 

representative of a larger population (all the business). We infer 

that, if we could do an exhaustive count (as in the previous 

example), we would find this proportion of each OS. 



Why use statistical analysis? 

1. Descriptive: we want to summarize some data in a shorter form 

2. Inferential: We are trying to understand some process and maybe 

predict based on this understanding 

. So we need to model it, i.e. make a conceptual or mathematical 

representation, from which we infer the process. 

. But how do we know if the model is “correct” ? 

* Are we imagining relations where there are none? 

* Are there true relations we haven’t found? 

. Statistical analysis gives us a way to quantify the confidence we can 

have in our inferences. 



Commentary 

The most common example of geostatistical inference is the 

prediction of some attribute at an unsampled point, based on 

some set of sampled points. 

In the next slide we show an example from Hail area, the copper (Cu) 

content of soil samples has been measured at 155 points (left 

figure);  

from this we can predict at all points in the area of interest (right 

figure). 



 



What is “geo”-statistics? 

Geostatistics is statistics on a population with known location, i.e. 

coordinates: 

1. In one dimension (along a line or curve) 

2. In two dimensions (in a map or image) 

3. In three dimensions (in a volume) 

The most common application of geostatistics is in 2D (maps). 

Key point: Every observation (sample point) has both: 

1. coordinates (where it is located); and 

2. attributes (what it is). 



Let’s first look at a data set that is not geo-statistical. 

It is a list of soil samples (without their locations) with the lead (Pb) 

concentration: 

 
Observation ID Pb 

1 77.36 

2 77.88 

3 30.80 

4 56.40 

5 66.40 

6 72.40 

7 60.00 

8 144.00 

9 52.40 

10 41.60 

11 46.00 

12 56.40 

 The column Pb is 

the attribute of 

interest.  



Q5 : Can we determine the median, maximum and minimum of this 

set of samples?  

A5 : Yes; the minimum is 30.8, the maximum 141, and the median 58.2 

(half-way between the 6th and 7th sorted values). 

We can see this better when the list is sorted: 

30.8 41.6 46.0 52.4 56.4 56.4 60.0 66.4 72.4 77.36 77.88 141.0  

The point is that this is a list of values and we can compute 

descriptive statistics on it. There is no geographical context. 

 



Q6 : Can we make a map of the sample points with their Pb values? 

A6 : No, we can’t make a map, because there are no coordinates'. 

 



Now we look at a data set that is geo-statistical. 

These are soil samples taken in Hail, and their lead content; but this 

time with their coordinates. First let’s look at the tabular form: 

Observation 

ID 

Latitude Longtuide Pb 

1 26.51236 43.56245 77.36 

2 26.42135 43.56235 77.88 

3 26.65231 43.65842 30.80 

4 26.45236 43.52345 56.40 

5 26.52356 43.56564 66.40 

6 26.52654 43.52655 72.40 

7 26.45632 43.52355 60.00 

8 26.26543 43.51245 144.00 

9 26.62356 43.52243 52.40 

10 26.63564 43.57245 41.60 

11 26.63251 43.57248 46.00 

12 26.55674 43.52244 56.40 

The columns E 

and N are the 

coordinates, i.e. 

the spatial 

reference; the 

column Pb is the 

attribute. 



Q7 : Comparing this to the non-geostatistical list of soil samples and 

their lead contents (above), what new information is added here? 

 

A7 : In addition to the sample ID and the Pb content, we also have 

east (E) and north (N) coordinates for each sample. 



On the figure (next slide) you will see: 

1. A coordinate system (shown by the over-printed grid lines) 

2. The locations of 256 sample points – where a soil sample was 

taken 

3. The attribute value at each sample point – symbolized by the 

relative size of the symbol at each point 

– in this case the amount of lead (Pb) in the soil sample 

This is called a post-plot (“posting”the value of each sample) or a 

bubble plot (the size of each“bubble”is proportional to its attribute 

value). 



 



Q8 : In the figure, how can you determine the coordinates of each 

sample point?  

A8 : We can estimate them from the overprinted grid.  

Q9 : What are the coordinates of the sample point displayed as a red 

symbol?  

A9 : 2 km E, 3 km N (right on a grid intersection) 



Q10 : What is the origin of this coordinate system?  

A10 : (0,0) at the lower-left corner of the study area.  

Q11 : How could these coordinates be related to some common 

system such as UTM?  

A11 : If we can find out the UTM coordinates of the origin, i.e. the (0,0) 

of the local system, we can add this to the local coordinates to get 

the UTM coordinate. Then, if the local coordinate system is already 

North oriented, we just add this UTM origin to all the local 

coordinates; if not, we need the UTM coordinate of one other point, 

and then we can apply a transformation. 



Q12 : Suppose we have a satellite image that has not been geo-

referenced. Can we speak of geostatistics on the pixel values?  

A12 : Yes, because there is a spatial relation between pixels.  

Q13 : In this case, what are the coordinates and what are the 

attributes?  

A13 : The row and column in the image is a coordinate; the DN 

(digital number, reflectance) is the attribute. 

Note that the image is not geo-referenced so we can’t do 

geostatistics in terms of position on the Earth; but we can speak of 

spatial relations within the image. 



Q14 : Suppose now the images has been geo-referenced. What are 

now the coordinates?  

 

A14 : Whichever coordinate system that was used for geo-

referencing. 

 



So, we know that each sample has a location. 

What is so special about that?  

After all, the attribute information is the same.  

What is the value-added of knowing the location? What new 

possibilities for analysis does this imply? 



The added value of geostatistics 

1. The location of a sample is an intrinsic part of its definition. 

2. All data sets from a given area are implicitly related by their 

coordinates 

So they can be displayed and related in a GIS 

3. Values at sample points can not be assumed to be independent: 

there is often evidence that nearby points tend to have similar values 

of attributes. 

4. That is, there may be a spatial structure to the data 

. Classical statistics assumes independence of samples 

. But, if there is spatial structure, this is not true! 

. This has major implications for sampling design and statistical 

inference 

5. Data values may be related to their coordinates → spatial trend 



+ 
• Let’s look again 

at the post-plot,  

• this time to see if 

we can discover 

evidence of 

spatial 

dependence –  

 

 

• that is, 

• points that are 

close to each 

other have similar 

attribute values. 



Q15 : Do large circles (representing high Pb concentrations) seem to 

form clusters? 

A15 : Yes; for example there seems to be a“hot spot”around (3,1); 

see the figure on the next page. 

Q16 : Do small circles (representing low Pb concentrations) seem to 

form clusters?  

A16 : Yes; for example at the top of the map near (3.5, 5.5); see the 

figure on the next page.  

Q17 : What is the approximate radius the clusters?  

A17 : They are not so big, approximately 0.5 km radius. 



Feature and geographic spaces 

• The word space is used in mathematics to refer to any set of 

variables that form metric axes and which therefore allow us to 

compute a distance between points in that space. 

• If these variables represent geographic coordinates, we have a 

geographic space. 

• If these variables represent attributes, we have a feature space. 



Scatter plot of a 2D feature space 

 

This is a visualization of a 

2D feature space using 

a scatter plot.  

The points are individual 

fossil  measured 



Q18 : What are the two dimensions of this feature space, and their 

units of measure?  

A18 : Dimension 1: Fossil width in mm; Dimension 2: Fossil length in 

cm.  

Q19 : Does there appear to be a correlation between the two 

dimensions for this set of observations?  

A19 : Yes, there appears to be a strong positive correlation. 



Geographic space 

• Axes are 1D lines; they almost always have the same units 

of measure (e.g. metres, kilometres . . . ) 

• One-dimensional: coordinates are on a line with respect to 

some origin (0): (x1) = x 

• Two-dimensional: coordinates are on a grid with respect to 

some origin (0, 0): (x1,x2) = (x,y) = (E,N) 

• Three-dimensional: coordinates are grid and elevation from 

a reference elevation: (x1,x2,x3) = (x,y, z) = (E,N,H) 

• Note: latitude-longitude coordinates do not have equal 

distances in the two dimensions; they should be 

transformed to metric (grid) coordinates for geo-statistical 

analysis. 



Q22 : What are the dimensions and units of measure of a 

geographic space defined by UTM coordinates? 

 

A22 : There are two dimensions, UTM East and UTM North. 

These are both measured in meters from the zone origin. 



Exploring and visualizing spatial data  

Topics for this lecture 

1. Visualizing spatial structure: point distribution, postplots, 

quantile plots 

2. Visualizing regional trends 

3. Visualizing spatial dependence: h-scatterplots, variogram 

cloud, experimental variogram 

4. Visualizing anisotropy: variogram surfaces, directional 

variograms 



Visualizing spatial structure 

1. Distribution in space 

2. Postplots 

3. Quantile plots 



We begin by examining sets of sample points in space. 

• The first question is how these points are distributed over 

the space. Are they clustered, dispersed, in a regular or 

irregular pattern, evenly or un-evenly distributed over sub-

regions? 

• There are statistical techniques to answer these questions 

objectively; here we are concerned only with  visualization 



Distribution in space 

This is examined with a scatterplot on the coordinate axes, 

showing only the position of each sample. 

This can be in: 

1. 1D : along a line or curve 

2. 2D: in the plane or on a surface 

3. 3D: in a volume of space 



Let’s look at some 

distributions of 

sample points in 

2D space. 



Q1 : Do the points cover the entire 5x5 km square? What area 

do they cover? 

A1 : They only cover one part; this is the study area. 

 

Q2 : Within the convex hull of the points (i.e. the area bounded 

by the outermost points), is the 

distribution: 

1. Regular or irregular? 

2. Clustered or dispersed? 

A2 : Irregular (i.e. not in a regular pattern); some small clusters 

but mostly well-distributed over the study area. 



 



Q3 : Do the points cover the entire 1x1 km square? • 

A3 : No, they do not cover the NE or SE corners; however 

there are points outside the area (not visible in this plot) that 

are near to these.  

Q4 : Within the convex hull of the points (i.e. the area bounded 

by the outermost points), is the distribution: 

1. Regular or irregular? 

2. Clustered or dispersed? 

A4 : Irregular; mostly clustered. 



Postplots 

These are the same as distribution plots, except they show the 

relative value of each point in its feature space by some 

graphic element: 

1. relative size, or 

2. color, or 

3. both 



Showing feature-space values with symbol size 

One way to represent the value in feature space in by the 

symbol size, in some way proportional to the value. But, which 

size? 

Radius proportional to value 

Radius proportional to transformed value 

1. Square root (because radius is 1D) 

2. Logarithm to some base 



 



Q5 : Which of this two graphs best shows the highest values 

(“hot spots”)?  

A5 : The plot where the radius is proportional to the square 

root of the value; the points with the highest values are much 

large than the others and clearly highlighted. 

 

Q6 : Which of this two graphs best shows the distribution of 

the values in feature space? 

A6 : The plot where the radius is proportional to the value; 

taking the square root makes it difficult to see the difference 

between most of the values, i.e. only the hot spots stand out. 



Showing feature-space values with a color ramp 

 

• Another way to show the difference between feature-space 

values is with a color ramp, i.e. a sequence of colors from 

low to high values. 

• Different color ramps give very different impressions of the 

same data, as we now illustrate. 



Post-plot of Pb values, Qassim area, Colors  

 



Q7 :  Which of the two ramps (blue/purple/yellow and cyan/magenta) 

do you think better highlights  the hot spots?                                                                                           

                                                                            

A7 :  No correct answer here; it depends on the psychology of the 

viewer. It shows the highest values in bright pink but the colors are 

somewhat pastel and difficult to distinguish; the BPY  shows the 

highest values in yellow against a mostly blue background.                                 

Q8 :  Do you prefer the size or color to show the feature-space value?                              

 

A8 :  Personal preference.                                                                           

•                                                                 



We can combine both visualization techniques (Size 

and color in one graph. 

 



Quantile plots 

• A quantile plot is a postplot where one quantile is 

represented in a contrasting size or colour. 

• This shows how that quantile is distributed. 

• A quantile is a defined range of the cumulative empirical 

distribution of the variable. 

• The quantiles can be: 

quartiles (0-25%, 25-50% . . . ); 

deciles (0-10%, 10-20% . . . ); 

• any cutoff point interesting to the analyst, e.g 95% (i.e. 

highest 5%) 



Here are all the values, sorted ascending: 

[1] 18.96 20.20 21.48 21.60 22.36 22.56 23.68 24.64 25.40 26.00 26.76 

[12] 26.84 26.96 27.00 27.04 27.04 27.20 27.68 28.56 28.60 28.80 29.36 

... 

[243] 91.20 93.92 101.92 104.68 107.60 116.48 118.00 129.20 135.20 

138.56 141.00 

[254] 146.80 157.28 172.12 195.60 226.40 229.56 

 

Here are some quantiles: 

0% 25% 50% 75% 100% 

18.96 36.52 46.40 60.40 229.56 

 

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

30.792 34.952 37.680 41.656 46.400 51.200 56.472 65.360 80.480 

229.560 

95%   104.97 

Examples of quantiles of the Pb contents of 259 soil samples: 



• The figure on the next page has 10 graphs, one for each 

decile. Points whose Pb content is in the decile are shown 

with a large symbol and others with a small symbol. 

• This sequence of graphs shows: 

• whether certain deciles are concentrated in parts of the 

area; this would suggest a regional trend  whether the 

deciles are clustered; if all are about equally clustered this 

suggests local spatial dependence 

 



 

Quantile plot of Pb values 



Q9 : Are any of the deciles concentrated in parts of the area? • 

A9 : No, each decile is distributed over the entire area.  

 

Q10 : Are points in any or all of the deciles clustered?  

A10 : Yes, points in all deciles form clusters. 



4 Visualizing a regional trend 

1. Origin of regional trends 

2. Looking for a trend in the post-plot; 

3. Computing a trend surface 



Regional trends 

• One kind of spatial structure is a regional trend, where the 

feature space value of the variable changes systematically 

with the geographic space coordinates. 

• A common example in many parts of the world is annual 

precipitation across a region, which decreases away from a 

source. 

 



Orders of trends 

A systematic trend is an approximation to some mathematical 

surface;  

For now, we are concerned with the form of the surface: 

First-order, where the surface is a plane (also called linear): 

the attribute value changes by the same amount for a given 

change in distance away from an origin; 

Second-order, where the surface is a paraboloid (2D version of 

a parabola), i.e. a bowl (lowest in the middle) or dome (highest 

in the middle) 

Higher-order, where the surface has saddle points or folds 



 



 



Q11 : What order of trend surface would you expect from 

these situations: 

1. Mean annual precipitation in a coastal region where there is 

a low coastal plain, bounded inland by a mountain range; both 

of these are more or less linear in a given direction; 

2. The depth to a gas deposit trapped in a salt dome; 

3. Clay content in a soil developed from a sedimentary series 

of shales (claystones), siltstones and sandstones, 

outcropping as parallel strata? 

• 

A11 : 

1. First-order (linear, planar), increasing from the coast to the 

mountain (orographic effect on on-shore winds); 

2. Second-order; a dome (shallowest in middle); 

3. Higher-order (many parallel ‘troughs’ and ‘ridges’) 



• Looking for a trend in the post-plot 

 

• The post-plot shows local spatial dependence by 

the clustering of similar attribute values. 

• It can also show a regional trend if the size or 

color of the symbols (related to the attribute 

values) systematically change over the whole 

plot. 



 



Q12 : Describe the regional pattern of the clay content shown 

in the previous graph.  

A12 : It is lowest in the NW corner and increases towards the E 

and S.  

 

Q13 : How much of the variability in clay content explained by 

the trend?   

A13 : The big differences are explained, but within each of 

sample clusters there is some variability. An anomaly is found 

right in the middle of the plot near (680000, 325000) where a 

cluster of small values is found. Qualitatively, “much” of the 

variability is explained by the trend. 



Visualizing a trend with a trend surface 

From the set of points we can fit an empirical model which 

expresses the attribute as a function of the coordinates: 

z = f (x) where x is a coordinate vector, e.g. in 2D it might be: 

(x,y) = (UTM E,UTM N) 

Then we apply the fitted function over a regular grid of points, 

and display this as a map. Normally the points are represented 

as pixels. 



 

First-order trend surface 



 

Second-order trend surface 



Q14 : Which of these two trend surfaces best fits the sample 

points? (Compare the overprinted post-plot with the surface).  

A14 : The second-order surface fits much better, because it 

matches all three clusters of high clay contents in the E, S, 

and NE of the area. The first-order surface under-estimates 

especially the NE cluster.  

 

Q15 : Is the second-order surface a bowl or dome? • 

A15 : It is a (elliptically-shaped) bowl; the lowest values are 

found in the NW corner and increase in all directions from 

there. 



The least squares regression line 

• The least squares regression line is the line 

which produces the smallest value of the sum of 

the squares of the residuals.  

 

• A residual is the vertical distance from a point on 

a scatter diagram to the line of best fit. Therefore 

the least squares regression line can be seen as 

the best line of best fit. 



• The equation of the least squares regression line 

of y on x is: 

•                      Y-Y/= b(X-X/) 

•  

Where b is: 

•  

 

As you can see there are 3 different ways to 

calculate the value for b, based on what 

information you are given in the question 

 



• Example 

 

• Calculate the least squared regression line of y 

on x from the following data: 

• X:  20 30 40 50 60 70  

• Y : 2.49 2.41 2.38 2.14 1.97 2.03  

 

• Firstly draw up a table of the values you need and 

fill it out. In this example we'll use the third 

equation for b so we need all the values of x2 and 

xiyi: 

 



• X  Y      x2   xiyi      

20   2.49    400   49.9    

30   2.41    900   72.3    

40   2.38    1600   95.2    

50   2.14    2500    107     

60   1.97    3600   118.2   

70   2.03    4900   142.1  

 

• 270  13.42    13900  584.7 



• Next step is to calculate the means of 

the x and y values: 

 

 

 

 

 

 



• Hence the equation is therefore: 

 



Computing a trend surface model by ordinary least squares 

regression 

We use the Qassim soils data of; each observation has two UTM 

coordinates and two attributes: 

 

UTM_E   UTM_N   clay  pH 

1 702638  326959   78  4.80 

2 701659  326772   80  4.40 

3 703488  322133   66  4.20 

4 703421  322508   61  4.54 

5 703358  322846   53  4.40 

6 702334  324551   57  4.56 

We use the linear models method; all statistical packages have an 

equivalent comment to compute a least-squares fit 



 

//upload.wikimedia.org/wikipedia/commons/9/94/Linear_least_squares2.png


As a result of an experiment, four 

(x,y) data points were obtained, 

(1,6), (2,5), (3,7), and (4,10) 

 

It is desired to find a line 

y = β1 + β2x  

that fits "best" these four points. 

 

http://en.wikipedia.org/wiki/File:Linear_least_squares_example2.svg


The least squares approach to solving this problem is to try to make 

as small as possible the sum of squares of "errors" between the 

right- and left-hand sides of these equations, that is, to find the 

minimum of the function 

 

 

 

 

• The minimum is determined by calculating the partial derivatives 

of S(β1,β2) with respect to β1 and β2 and setting them to zero.  

• This results in a system of two equations in two unknowns, called 

the normal equations, which give, when solved 

• β1 = 3.5 β2 = 1.4 

•  and the equation y = 3.5 + 1.4x of the line of best fit. 

 

 



The residuals, that is, the discrepancies 

between the y values from the 

experiment and the y values calculated 

using the line of best fit are then found 

to be : 

1.1, − 1.3, − 0.7, and 0.9  

 

The minimum value of the sum of 

squares is : 

S (3.5,1.4) = 1.12 + ( − 1.3)2 + ( − 0.7)2 + 

0.92 = 4.2. 

 

http://en.wikipedia.org/wiki/File:Linear_least_squares_example2.svg


• http://www.youtube.com/watch?v=jEEJ

Nz0RK4Q 



Visualizing spatial dependence 

1. Point-pairs 

2. h-scatterplots 

3. Variogram clouds 

4. Experimental variograms 



Point-pairs 

Any two points are a point-pair. 

If there are n points in a dataset, there are (n * (n − 1)/2) unique 

point-pairs;  

that is, any of the n points can be compared to the other (n − 1) 

points. 



Point-pairs 

Q16 : The Hail data set has 155 sample points. How many 

point-pairs can be formed from these?  

A16 : (155*154)/2 = 11, 935  

Q17 : Are you surprised by the size of this number?  

A17 : Most people are surprised by the large number of pairs. 

Human intuition is not good at estimating combinations.  



Point-pairs 

Comparing points in a point-pair 

These can be compared two ways: 

1. Their locations, i.e. we can find the distance and direction 

between them in geographic space; 

2. Their attribute values in feature space. 

The combination of distance and direction is called the 

separation vector. 



Point-pairs 

Practical considerations for the separation vector 

Except with gridded points, there are rarely many point-pairs 

with exactly the same separation vector. 

Therefore, in practice we set up a bin, also called (for 

historical reasons) a lag, which is a range of distances and 

directions. 



h-scatterplots 

This is a scatterplot (two variables plotted against each other), 

with these two axes: 

X-axis The attribute value at a point 

Y-axis The attribute value at a second point, at some defined 

distance (and possibly direction, to be discussed as 

anisotropy, below), from the first point. 

All pairs of points (for short usually called point-pairs) 

separated by the defined distance are shown on the 

scatterplot. 



h-scatterplots 

Interpreting the h-scatterplot 

If there is no relation between the values at the separation, the 

h-scatterplot will be a diffuse cloud with a low correlation 

coefficient. 

If there is a strong relation between the values at the 

separation, the h-scatter plot will be a close to the 1:1 line with 

a high correlation coefficient. 



h-scatterplots 

The next two slides show h-scatterplots for the Pb in Qassim 

soil samples at two resolutions: 

� Bins of 50 m width up to 300 m, i.e. (0, 50), (50, 100), . . . , (250, 

300) 

� Bins of 100 m width up to 600 m, i.e. (0, 100), (100, 200), . . . , 

(500, 600) 

The 50 m bins only show the lower part of the Pb attribute 

value range. 



 

Bins of 50 m width up to 300 m 



 

Bins of 100 m width up to 600 m 



h-scatterplots 

• Q18 : Describe the “evolution” of the cloud of point pairs as 

the separation distance increases.  

• A18 : It becomes more diffuse, i.e. further from the 1:1 line. 



Correlation Coefficient 

• The correlation coefficient computed from 

the sample data measures the strength 

and direction of a relationship between 

two variables. 

• The range of the correlation coefficient is. 

 - 1 to + 1 and is identified by r. 
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Positive and Negative  Correlations 

• A positive relationship exists when both 

variables increase or decrease at the 

same time. (Weight and height). 

 

• A negative relationship exist when one 

variable increases and the other variable 

decreases or vice versa. (Strength and 

age). 



Range of correlation coefficient 

• In case of exact 

positive linear 

relationship the 

value of r is +1. 

• In case of a strong 

positive linear 

relationship, the 

value of r will be 

close to + 1. 
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High Degree of positive correlation 

• Positive relationship 

Cl 

Na 

r = +.80 



        Degree of correlation 

• Moderate  Positive Correlation 

SO4 

Na 
r = + 0.4 



Range of correlation coefficient 

• In case of exact 

negative linear 

relationship the 

value of r is –1. 

• In case of a strong 

negative linear 

relationship, the 

value of r will be 

close to – 1. 
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          Degree of correlation 

• Moderate Negative Correlation 

HCO3 

pH 

r = -.80 



       Degree of correlation 

• Weak negative Correlation 

pH 

Na 
r = - 0.2 



Range of correlation coefficient 

  

  

 In case of a weak 

relationship the 

value of r will be 

close to 0. 
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Sample Na 

X 

Cl 

Y 

X*Y X2 
Y

2 

1 43 128 5504 1849 16384 

2 48 120 5760 2304 14400 

3 56 135 7560 3136 18225 

4 61 143 8723 3721 20449 

5 67 141 9447 4489 19881 

6 70 152 10640 4900 23104 

 345 819 47634 20399 112443 

r = [n(xy) – (x)(y)] /  

{[n(x2) – (x)2][n(y2) – (y)2]}0.5 



• Substitute in the formula and solve for r: 

r= {(6*47634)-(345*819)}/{[(6*20399)-

3452][(6*112443)-8192]}0.5. 

r= 0.897. 

• The correlation coefficient suggests a 

strong positive relationship between Na 

and Cl. 

• http://www.youtube.com/watch?v=_lHnF

5Rd8Wc 



Semivariance 
• This is a mathematical measure of the difference between the two 

points in a point-pair. 

• It is expressed as squared difference so that the order of the 

points doesn’t matter (i.e. subtraction in either direction gives the 

same results). 

 

• Each pair of observation points has a semivariance, usually 

represented as the Greek letter γ (‘gamma’), and defined as: 

• γ (xi, xj) = 1/2[z(xi) − z(xj)]2 

• where x is a geographic point and z(x) is its attribute value. 

 

• (Note: The ‘semi’ refers to the factor 1/2, because there are two 

ways to compute for the same point pair.) 

• So, the semivariance between two points is half the squared 

difference between their values. If the values are similar, the 

semivariance will be small. 

 



Q19 : What are the units of measure for the semivariance?  

A19 : The square of the units of measure of the variable. 

 



Q20 : Here are the first two points of Qassim soil sample dataset: 

coordinates  Rock     Cd  Cu  Pb  Co  Cr  Ni    Zn 

1 (2.386, 3.077) Sand stone 1.740  25.72   77.36       9.32       38.32     21.32  92.56 

2 (2.544, 1.972) Sandstone 1.335   24.76   77.88      10.00       40.20    29.72  73.56 

For this point-pair, compute: 

1. The Euclidean distance between the points; 

2. The difference between the Pb values; 

3. The semivariance between the Pb values; 

• 

A20 : 

1. √(2.386 − 2.544)2 + (3.077 − 1.972)2 = 1.1162 km 

2. 77.36 − 77.88 = −0.52 mg kg-1 

3. 0.5 · (77.36 − 77.88)2 = 0.1352 (mg kg-1)2 



• Now we know two things about a point-pair: 

• 1. The distance between them in geographic space; 

• 2. The semivariance between them in attribute space. 

• So . . . it seems natural to see if points that are ‘close by’ in 

geographical space are also ‘close by’ in attribute space. 

• This would be evidence of spatial dependence. 

 



The variogram cloud 

• This is a graph showing semivariances between all point-

pairs: 

• X-axis The separation distance within the point-pair 

• Y-axis The semivariance 

• Advantage: Shows the comparison between all point-pairs 

as a function of their separation; 

• Advantage: Shows which point-pairs do not fit the general 

pattern 

• Disadvantage: too many graph points, hard to interpret 

 



 
Separations 

to 200 m 

 



Separations 

to 2 Km 

 



Q21 : Can you see a trend in the semi-variances as the separation 

distance increases?  

A21 : As separation increases, so does semi-variance.  

Q22 : What is the difficulty with interpreting this graph?  

A22 : This is quite difficult to see because of the large number of low 

semi-variances;  

* The second graph there are hundreds of points almost on top of 

each other, making it very hard to get a sense of the average.  

* In the first graph this is a bit clearer, but this only applies to the 

closest point-pairs. 

 



The empirical variogram 

To summarize the variogram cloud, group the separations into lags 

(separation bins, like a histogram) 

Then, compute the average semivariance of all the point-pairs in 

the bin 

This is the empirical variogram 

 

 

m(h) is the number of point pairs separated by vector h 



Defining the bins 

• There are some practical considerations, just like defining bins for 

a histogram: 

• Each bin should have enough points to give a robust estimate of 

the representative semi-variance; otherwise the variogram is 

erratic 

• If a bin is too wide, the theoretical variogram model will be hard to 

estimate and fit;  

• The largest separation should not exceed half the longest 

separation in the dataset; in general it should be somewhat 

shorter, since it is the local spatial dependence which is most 

interesting. 

• All computer programs that compute variograms use some 

defaults for the largest separation and number of bins;  

• It can use 1/3 of the longest separation, and divides this into 15 

equal-width bins. 

 



Numerical example of an experimental variogram 

Here is an experimental variogram of log10Pb from the Qassim soil 

samples; for simplicity the maximum separation was set to 1.5 km: 

np  dist  gamma 
1 262  0.037054  0.014245 

2 197  0.151837  0.020510 

3 363  0.255571  0.031182 

4 565  0.353183  0.027535 

5 608  0.452477  0.031559 

6 607  0.538099  0.029263 

7 615  0.651635  0.031891 

8 980  0.755513  0.031293 

9 753  0.851272  0.031229 

10 705  0.951857  0.030979 

11 1167  1.048865  0.031923 

12 1066  1.140061  0.033649 

13 1134  1.254365  0.035221 

14 1130  1.350202  0.033418 

15 1235  1.450247  0.036693 

 

np are the number of point-pairs in the bin; 

dist is the average separation of these 

pairs;  

gamma is the average semivariance in the 

bin. 



Q23 : 

1. What is the minimum and maximum separation for bin 2? 

2. How many point-pairs are in this bin 2? 

3. What is the average separation of all the point-pairs in bin 2? 

4. What is the average semivariance of all the point-pairs in bin 2? 

• 

A23 : 

1. 0.1, 0.2 km (100 to 200 m); we specified are 15 bins, equally 

dividing 1.5 km. 

2. 197 

3. 0.151837 km (152 m); the middle of the range is 150 m;  

4. 0.020510  

 



• Q24 : What is the trend in the average semi-variances as the 

average separation distance increases?  

• A24 : There is a definite increase: at closer separations the semi-

variance is less. There is some “noise”, the trend is not 

monotonic. 

 



Plotting the experimental variogram 

This can be plotted as semivariance gamma against average 

separation distance, along with the number of points that contributed 

to each estimate np 

 



 

Experimental variogram of log10Pb, Qassim soil samples 



Q25 : 

1. How many point-pairs are in bin with the closest 

separation? 

262 

2. What is the average separation of all the point-pairs in this 

bin? (You will have to estimate by eye from the graph) 

≈ 0.04km 

3. What is the average semivariance of all the point-pairs in 

this bin?(You will have to estimate by eye from the graph) 

≈ 0.013(log10 mg kg−1)2 



 

Nugget 



Features of the experimental variogram 

Later we will look at fitting a theoretical model to the 

experimental variogram; but even without a model we can 

notice some features which characterize the spatial 

dependence, which we define here only qualitatively: 

� Sill: maximum semi-variance 

* represents variability in the absence of spatial 

dependence 

� Range: separation between point-pairs at which the sill is 

reached 

 * distance at which there is no evidence of spatial 

dependence 

� Nugget: semi-variance as the separation approaches zero 

 * represents variability at a point that can’t be 

explained by spatial structure 



Q26 : 

1. What is the approximate sill of this experimental 

variogram? 

Sill: 0.031;  

2. What is the approximate range of this experimental 

variogram? 

Range: 0.5 km for the above sill 

3. What is the approximate nugget of this experimental 

variogram? 

 Nugget: 0.013; extrapolate by eye to the y-axis. 

 



Evidence of spatial dependence 

• The experimental variogram provides evidence that there is local 

spatial dependence. 

• � The variability between point-pairs is lower if they are closer to 

each other; i.e. the separation is small. 

• � There is some distance, the range where this effect is noted; 

beyond the range there is no dependence. 

• � The relative magnitude of the total sill and nugget give the 

strength of the local spatial dependence; the nugget represents 

completely unexplained variability. 

• There are of course variables for which there is no spatial 

dependence, in which case the experimental variogram has the sill 

equal to the nugget; this is called a pure nugget effect 

• The next graph shows an example. 



 



 



 



Visualizing anisotropy 

1. Anisotropy 

2. Variogram surfaces 

3. Directional variograms 



Commentary 

We have been considering spatial dependence as if it is the 

same in all directions from a point (isotropic or 

omnidirectional). 

For example, if I want to know the weather at a point where 

there is no station, I can equally consider stations at some 

distance from my location, no matter whether they are N, S, 

E or W. 

But this is self-evidently not always true! In this example, 

suppose the winds almost always blow from the North. 

Then the temperatures recorded at stations 100 km to the N 

or S of me will likely be closer to the temperature at my 

station than temperatures recorded at stations 100 km to 

the E or W.  

We now see how to detect anisotropy. 



Anisotropy 

• Greek“Iso”+“tropic”= English“same”+“trend”; Greek“an-”= 

English“not-” 

• Variation may depend on direction, not just distance 

• This is why we refer to the separation vector; up till now 

this has just meant distance, 

• but now it includes direction 

• Case 1: same sill, different ranges in different directions 

(geometric, also called affine, anisotropy) 

• Case 2: same range, sill varies with direction (zonal 

anisotropy) 



How can anisotropy arise? 

• Directional process 

• * Example: sand content in a narrow flood plain: much 

greater spatial dependence along the axis parallel to the 

river 

• * Example: secondary mineralization near an intrusive dyke 

along a fault 

• * Example: population density in a hilly terrain with long, 

linear valleys 

• Note that the nugget must logically be isotropic: it is 

variation at a point (which has no direction) 



• Q27 : What is the physical reason you would expect greater 

spatial dependence (i.e. more similarity in values) of the 

sand content along the axis parallel to the river than in the 

axis perpendicular to it?  

• A27 : The energy of the river is along its axis, so that when 

it floods the momentum of the floodwater keeps it flowing 

more-or-less along this axis. Also, topographic barriers to 

floodwater, such as river terraces, also tend to be along the 

main river axis. 



How do we detect anisotropy? 

1. Looking for directional patterns in the post-plot; 

2. With a variogram surface, sometimes called a variogram 

map; 

3. Computing directional variograms, where we only consider 

points separated by a distance but also in a given direction 

from each other. 

We can compute different directional variograms and see if 

they have different structure. 



Detecting anisotropy with a variogram surface 

• One way to see anistropy is with a variogram surface, 

sometimes called a variogram map. 

• This is not a map! but rather a plot of semivariances vs. 

distance and direction (the separation vector) 

• Each grid cell shows the semivariance at a given distance 

and direction separation (lag) 

• Symmetric by definition, can be read in either direction 

• A transect from the origin to the margin gives a directional 

variogram (next visualization technique) 



Detecting anisotropy with a variogram surface 

• One way to see anistropy is with a variogram surface, 

sometimes called a variogram map. 

• This is not a map! but rather a plot of semivariances vs. 

distance and direction (the separation vector) 

• Each grid cell shows the semivariance at a given distance 

and direction separation (lag) 

• Symmetric by definition, can be read in either direction 

• A transect from the origin to the margin gives a directional 

variogram (next visualization technique) 



Detecting anisotropy with a variogram surface 

• One way to see anistropy is with a variogram surface, 

sometimes called a variogram map. 

• This is not a map! but rather a plot of semivariances vs. 

distance and direction (the separation vector) 

• Each grid cell shows the semivariance at a given distance 

and direction separation (lag) 

• Symmetric by definition, can be read in either direction 

• A transect from the origin to the margin gives a directional 

variogram (next visualization technique) 



Variogram surface showing anisotropy 

 



Variogram surface showing anisotropy 

• Q28 : What is the approximate semivariance at a separation 

of distance 500 m, direction due E (or W)?  

• A28 :  0.8; compare the purple colour with the legend at the 
right of the figure.  

• Q29 : What is the approximate separation distance for the 

cell at 300 m E, 200 m S? • 

• A29 : 

• ((300)2+(200)2)1/2= 360 



• Q30 : What is the approximate separation azimuth (direction 

from N) in this cell? 

• A30 : arctan(200/300) +        =2.16 radians from North; this is 
2.16 *                  =124 deg  

• Q31 : What is the approximate semivariance at this 

separation?  

• A31 : The cell at dx = +300, dy = -200 has a blue color that 

corresponds to 0.5. 

 



Interpreting the variogram surface 

• The principal use is to find the direction of maximum spatial 

dependence, i.e. the lowest semivariances at a given 

distance. 

• To do this, start at the centre and look for the direction 

where the color stays the same (or similar). 



Interpreting the variogram surface 

• Q32 : Which direction (as an azimuth from N) shows the 

strongest spatial dependence, i.e. where the semivariance 

stays low over the farthest distance?  

• A32 : Approximately 30 degrees from N. The dark blue 

colors form a clear band in the NNE - SSW axis.  

• Q33 : Does the orthogonal axis, i.e. 90 degrees rotated from 

the principal axis of spatial dependence, appear to have the 

weakest spatial dependence, i.e. where the semivariance 

increases most rapidly away from the centre of the map?  

• A33 : Yes, the axis at approximately 120 degrees from N (30 

+ 90) does appear to be the direction in which semivariance 

increases most rapidly. 



Interpreting the variogram surface 

• We saw above the “pure nugget” variogram, showing that 

not all variables have spatial dependence. 

• Similarly, not all variables show anisotropy; in fact many do 

not. The following graph shows a variable with 

• isotropic (same in all directions) spatial dependence. 

• Note: variogram maps are often “irregular” in appearance 

(“speckled”) because in most datasets there are few point-

pairs to estimate the semivariance at a given distance and 

direction (separation) bin. 

 



Variogram surface showing isotropy 



Detecting anisotropy with a directional variogram 

. A directional variogram only considers point pairs separated 

by a certain direction 

. These are put in bins defined by distance classes, within a 

certain directional range, as with an omnidirectional 

variogram 

. These parameters must be specified: 

1. Maximum distance, width of bins as for omnidirectional 

variograms; 

2. Direction of the major or minor axis in 1st quadrant; 

implicitly specifies 

perpendicular as other axis; 

3. Tolerance: Degrees on either side which are considered to 

have the ‘same’ angle; 

4. Band width: Limit the bin to a certain width; this keeps the 

band from taking in too many far-away points. 



Directional variograms of Log(Zn), Qassim soil samples 

 



• Q34 : Do the two directions have similar variograms? 

(Consider sill, range, nugget)  

• A34 : They are quite different. The 30N variogram has a very 

regular form, with almost zero nugget, range about 1100 m, 

and sill near 0.6.  

 The 120N variogram is irregular (partly because of the 

smaller number of point-pairs in that direction), with a 

nugget near 0.1, a range that is quite difficult to estimate 

but which may be placed near 800 m where the first sill of 

about 0.8 is reached.  

 



• Q35 : In which of the two perpendicular axes is the spatial 

dependence stronger (longer range, lower nugget to sill 

ratio)?  

• A35 : 30N.  

• Q36 : How is this evidence that the spatial process by 

which the metal (Zn) was distributed over the area is 

directional?  

• A36 : The longer range and lower variability in the 30N 

direction shows that whatever process distributed the Zn is 

oriented along that axis. 


