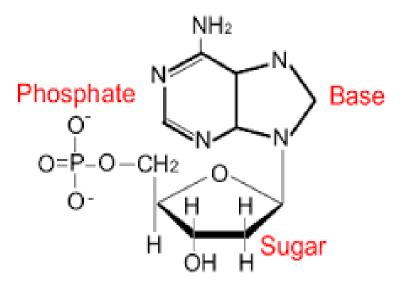


General introduction

LAB 1

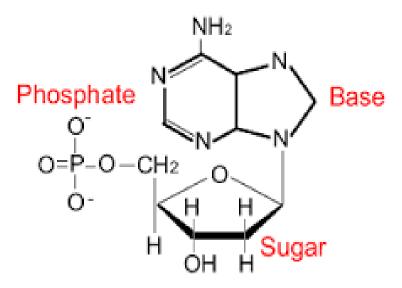
Safety issues

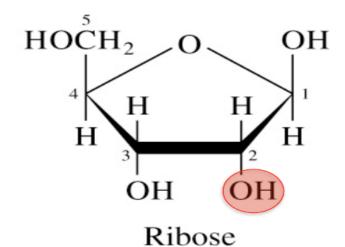

Major points:

- lab coat & gloves at all times, change when contaminated (for PCR fresh gloves/step)
- be familiar with eyewash station
- Dispose of everything as suggested
- Label clearly
- physical, biological & chemical hazards?

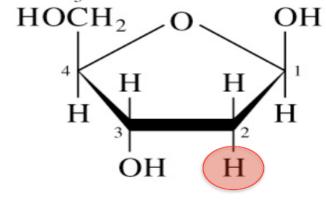
Nucleic acid

- macromolecule (monomeric nucleotides)
- carry genetic inf
- form structure
- all cells & viruses
- eg; DNA; RNA

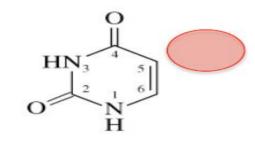

Nucleotide structure

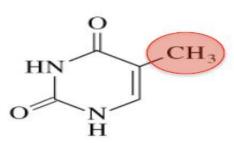

Nucleic acid (chemical structure)

- linear (eukaryotes), unbranched
- 3 components;
 - 1. phosphate backbone (PO4)⁻³
 - 2. pentose sugar
 - 3. nitrogenous base (purine or pyrimidine)


Nucleotide structure

Ribose and Deoxyribose sugars


 $(\beta$ -D-Ribofuranose)


Deoxyribose (2-Deoxy-β-D-ribofuranose)

Nitrogenous base (nucleobases)

PYRIMIDINES

Uracil (2,4-Dioxopyrimidine)

Thymine (2,4-Dioxo-5-methylpyrimidine)

Cytosine (2-Oxo-4-aminopyrimidine)

PURINES

$$\begin{array}{c|c}
NH_2 \\
N & 5 \\
 & 7 \\
 & 8 \\
 & N
\end{array}$$

$$\begin{array}{c|c}
N \\
7 \\
8 \\
N \\
N \\
H
\end{array}$$

Adenine (6-Aminopurine)

$$H_{2} \stackrel{O}{\longrightarrow} N$$

$$N$$

$$N$$

$$N$$

$$N$$

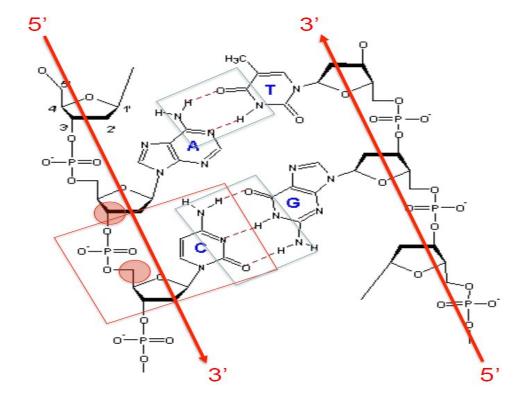
$$N$$

$$N$$

$$N$$

Guanine (2-Amino-6-oxopurine)

Nucleic acid components


Nucleobases : C,G,T,A,U

Nucleosides (sugar + base)

Nucleotides (sugar + base + phosphate group)
 monomers of DNA, RNA

Base pairing

- 3'-5' phosphodiester link
- 2 strands liked by hydrogen bond
- stand run in opposite direction

Types of nucleic acids

DNA

Double stranded Single stranded

Ribose Deoxyribose (lack one O2 atom)

Thymine Uracil

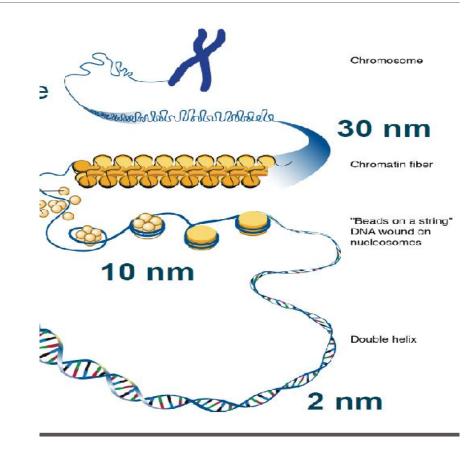
Carry genetic information Protein synthesis

tRNA, mRNA, rRNA

DNA storage

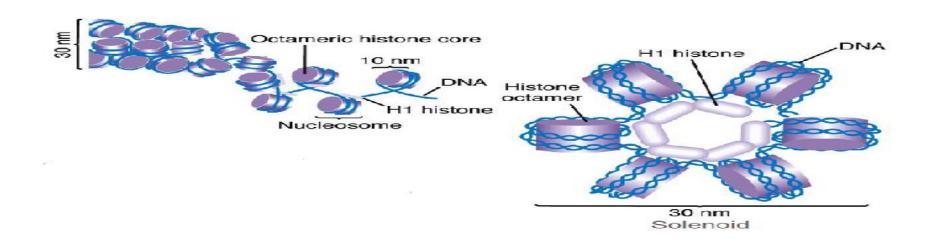
Genes - DNA - chromatin - chromosomes

DNA make up of genes



DNA + protein = chromatin

to maintain chromosome structure



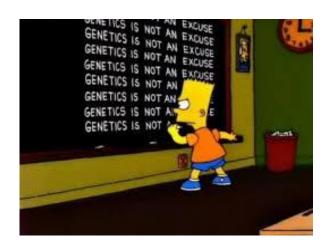
Chromosomes are made up of DNA

Histones

- +ve charged
- Compact & organize
- Control which part of DNA are transcribed

The human genome

- 3 billion bb.
- 200 volume the size of telephone
 Book to hold the information.


..... So compact structure

Genetics

study of the effect of genetic differences in organisms

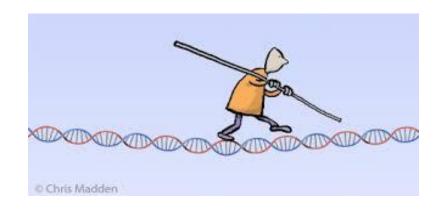
study of the mutants organisms with respect to the wild-type (normal phenotype)

Molecular genetics

Study the structure and function of genes at a molecular level with understanding the interactions bet the various **systems** of a cell and learning how these interactions are regulated

Techniques:

Cloning


PCR

Gel electrophoresis

Sothern plot

Sequencing

Arrays

Cytogenetics

visual study of chromosomes at microscopic level

Techniques:

Karyotype (chromosomal complement)

Fish

Idiogram (stylised form of karyotype)

Mutation

- errors usually occur in the polymerization of the second strand
- error rate; 1 error / 10 100 million bases 'proofreadin function'
- mutagenic:

radiations, chemicals or inherited

THANKS FOR YOUR ATTENTION

ANY QUESTIONS?

