ENGINEERING MANAGEMENT

(GE 404)

LECTURE \#8
 Limited Resource Allocation

Contents

- Objectives of the present lecture
- Resource Allocation
- Why Resource Allocation
- Project Resource Requirement
- Resource Loading Diagram
- Management of Resources-Resource Allocation
- Scheduling Activities with Limited Resources
- Series Method
- Problem
- Further reading

Objectives of the Present lecture

- To discuss the issues involved in Limited Resource Allocation
- To explain how to carry out limited resource allocation using series method

Resource Allocation

- Resource Allocation is the scheduling of activities and the resources required by those activities (while taking into consideration both the resource availability and the project time).
- Resource allocation permits efficient use of physical assets
- Within a project, or across multiple projects
- Drives both the identification of resources, and timing of their application
- There are generally two conditions for allocating resources:
- "Normal" Most likely task duration
- "Crashed" Expedite an activity, by applying additional resources together with cost considerations
* Specialized or additional equipment/material
* Extra labor (e.g., borrowed staff, temps)
* More hours (e.g., overtime, weekends)

Why Resource Allocation?

- To complete and finalize project schedule for completion of the project at maximum efficiency of time and cost
- Better managing of resource utilization over the life of the project
- To smooth the use of resources for better assignment and levelling of Manpower, equipment, materials, subcontractors, and information
- To estimate cost properly for finding optimum project budget (money resource) and close management control
- To schedule resource constraints properly to take care of shortage of resources
- Note: Duration of a project may be increased by delaying the late start of some of its activities if resources are not adequate to meet peak demands

Goal of Resource Allocation/Planning

- The basic objective of resource management is to supply and support field operations with the resources required so that established time objectives can be met and costs can be kept within the budget.
- Hence, the goal is to optimize use of limited resources
- This requires making trade-offs
- time constrained
- resource constrained

Effect of Limited Resources on Schedule slack

- Assume that activities "C" and "G" each require the use of a special piece of equipment, such a hoist crane. But only one crane is available.
- The direct result of this resource constraint is that activities " C " and " G " can not be performed simultaneously as indicated by the ES time-only schedule. One or the other of the activities in each pair must be given priority.

\section*{| Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

\square

Contd.

- Resource constraints reduce the total amount of schedule slack.
- Slack depends both upon activity relationships and resource limitations.
- The critical path in resource-constrained schedule may not be the same continuous chain(s) of activities as occurring in the unlimited resources schedule.

Project Resource Requirement

- Resource Loading Diagram
- A diagram that highlights the period-by-period resource implications of a particular project schedule
- Project Resource Requirement =
- Resource Loading Diagram =
. Resource Histogram =
- Resource Profile and S curve

Project Resource Requirement (Contd.)

We need

We make

- Project network
- Resource requirement for each activity
- Bar chart or time-scaled network
- Resource loading diagram
- Period-by-period total requirements of units of resources
- Cumulative resource requirement curve (S curve)

Resource Loading Diagram (Based on ES schedule)

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

		A				C					I			J			K	
	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	5	5	5
							E											
				4	4	2	2	2										
							F											
						1	1	1										
			B				G					H						
	2	2	2	2	2	2	2	2	2	2	2	2	2	2				

R	5	5	5	9	9	9	9	9	6	5	5	5	5	6	4	5	5	5
LR	5	10	15	24	33	42	51	60	66	71	76	81	86	92	96	101	106	111
R^{2}	25	25	25	81	81	81	81	81	36	25	25	25	25	36	16	25	25	25
$\Sigma \mathbf{R}^{2}$	25	50	75	156	237	318	399	480	516	541	566	591	616	652	668	693	718	743

Resource
9
8
7
6
5
4
3
2
1

Resource Loading Diagram (Based on LS schedule)

Management of Resources-Resource Allocation (Main Aspects)

- Also often called constrained-resource scheduling
- There are definite limitations on the amount of resources available to carry out the project (or projects) under consideration.
- Project duration may increase beyond the initial duration determined by the usual "time only" CPM calculations.
- The scheduling objective is to minimize the duration of the project (or projects) being scheduled, subject to stated constraints on available resources.

- Note: Resource leveling ensures that resource demand does not exceed resource availability.

Cumulative Resource Requirement Curve

Cumulative resource requirement curve (S-curve) may be used for:

- Planning and Control of progress
- Preliminary resource allocation

Resource allocation measures

15
1- Average daily requirement, $D R_{A}=\frac{\text { Total unit of resources }}{\text { project duration }}=\frac{T}{D}$
2- Criticality index, $\quad I_{C}=\frac{D R_{A}}{A_{\max }}$
3- Effectiveness, $E f f=\left(D R_{A}\right)^{2} \times D$
4-Total units of resources ; $T=\sum_{j=1}^{j=n} R_{j}$
5-Sum of squares of rousources; $\mathrm{SUM}=\sum_{j=1}^{j=n} R_{j}^{2}$
where,
$D=$ Project duration
$A_{\text {max }}=$ Maximum Avaliable Resourcs
$n=$ Number of periods
Resource per period $=R$

Significance of Resource Criticality Index

$$
\begin{gathered}
16 \\
I_{C}=\frac{D R_{A}}{A_{\max }}
\end{gathered}
$$

- Higher values of resource criticality index are associated with the most critical (i.e., most tightly constrained) resources.
- Values of resource criticality index significantly below 1.0 typically are associated with non-constraining resources.
- Values around and above 1.0 indicate that project delays (beyond the original critical path duration) will be encountered.

Scheduling Activities with Limited Resources

- Series Method
- The series method relies on the assumption that once an activity has been started, it cannot be interrupted.
- Parallel Method
- The parallel method is similar to the series method with one basic difference: The parallel method permits activities to be interrupted.

Series Method

- Schedule activities to start as soon as their predecessors have been completed
- Determine the Eligible Activity Set (EAS) i.e. those activities with all predecessor activities completed.
- From among the members of the current EAS, determine the Ordered Scheduling Set (OSS) of activities giving priority to the earliest late start
- If the activities are tied for the early late start date, give priority to the activity with least activity duration
- If the activities are tied for activity duration, give priority to the activity with the largest number of resources
- If no activity has been selected with the above rules, start the activity that occurs first in the input order

Form for the Resource Allocation

Problem-1

The work of a small engineering project is planned according to the AON shown below. The labour requirement of each activity is shown below each activity box.
(a) Calculate the requirements of labour each day when all the activities start at their (i) early start and (ii) late start.
(b) What will be the minimum contract duration if no more than 6 labours can be made available for the work and if it is assumed that having started an activity it must be completed without a break?

Solution

EST

Solution (a)

$D R_{A}=(\Sigma \mathrm{R} / \mathrm{D})=$ $127 / 24=5.292$
$E f f=D R_{A}^{2} \times \mathrm{D}=$ $(5.291)^{2} \times 24=$ $5.292=672.042$

LST

Solution (b)

Minimum contract

 duration if no more than 6 labours can be made available $=31$ days
Multiple Project Scheduling Interactions

Example of multi project scheduling interactions

Further Reading

Read more about the resource allocation from:

Jimmie W. Hinze. "Construction Planning and Management," Fourth Edition, 2012, Pearson.

Thank You

Questions Please

