بسم الله الرحمن الرحيم

ENGINEERING MANAGEMENT

(GE 404)

LECTURE \#7 Resource Leveling

Contents

- Objectives of the present lecture
- Management of Resources-Resource Leveling
- Resource Leveling (Smoothing) Procedures
- Burgess Leveling Procedure
- Estimated Method
- Problems
- Further reading

Objectives of the Present lecture

- To discuss how to carry out resource leveling using time-scaled diagrams

Management of Resources-Resource Leveling

- Resource leveling is a technique to reduce the amount of variability (peak and valley) in the pattern of resource usage (manpower, equipment, or money) over the project duration.
- Resource leveling ensures that resource demand does not exceed resource availability.
- Main Aspects:

- Sufficient total resources are available
- Project must be completed by a specified due date, in other words, project duration is not allowed to increase

Contd.

Improvements can be made to the level of resource requirements by:

- Delaying or bringing forward the start of certain activities
- Extending the duration of certain activities and so reducing the demand for resources over the duration of the activity or by a combination of both of these adjustments
- Note: Time-scale network or bar chart is generally used for resource leveling. The reason for this is that resource leveling must be considered within a time framework and Timescale network or bar charts are
 drawn to a time scale while other networks (e.g. AON etc.) are not.

Resource Leveling (Smoothing) Procedures

- Although the sum of daily resource requirements over the project duration is constant, but the sum of the squares of the daily requirements decreases as the peaks and valleys are leveled.
- Burgess method utilizes a simple measure of effectiveness given by the Sum of the squares of the resource requirements for each "day" (period). This value reaches a minimum for a schedule that is level and equals

```
\(E f f=(D R)^{2} \times D\)
where;
Eff \(=\) Effectiveness
\(D R \quad\) = Average daily requirement
\(D=\) Project duration
```


Note: R in the figure is the same as DR in the equation

Burgess Leveling Procedure (Steps 1-4)

1. List the project activities in order of precedence. Add to this listing the duration, early start, and float (slack) values for each activity
2. Starting with the last activity, schedule it period by period to give the lowest sum of squares of resource requirements for each time unit. If more than one schedule gives the same total sum of squares, then schedule the activity as late as possible to get as much slack as possible in all preceding activities.
3. Holding the last activity fixed, repeat Step 2 on the next to the last activity in the network, taking advantage of any slack that may have been made available to it by the rescheduling in Step 2.
4. Continue Step 3 until the first activity in the list has been considered; this completes the first rescheduling cycle.

Burgess Leveling Procedure (Steps 5-8)

5. Carry out additional rescheduling cycles by repeating Steps 2 through 4 until no further reduction in the total sum of squares of resource requirements is possible, noting that only movement of an activity to the right (schedule later) is permissible under this scheme.
6. If this resource is particularly critical, repeat Steps 1 through 5 on a different ordering of the activities. which, of course, must still list the activities in order of precedence.
7. Choose the best schedule of those obtained in Steps 5 and 6.
8. Make final adjustments to the schedule chosen in Step 7, taking into account factors not considered in the basic scheduling procedure.

Problem-2

Time-scaled network is given below with the resource demands of each activity on each day. Using Burgess leveling procedure, level the resources.

Solution

$1^{\text {st }}$ Trial with activity H

Start with Delay activity "H" one period

Delay activity "H" one period $\therefore \sum R^{2}=747$

$2^{\text {nd }}$ Trial with activity H

Start with Delay activity "H" two periods

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
		A				C											K		
	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	5	5	5	
				D			E												
				4	4	2	2	2											
							F												
						1	1	1											
			B				G							H					
	2	2	2	2	2	3	3	3	3			2	2	2	2	2			
R	5	5	5	9	9	9	9	9	6	3	3	5	5	6	6	7	5	5	
\mathbf{R}^{2}	25	25	25	81	81	81	81	81	36	9	9	25	25	36	36	49	25	25	

Delay activity "H" $\underline{2}$ periods $\therefore \sum R^{2}=755$

$3^{\text {rd }}$ Trial with activity \mathbf{H}

Start with Delay activity "H" three periods

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1		17	18	
		A				C												K		
	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4			5	5	
				D			E													
				4	4	2	2	2												
				-																
							F													
						1	1	1												
			B				G								H					
	2	2	2	2	2	3	3	3	3				2	2	2	2		2		
R	5	5	5	9	9	9	9	9	6	3	3	3	5	6	6			7	5	
R ${ }^{2}$	25	25	25	81	81	81	81	81	36	9	9	9	25	36	36	4		49	25	

Delay activity "H" $\underline{3}$ periods $. \therefore \sum R^{2}=763$

$4^{\text {th }}$ Trial with activity H

Start with Delay activity "H" four periods

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

	A				C											K	
3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	5	5	5
			D			E											
			4	4	2	2	2										
						F											
					1	1	1										
		B				G									H		
2	2	2	2	2	3	3	3	3					2	2	2	2	2

\mathbf{R}	5	5	$\mathbf{5}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{6}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{7}$
\mathbf{R}^{2}	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{8 1}$	$\mathbf{3 6}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{3 6}$	$\mathbf{3 6}$	$\mathbf{4 9}$	49	49				

Delay activity "H" $\underline{4}$ periods.$: \sum R^{2}=771$
Hence, \therefore Lowest $\sum \mathbf{R}^{2}=747$ with Delay activity "H" $\underline{1}$ period

Conclusion at the end of trials with activity H

The result $=$ Delay activity "H" one period $\therefore \Sigma R^{2}=747$

Trial with activity \mathbf{G}

Start Delay activity "G" $\underline{1}$ period

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

\mathbf{R}	5	5	$\mathbf{5}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$
\mathbf{R}^{2}	$\mathbf{2 5}$	$\mathbf{2 5}$	25	$\mathbf{8 1}$	$\mathbf{8 1}$	$\mathbf{3 6}$	$\mathbf{8 1}$	$\mathbf{8 1}$	$\mathbf{3 6}$	$\mathbf{3 6}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{3 6}$	$\mathbf{3 6}$	$\mathbf{2 5}$	$\mathbf{2 5}$	$\mathbf{2 5}$

Delay activity "H" one period \& Delay activity "G" one period $\therefore \sum R^{2}=729$

Contd.

Abstract

Continue Delay activities of non critical

| Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | \mathbf{y}

Delay activity "H" $\underline{1}$ period, Delay activity "G" $\underline{1}$ period, Delay activity "F" $\underline{2}$ periods, Delay activity "E" $\underline{5}$ periods, and Delay activity " D " $\underline{2}$ periods $. \therefore \sum R^{2}=715$

Summary

Sequence of major moves of the first rescheduling cycle:
Delay activity "H" one period
$\therefore \Sigma R^{2}=747$
Delay activity "G" one period
$\therefore \Sigma R^{2}=729$
Delay activity " F " two periods
$\therefore \Sigma \boldsymbol{R}^{2}=\mathbf{7 2 7}$
Delay activity "E" five periods
$\therefore \Sigma R^{2}=\mathbf{7 2 3}$
Delay activity "D" two periods
$\therefore \sum R^{2}=715$

Thus by delaying activities as given above (simultaneously) leads to the most levelled resources.

Shortcomings of Burgess leveling procedure

- The disadvantage of this approach is that a resource buildup occurs at the end of the project.
- The procedure does not position activities in a way so as to obtain an optimum solution, although this happen by chance.
- To get the optimum solution, alternate schedules have to be obtained using a different order of activities for shifting.
- The number of these alternate schedules will be large even for small projects rendering the approach an impractical one.

Estimated Method

- Step 1: Draw the network in a time scaled diagram using the early start schedule method
- Step 2: Perform resource loading for the activities and calculate the total number of resources at each period
- Step 3: Reschedule non-critical activities to reduce peaks and to smooth resource usage in the resource loading chart in order to minimize $\Sigma \boldsymbol{R}_{i}{ }^{2}$, where R_{i} is the number of resource usage in the resource loading chart
- Step 4: Continue Step 3 until you reach the schedule of having minimum value of $\sum R_{i}^{2}$

Problem-3

Time-scaled network is given below with the resource demands of each activity on each day. Using Estimated method of leveling procedure, level the resources.

Trial-1

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		A				C					I			J			K	
	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	5	5	5
				D			E											
				4	4	2	2	2										
							F											
						1	1	1										
			B								G					H		
	2	2	2	2	2					3	3	3	3	2	2	2	2	2
R	5	5	5	9	9	6	6	6	3	6	6	6	6	6	6	7	7	7
\mathbf{R}^{2}	25	25	25	81	81	36	36	36	9	36	36	36	36	36	36	49	49	49

Delay activity "H" $\underline{4}$ periods \& Delay activity "G" $\underline{4}$ period $\therefore \Sigma R^{2}=717$

Trial-2

(23)

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		A				C								J			K	
	3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	5	5	5
						D			E									
						4	4	2	2	2								
									F									
								1	1	1								
			B								c					H		
	2	2	2	2	2					3	3	3	3	2	2	2	2	2
R	5	5	5	5	5	7	7	6	6	9	6	6	6	6	6	7	7	7
\mathbf{R}^{2}	25	25	25	25	25	49	49	36	36	81	36	36	36	36	36	49	49	49

Delay activity "H" $\underline{4}$ periods, Delay activity "G" $\underline{4}$ periods, Delay activity "E" $\underline{2}$ periods, Delay activity "F" $\underline{2}$ periods, and Delay activity "D" $\underline{2}$ periods

$$
\therefore \sum R^{2}=703
$$

Other Trials

	A				C					I						K	
3	3	3	3	3	3	3	3	3	3	3	3	3	4	4	5	5	5
					D			E									
					4	4	2	2	2								
											F						
										1	1	1					
		B								G					H		
2	2	2	2	2					3	3	3	3	2	2	2	2	2

R	5	5	5	5	5	7	7	5	5	8	7	7	7	6	6	7	7	7
ΣR^{2}	25	50	75	100	125	174	223	248	273	337	386	435	484	520	556	605	654	703

Delay activity "H" 4 periods, Delay activity "G" 4 periods, Delay activity "F" 5 periods, Delay activity "E" 2 periods, and Delay activity "D" 2 periods
$\therefore \Sigma \boldsymbol{R}^{2}=703$ Thus by delaying activities as given above (simultaneously) leads to the most levelled resources.

Problem-4

Data for small project is listed below:

Activity	Depends on	Duration	Resource Rate	Activity	Depends on	Duration	Resource Rate
A	-	2	4	F	D	2	2
B	-	1	2	G	D	1	1
C	A	1	2	E	D	1	1
D	B, C	4	6				

1. Draw Early Start Time-scaled schedule and calculate the corresponding used resource.
2. Perform 2 trials Resource Leveling. Also, specify which one of the two trials Timescaled schedules is the final schedule and why.

Solution

(26)

1	2	3	4	5	6	7	8	9	10
A		C		D			F		
4R		2R		6R			2R		
B							G		
2R							1R		
							E		
							1R		
6	4	2	6	6	6	6	4	2	R
36	52	56	92	128	164	200	216	220	$\Sigma \mathbf{R}^{2}$

Trial-1

(27)

1	2	3	4	5	6	7	8	9	10
A		C		D			F		
4R		2 R		6R			2R		
		B					G		
		2R					$\xrightarrow{\text { 1R }}$		
							E		
							1R		
4R	4R	4R	6R	6R	6R	6R	4R	2R	
16	32	48	84	120	156	192	208	212	$\Sigma \mathbf{R}^{2}$

Trial-2

1	2	3	4	5	6	7	8	9	10
A		C		D			F		
4R		2R		6R			2R		
		B					G		
		2R					1R		
								E	
								$\xrightarrow{\mathbf{1 R}}$	
4	4	4	6	6	6	6	3	3	R
16	32	48	84	120	156	192	201	210	$\Sigma \mathbf{R}^{2}$

The $2^{\text {nd }}$ trial schedule is the best Resource Leveling result because it has lowest $\sum \boldsymbol{R}^{2}$.

Cumulative Resource Requirement Curve

Cumulative resource requirement curve (S-curve) may be used for:

- Planning and Control of progress
- Preliminary resource allocation

Resource leveling and allocation measures

1- Average daily requirement, $D R_{A}=\frac{\text { Total unit of resources }}{\text { project duration }}=\frac{T}{D}$
2- Criticality index, $\quad I_{C}=\frac{D R_{A}}{A_{\max }}$
3- Effectiveness, $E f f=\left(D R_{A}\right)^{2} \times D$
4- Total units of resources ; $T=\sum_{j=1}^{j=n} R_{j}$
5-Sum of squares of rousources; $\mathrm{SUM}=\sum_{j=1}^{j=n} R_{j}^{2}$
where,
$D=$ Project duration
$A_{\text {max }}=$ Maximum Avaliable Resourcs
$n=$ Number of periods
Resource per period $=R$

Significance of Resource Criticality Index

$$
I_{C}=\frac{D R_{A}}{A_{\max }}
$$

- Higher values of resource criticality index are associated with the most critical (i.e., most tightly constrained) resources.
- Values of resource criticality index significantly below 1.0 typically are associated with non-constraining resources.
- Values around and above 1.0 indicate that project delays (beyond the original critical path duration) will be encountered.

Problem-5

For a small Engineering project listed below:
a) Draw the Early Start and Late start project schedule using Time- scaled network.
b) Within only two trials, level the project Resource.
c) How many Worker(s)/day you should use in this project?

Activity	Depends on	Time, day	Resource, Worker/day
A	None	4	2
B	A	6	3
C	B	7	3
D	C, G	3	4
E	None	3	3
F	A, E	4	2
G	F	4	2
H	None	1	3
I	H	5	2

Solution (a)

ES Time Scaled Network

Earlest Start project schedule using Time- scaled network

Contd.(a)

LS Time Scaled Network

Latest Start project schedule using Time- scaled network

\mathbf{R}	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{6}$	$\mathbf{6}$	
$\sum \mathbf{R}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 1}$	$\mathbf{1 4}$	$\mathbf{2 0}$	$\mathbf{2 6}$	$\mathbf{3 2}$	$\mathbf{3 7}$	$\mathbf{4 2}$	$\mathbf{4 7}$	$\mathbf{5 2}$	$\mathbf{5 7}$	$\mathbf{6 5}$	$\mathbf{7 2}$	$\mathbf{7 9}$	$\mathbf{8 5}$	$\mathbf{9 1}$	$\underline{97}$	
\mathbf{R}^{2}	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{3 6}$	$\mathbf{3 6}$	$\mathbf{3 6}$	$\mathbf{2 5}$	$\mathbf{6 4}$	$\mathbf{4 9}$	$\mathbf{4 9}$	$\mathbf{3 6}$	$\mathbf{3 6}$	$\mathbf{3 6}$					
$\sum \mathbf{R}^{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{1 2}$	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 4}$	$\mathbf{7 0}$	$\mathbf{1 0 6}$	$\mathbf{1 4 2}$	$\mathbf{1 6 7}$	$\mathbf{1 9 2}$	$\mathbf{2 1 7}$	$\mathbf{2 4 2}$	$\mathbf{2 6 7}$	$\mathbf{3 3 1}$	$\mathbf{3 8 0}$	$\mathbf{4 2 9}$	$\mathbf{4 6 5}$	$\mathbf{5 0 1}$	$\mathbf{5 3 7}$	

Solution (b) $1^{\text {st }}$ Trial for resource leveling

step 1- moving task H to start end of 3rd period

1	2	3	4	5	6	7	8	9	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	21

Contd.(b) $2^{\text {nd }}$ Trial for Resource Leveling

step 2- moving task I to start end of 12th period

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$	$\mathbf{1 6}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$

Leveling Result and Solution of part (c)

The graphs shows the resource is nearly constant over time, and has been leveled.

Resource requirement

Average daily requirement, $D R_{A}=\frac{T}{D}=\frac{\sum R}{D}=\frac{97}{20}=4.85$ workers $/$ day
Effectiveness, Eff $=\left(D R_{A}\right)^{2} \times D=4.85^{2} \times 20=470.45$

Further Reading

Read more about the resource leveling from:

Jimmie W. Hinze. "Construction Planning and Management," Fourth Edition, 2012, Pearson.

Thank You

(39)

Questions Please

